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Abstract: Functional Electrical Stimulation (FES) uses electrical pulses to cause muscles to contract
synthetically. When muscles contract due to stimulation, torques are produced around joints attached
to the muscle. It is important to understand torques being produced, for reasons such as safety and
indirect fatigue measurement. Given the translatability of FES devices into the home for therapy,
having ways to non-invasively measure muscle responses to stimulation is essential for understanding
and diagnosing the biomechanical response of the human body. Here, we present data from a
stimulation experiment examining knee joint torques (KJTs) arising when quadriceps are subjected to
electrical stimulation. A novel algorithm for computing and summarizing KJT data into a series of
simplified parameters was developed using MATLAB software. From this, we draw some conclusions
about the effect of changing the stimulation duty cycle on the resultant KJT. We believe this method
will provide researchers with a tool to measure torque in a semi-automated, convenient fashion.

Keywords: biomechanics; signal processing; isometric; torque; home exercise; functional
electrical stimulation

1. Introduction

The technique of Functional Electrical Stimulation (FES) is one where pulse trains are
delivered to muscles by a stimulator, for example, to augment their functional ability [1].
These pulse trains are delivered by placing electrodes over the surface of an individual’s
skin. Electricity runs between the electrodes, stimulating the nerves, which causes con-
traction of the muscles. This allows muscles to artificially contract. Therefore, stimulation
allows for muscular exercise to occur when it may otherwise not be possible [2,3]. In more
recent times, it has also been used to alleviate muscle weakness during the pandemic [4].
During electrical stimulation of muscles, the movement of muscles produces torques
around the muscle’s associated joints. Therefore, an aim of FES biomechanics is to esti-
mate these torques when muscles are undergoing stimulation. This allows for an indirect
measurement that details how the stimulation elicits a mechanical response from a limb.
This may also have applications in clinical research where an indirect measure of muscle
strength is required. Isokinetic dynamometry has, for example, been used in strength
assessments in research examining knee osteoarthritis [5,6].

Joint torques may be measured by use of isokinetic dynamometry. Machines such
as the Biodex can allow for measurements to be made that reflect the functionality of
muscles [7]. Typically, a limb is strapped to a machine that measures the torque around
a joint, which articulates due to the action of connected muscles. Muscles develop force,
which pulls on connected bones and joints via tendinous connection. When the isokinetic
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dynamometer is used to measure stimulation applied to a stationary muscle, it is referred
to as isometric dynamometry, as during isometric muscle contraction, the muscle’s length
remains unchanged. When these movements occur, a dynamometer acquires a set of
torque–time data. Previous work by our group [8] developed a series of metrics and plots
to quantify such data over a period of 25 min stimulation. However, also of interest to
FES research is acute stimulation, where pulse trains are delivered over the course of a
few minutes.

In other upcoming work stemming from this original method, each experimental
condition involved the testing of one duty cycle of stimulation for a 25 min period. The duty
cycle is the time ON compared to the time OFF of the pulse trains [9]. The work performed
was an adapted protocol of Gentz and Moore [10], whereby pulse trains were to be delivered
using a duty cycle of 1 s ON:3 s OFF (1:3) and comparisons to be made across different
multiples of the 1:3 duty cycle (e.g., 1:6, 3:9). However, one major limitation encountered was
the large variability in torques generated when the same duty cycle was tested on different
days. As such, a period of “chronic” stimulation for 20 min may elicit markedly different
KJTs (if the thighs are to be stimulated) across different days despite the same parameters
being used for electrical stimulation. Our goal was to therefore measure KJTs elicited when
the quadriceps was subjected to the 1:3 duty cycle and its multiples, randomized in one
session and across different days.

If pulse trains are delivered in one session, they must be randomized to reduce ex-
perimental bias. For example, if a researcher chooses the order in which pulse trains are
delivered, there may be some unconscious bias when selecting which trains are delivered
when. In their study of alternating current duty cycles, Szecsi and Fornusek [11] described
stimulation being delivered in “blocks”, comprised of different types of alternating cur-
rent delivered at different duty cycles. Herein, a randomized method inspired by this
paper is used to design a protocol delivering different duty cycles of pulsed current to
the quadriceps.

2. Methods
2.1. Electrical Stimulation Protocol and Randomized Design
2.1.1. Details of the Case Study Design

The volunteer for this work was a healthy male, age 25, who had no history of lower
limb pathology preventing participation in the case study. The work was approved by the
University of Sydney Human Research Ethics Committee (Project No.: 2016/798). The par-
ticipant engaged in the case study with full consent. The same randomized pattern was
delivered to the quadriceps on the human subject on different occasions. The KJT data gen-
erated were processed using a novel algorithm. This algorithm was developed to analyse
torque–time waveforms resulting from isometric dynamometry under these conditions.
The goal of this work was, thus, two-fold: (1) present a novel algorithmic method that
can be used by researchers to process data from isometric dynamometry experiments, and
(2) to infer some conclusions about the effect of changing ON and OFF time (duty cycle)
when the quadriceps is subjected to stimulation, with the main effect variable being the
KJT that arises as a result of stimulation. In a diagnostic sense, it is envisaged that this
work could be used by researchers in understanding limb biomechanics during electrical
stimulation. This is of particular importance when using electrical stimulation in patient
populations who have an absence of sensation, as limb biomechanics may be used to help
understand the safety of electrical stimulation exercise.

2.1.2. Experimental Design and Rationale

An experiment was designed to analyse torque responses when the quadriceps was
subjected to randomized pulses delivered at different duty cycles. The same duty cycles
(1:3, 2:6, 3:9, 1:6, 1:9, 2:3, and 3:3) were used as in previous work by Gentz and Moore [10].
However, as a modification to their protocol, all duty cycles were delivered in each session
of this work, using a randomized pattern.
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2.1.3. Randomization Procedure

The method of randomizing pulses was a modified form of a procedure found in
a recent study of Functional Electrical Stimulation by Szecsi and Fornusek [11]. In their
paper, Szecsi and Fornusek discuss providing “eight stimulation blocks” and “...each block
contained eight stimulation periods that corresponded to the (duty cycle AC) “conditions””
(p. 149). This protocol informed the development of a randomized stimulation sequence in
which to deliver the seven duty cycles of interest.

To generate the randomized pattern, each duty cycle was assigned a number (1:3—1,
1:6—2, 1:9—3, 2:3—4, 3:3—5, 2:6—6, 3:9—7). Sample numbers are presented for the purposes
of illustrating the randomization procedure (Table 1), and columns are labelled A–D inclu-
sive. Each duty cycle was assigned a random number using the RAND() function in Excel
(column C, Table 1). Then, the relative order of those random numbers was used to assign a
number 1–7 in column 1. This was achieved by use of an Excel formula that aimed to produce
the order of column C relative to column A (i.e., the indexing column).

Table 1. Setting up the randomization procedure. Column A—duty cycle permutation, Column B—
the duty cycle in complete numeric form (e.g., 16 = a duty cycle of 1:6), Column C—a randomly gen-
erated number, Column D—the duty cycle permutations (referenced by their number in Column A),
randomly assorted on a basis of the random number in Column C.

Column A Column B Column C Column 1

1 13 0.56 3

2 16 0.15 7

3 19 0.47 5

4 23 0.97 1

5 33 0.54 4

6 26 0.64 2

7 39 0.21 6

The aim of the initial randomization procedure was also to yield seven randomized
columns, such as column 1. The goal was to produce a 7 × 7 matrix of randomized duty
cycles (denoted by numbers 1 to 7 inclusive). No duty cycle could appear more than once
in either row or column. To achieve this, the next six columns (i.e., 2–7 inclusive, Table 2)
were randomized based on column D and a series of auxiliary matrices with randomized
numbers. In summary:

Seven auxiliary matrices were set up, each with six rows and two columns. In each
matrix, there were two columns. The first had six of the seven numbers of the sequence 1–7,
with one missing in each column (Table 3). The second had a random number specified by
RAND(). This process was performed as follows.

A formula was typed into the first cell of column 2. This formula was a conditional
formula that instructed access to one of the seven auxiliary matrices on a basis of the value
in column 1 of that row. For example, in row 1, column 1 of Table 2, the value is 3. In row 1
of column 2, the formula would instruct to access the auxiliary matrix of Table 3 where the
value of 3 is missing (highlighted in yellow, for example). This cell would then be filled
with the order of the first cell in the yellow column.

The formula was then dragged across the row, and as so, it would access the auxiliary
matrix of interest in a downward fashion, producing the relative randomized order of each
number across the row of Table 2.

This process would be repeated for each row of Table 2, accessing a different auxiliary
matrix for each row.

This ensured that the numbers 1–7 appeared once in each row.
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Table 2. Randomized Protocol Generator. Process adapted from Szecsi and Fornusek (2014).

Partition Rand No 1 2 3 4 5 6 7

1 13 0.56 3 6 7 2 4 1 5

2 16 0.15 7 2 5 1 6 4 3

3 19 0.47 5 1 7 4 2 3 6

4 23 0.97 1 6 5 7 2 4 3

5 33 0.54 4 7 3 5 6 1 2

6 26 0.64 2 1 4 3 5 7 6

7 39 0.21 6 3 5 2 4 1 7

Table 3. Auxiliary Matrices for Randomization Purposes.

7 6 5 4 3 2 1
1 0.72 1 0.96 1 0.92 1 0.24 1 0.48 1 0.88 2 0.41
2 0.16 2 0.77 2 0.40 2 0.80 2 0.17 3 0.56 3 0.59
3 0.73 3 0.96 3 0.74 3 0.37 4 0.64 4 0.65 4 0.21
4 0.02 4 0.78 4 0.79 5 0.28 5 0.62 5 0.44 5 0.99
5 0.42 5 1.00 6 0.75 6 1.00 6 0.86 6 0.03 6 0.86
6 0.45 7 0.69 7 0.63 7 0.88 7 0.60 7 0.06 7 0.97

The final randomization matrix (Table 4) differs from any examples (i.e., Tables 2 and 3),
as RAND() changes each time an operation is performed on Excel. Initially, colour codes were
assigned such that a series of programs would be hand-programmed into the stimulator to
deliver four randomized duty cycles in sequence. For example, the first four numbers (in white,
3, 7, 5, 4) would be delivered by one stimulator program, then the next four (in black, 2, 6, 1,
2) by another. However, it was decided that each stimulation partition (numbered) would be
delivered individually for practical purposes. In addition, it was also decided to only do the
first three rows of the pattern. Therefore, the final stimulation pattern was that of Table 5.

Table 4. Randomized Pattern Generated.

Partition 1 2 3 4 5 6 7
1 13 0.6228 3 7 5 4 2 6 1
2 16 0.696862 2 5 7 6 4 1 3
3 19 0.125953 7 3 4 1 6 5 2
4 23 0.961222 1 4 5 6 7 2 3
5 33 0.517979 4 6 3 7 2 5 1
6 26 0.434722 5 6 7 4 1 2 3
7 39 0.169117 6 3 4 5 1 7 2

Table 5. Final Randomized Pattern Used.

1 2 3 4 5 6 7
3 7 5 4 2 6 1
2 5 7 6 4 1 3
7 3 4 1 6 5 2

2.1.4. Precise Stimulation Parameters

For each partition of stimulation delivered (Table 5), three pulse trains were delivered,
with a ramp pulse initially and a partial pulse after signifying the commencement of the
fourth pulse (Figure 1). When the fourth pulse commenced, the stimulation was manually
changed so that the pulse of the next partition could begin. In total, there were five pulse
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trains delivered in most partitions (Figure 1). Each pulse train produced a torque plateau.
The schematic shown in Figure 1 is for illustrative purposes: one ramp peak (Pr), three
peaks (P1, P2, and P3), and one partial pulse train (Pp), whereby stimulation at the given
duty cycle was stopped such that the next duty cycle could be delivered.
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Figure 1. Sample partition of stimulation shown in terms of torque generated. Peaks in order as
they appear (left to right): ramp peak (Pr), peak 1 (P1), peak 2 (P2), peak 3 (P3), and partial pulse
train (Pp).

Prior to the administration of the random sequence of 21 partitions (7 × 3), a warm-up
series of pulse trains were delivered that were 10 pulses of 1:3 stimulation. Stimulation was
provided by a hand-held Med 4 (OttoBock Healthcare Products Austria GmbH, Vienna,
Austria) stimulator. Stimulation was delivered at 45 mA, 30 Hz with a pulse width of 300 µs.
There was no ramp-up or ramp-down automatically administered (ramp-up = ramp-down
= 0-s specified in the stimulator), decided during trial runs. There were multiple trials
performed (n = 7), with six of these ultimately being processed by the algorithm due to
technical issues with one dataset. Torque was measured throughout the stimulation using
a Biodex System 2 isokinetic dynamometer. The moment arm was configured at a knee
joint angle of 60 degrees flexion.

2.2. Signal Processing and Algorithm Development
2.2.1. Data Processing

Custom-designed MATLAB algorithms were drafted, tested, and produced to process
torque data from randomized trials. The data-processing procedure (Figure 2) summarizes
how the data were processed. Initially, an algorithm was made; then, refinements had to be
made as partitions in blocks were plotted out of order (Figure 2). Therefore, this procedure
details both peak-plotting procedures and the unjumbling of torque plateaus related to the
initial randomized stimulation sequence provided.
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2.2.2. Algorithm Description

For the purposes of discussion of how torque–time data were processed, a few terms
must be defined, in terms of the stimulation delivered during experiments. Application of
these terms in the context of torque–time waveforms is also depicted (Figure 3).
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Let:
A partition represent the five pulse trains delivered at a given duty cycle (one ramp

pulse train, three pulse trains, and one partial pulse thereafter).
A block represent the total number of partitions where no duty cycle is repeated (i.e.,

seven partitions in this experiment).
The terms partition and block can refer to either (a) the electrical stimulation, or

(b) the resultant torque waveform generated due to the stimulation. The block–partition
notation used to describe pulse trains is presented in Figure 3. Three blocks of stimula-
tion were delivered, each with seven partitions (one for each duty cycle). Block 1 also
contained a warm-up partition. BmPn notation signifies block m partition n. B1PW was the
warm-up partition in block 1. Therefore, in total, there were 3 × 7 + 1 = 22 partitions of
stimulation delivered.

The goal of algorithm development was, thus, to separate all duty cycles from torque–
time data series and align all three repetitions from a given experiment (i.e., align duty
cycle 1 from blocks 1, 2, 3, and then duty cycle 2, etc.). This was achieved by designing
custom-made algorithms comprised of: a) large main pieces of code for “main” processing
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(modules); b) associated functions to assist these modules in achieving their tasks (func-
tions). A summary of all modules and functions is presented in Table 6 Algorithms were
run and data processed as discussed below (next section).

Table 6. Summary of Algorithm–Constituent Files and Main Purposes.

MODULES

dataload: Loads torque, time, and angle data for a given experimental run as input by the user.
PeakFinder: Baseline corrects data based on approximate torque due to gravity, finds peaks using
findpeaks MATLAB function, requests user to remove peaks by running ginputremove or adding
peaks by running ginputadd or ginputadd2 if further additions are required.
PeakSplit: Requests user to divide the entire torque–time waveform into three blocks, then asks
the user to divide each block into partitions. Each block is plotted horizontally (i.e., rotated
90 degrees) so torque labels can be easily read.
PeakAnalysis: Exportation of blocks and partitions (all time/peak torque values) to Excel
spreadsheet. Peak numbers and points defining blocks and partitions also exported.
PeakAnalysis2: Partitions of same number aligned from different blocks and plotted on one
subplot (i.e., B1P1, B2P1, B3P1) plotted on same graph.
PeakUnjumble: Specified Excel sheet of previously exported metrics to be unjumbled. Runs
blockreload and blockunjumble for each spreadsheet (i.e., experimental condition).
PeakReplot: Loads newly ordered partitions for each experimental condition. Runs blockreplot
for each.

FUNCTIONS

ginputremove: Requests the user to remove peaks from ROI.
ginputadd: Requests the user to add peaks from ROI.
ginputadd2: Requests the user to add peaks from ROI, subsequently.
blockreload: Reloads all blocks and partitions previously saved in Excel.
blockunjumble: Rewrites a new spreadsheet with partitions in correct order (i.e., that of the
initial randomized sequence).
blockreplot: Generates a plot for the three repetitions of a given duty cycle by sub-plotting the
partitions corresponding, as specified, by the randomization pattern.

The modules and functions described in Table 6 may be summarized and connected
by a series of control flow diagrams. These diagrams summarize pertinent features of each
module and function so they may be understood by any researchers who wish to develop
similar algorithms.

dataload—Initial Loading of Data

Upon acquisition of data from the Biodex, there are characteristically three datasets:
samples (time), torque, and angle of the machine. In this experiment, the sampling rate of
the Biodex was set at 100 Hz, so time samples were obtained every 1/100 of a second. Data
were initially acquired from the Biodex in the .LVM format but saved as .XLSX. The dataload
module (Figure 4) accesses these three datasets and imports them into MATLAB, based on
the user-specified file number. It then inverts the torque, giving it a positive sign for ease of
analysis thereafter.
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PeakFinder—Location of Peaks

This module (Figure 5) produces a form of the torque–time data in the region of interest
(ROI), selected by the user manually. This ROI is the torque–time waveform with noise
at the beginning and the end removed. It then converts the x-axis from samples (1/100 s)
to time (s) and shifts the y-axis such that the torque of gravity is accounted for (baseline
correction). In this code, the baseline correction value was taken as an approximate value
of 10 Nm on the basis of prior calculations, which are the focus of other work.
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Figure 5. The PeakFinder module.

The initial peak detection performed by the code is based on the built-in findpeaks
function in MATLAB. This function requests a value that will define where the built-in
function searches for a peak. In this code, it was referred to as the Kvalue (Figure 5).
This was obtained by a trial-and-error approach. A similar “guessing” approach has also
been used for example to determine vertical prominence value, which was adopted by
McDonald and colleagues [12]. A range of Kvalues were trialled by changing the Kvalue in
the preliminary code and seeing the resultant peak number PN1. This was then compared
to the expected peak number, EPN, which was calculated by computing how many peaks
were to be expected from the stimulation. Following this, the code thresholds the peaks
such that those greater than or equal to 0.30 of the maximum of the peaks are displayed.
The code then offers the option of adding, removing, or further adding peaks (Table 6).

PeakSplit—Division of Peaks into Blocks and Partitions

This module (Figure 6) plots the torque–time data with superimposed peaks. Then,
the user is asked to divide it up into three blocks, corresponding to the three blocks of
stimulation administered to produce the torque (Figure 3). Following this, there are three
new plots generated in succession—one showing the torque–time waveform for each block.
Each graph is flipped 90 degrees clockwise, and labels are assigned to all peaks for easy
inspection by the user. For each plot, the user is prompted to divide each into the respective
number of partitions (eight for block 1, seven each for blocks 2 and 3). In both instances,
division of the waveform into blocks and partitions is achieved by using a combination of
the ginput and pause() functions in MATLAB, which allow selection of defining points for
the user in an easy manner.
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PeakAnalysis and PeakAnalysis2—Saving of Peaks and Locations and Plotting

These two codes (Figure 7) save all the data obtained in the previous modules. In the
first, PeakAnalysis takes all the block–partition data and exports them to an Excel spread-
sheet (Figure 7, top). In the second, PeakAnalysis2 uses the block–partition data and
generates subplots of peaks in partitions (Figure 7, bottom).
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PeakUnjumble and PeakReplot—Saving and Plotting of Peaks Properly Aligned

Following prior modules, block–partition data need to be aligned as per the random-
ization pattern (Table 5). This module (Figure 8) calls upon two functions that facilitate this
and executes the procedure on an experimental run-by-run basis. The first, blockreload,
reloads block–partition data from previously generated modules. The second, blockunjum-
ble, resaves the data in a new format encoded on a basis of the initial randomized pattern.
Then, PeakReplot (Figure 9) replots the properly ordered data.
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2.3. Data Analysis Methods

All six experimental runs were processed using the algorithms. Initial Excel spread-
sheets were analysed, but then, the new codes unjumbling block–partition data had to be
designed. Therefore, the final meaningful analyses were of unjumbled data.

Torque peaks and locations within each partition were analysed for each experimental
run and then overall. A normalization torque Tn was found, firstly, by obtaining the
average of contractions in the warm-up period, for all except the first contraction (ramp
peak) and last contraction. For each duty cycle, there were three partitions (one from each
block), and in each partition, approximately three peaks corresponding to those generated
by automated stimulation (i.e., P1, P2, P3). An average peak value was found by taking the
average peak across all three partitions for a given duty cycle (i.e., approximately nine peaks
for most). The ramp peak Pr and partial peak PP were excluded from this calculation. Then,
for each duty cycle, the average peak value was divided by the normalization torque Tn.
This yielded seven normalized average peak values for each experimental run (one for each
duty cycle). Normalized average peak values were then averaged across all experimental
runs for each duty cycle. Standard deviation, standard error, and relevant plots were
generated from these metrics and compared. In addition to experimental stimulation and
data analyses, a series of field notes were kept for some experimental runs (not discussed).

Peak counts were also a focus of the analysis. The number of peaks exported to Excel
for each duty cycle was obtained by counting, for each experimental run, how many peaks
there were (across all three partitions). These tallies were generated by using COUNT() in
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Excel. In addition, peaks from plots generated by the algorithms were manually counted
and tallied.

3. Results
3.1. Algorithmic Results
3.1.1. Kvalue Iteration

One of the datasets was used to calculate a Kvalue that would produce a PN1 close to
the EPN. The EPN was found in the code by the following formula:

EPN = #blocks × #partitions (3 contractile peaks + 1 ramp peak) + 21 partial peaks from all partitions = 105 peaks (1)

The number of peaks in the 1:3 warm-up was not included in this computation;
however, the PN1’s proximity to the EPN was a rough indicator of an appropriate Kvalue.
The PN1 was the number of total peaks calculated by the algorithm. PN1s produced for
various Kvalues are depicted in Figure 10.
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number of peaks, PN1—the resultant number of peaks computed by the algorithm when the corre-
sponding Kvalue is entered into the code. Units on x- and y-axis—#peaks (dimensionless quantity).

3.1.2. Plot Generation

Raw waveforms, torque waveforms with peaks superimposed, and block–partition
diagrams were successfully produced by the algorithm. Shown here for the purpose of
illustration is a torque waveform, with its corresponding waveform split into blocks and
partitions. Further, the 1:3 peaks are used for illustrative purposes.

As shown in Figure 11, the algorithm split the total waveform into three blocks based
on the applied randomized pattern. In each block, the resultant torque produced by each of
the seven duty cycles applied is shown. Following the computation of peak values, these
were taken by the algorithm, and the partitions from each block corresponding to a certain
duty cycle were aligned. An example of the peaks produced by the 1:3 duty cycle from
Run 2 are presented in Figure 12.
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3.1.3. Peak Counts

The algorithm also computed the number of peaks for each duty cycle of stimulation
across the three partitions for a given run. The number of peaks exported to Excel by the
algorithm were compared with those from manual tallying. Most of the peak counts were
15. Some values were slightly off, such as 14 peaks exported to Excel for 3:3 Run 6. Only
one value had several more peaks exported to Excel than expected (25, 1:6 Run 4).

3.2. Experimental Results
3.2.1. Normalization Torques from Warm-Up

Normalization torques and the relevant statistical metrics of each warm-up contraction
set (standard deviation, number of contractions, and standard error) were computed.
There was considerable variation between the average torque generated from 10 warm-
up contractions across different experiments on different days. The smallest was Run 3
(Tn = 11.304 +/− 0.313 Nm), whereas the largest was Run 2 (Tn = 22.138 +/− 0.061 Nm).
Runs 4 and 7 were close in magnitude, with normalization torques of 21.889 +/− 0.518 Nm
and 21.674 +/− 0.120 Nm, respectively. The values were then used to calculate ANT values.

3.2.2. Average Normalized Torques (ANT)

The average normalized torque (ANT) for each duty cycle across all three partitions, for
each run, was computed. The smallest value was for the 1:3 duty cycle (ANT = 0.991 +/− 0.056),
whereas the largest was for the 3:9 duty cycle (ANT = 1.062 +/− 0.058). There was little difference
between the largest and smallest ANT values. In addition, the ANT values were plotted as
functions of OFF, ON, and ON + OFF times (Figures 13–15, respectively). The strongest linear
correlation was between ANT and ON + OFF time, with a coefficient of correlation, R2 = 0.963.
Similarly, the ANT values and OFF time permutation had a strong linear relationship, with an
R2 = 0.870. The correlation between ANT and the ON time permutation was less strong, with a
coefficient of correlation R2 = 0.605. All values were averages of three runs, except where there
was a computation error (1:6 Run 4). Averages of this run were from only two of three partitions.
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4. Discussion

This study successfully developed an algorithm that may be used to compute torque
peaks from isometric dynamometry data in an acute sense. The series of modules and
functions developed enabled peak calculations over a short window of time. Furthermore,
the randomization method inspired by Szecsi and Fornusek [11] was implemented to
deliver pulse trains in a random fashion, reducing any bias of order. In addition, the use of
block–partition notation and pulse train labelling within partitions may be used by future
researchers as a framework upon which torques generated from electrical stimulation may
be discussed.

A major function of this algorithm was peak detection of torque data. Using a modified
form of previously developed code, in concert with the findpeaks function, enabled peaks
to be detected with a high degree of accuracy. The use of the intrinsic findpeaks function
has been used in various contexts to detect peaks in biological data. It has been used in
gait analysis [13], muscle dynamics [14], surgical skills analysis [15], and sleep medicine
to measure peaks in flow rate and epiglottic pressure data [16]. However, in our study,
findpeaks was used for the case of torque peak detection in isometric dynamometry, which
is less well-known. The findpeaks function is simple to implement and access via a single
line command or the use of the Signal Processing Toolbox [17]. However, the presented
algorithm significantly expanded upon the basic findpeaks function through the addition of
a user-prompted set of programs (namely, ginputadd, ginputremove, ginputadd2). These
user-prompted commands allowed for the removal of anomalous peaks or the addition of
missing peaks in dynamometry data that cannot be picked up by the findpeaks function,
which uses a periodic detection algorithm.

These algorithms put forward in this paper, therefore, may be adopted by other
researchers who aim to analyse data that do not occur with regular periodicity, similar to
the presented data, where the torque waveform had several partitions of data with varying
periods in between. These tailor-designed functions allow for the selection or removal of
peaks from torque data so that the magnitude of all contractions can be calculated.

Future extension of this work could also involve sharing of the code of the algorithm
on platforms such as Github [18]. It could further be adapted as a Python version, which has
the advantage of being available for free. This could increase the likelihood of professionals
who may not necessarily be familiar with coding to be involved in programming for
diagnostic purposes. This may be particularly advantageous in a health sciences research
setting, provided that there is adequate research support for clinical staff from, for example,
a biomedical engineer researcher.

This experimental work demonstrated that, at most, there were minor differences
in torques generated during stimulation at different duty cycles, as reflected by the ANT
metrics. There was a slightly larger ANT for duty cycles with both ON and OFF time
doubled and trebled, in comparison with those in isolation. Perhaps there would have
been substantially larger differences if stimulation had been delivered for a longer period
of time.

In addition, the relationship between the degree of “ON” and “OFF” and the decrease
in torques/ANT metrics (i.e., fatigue) may differ between acute and chronic stimulation.
For example, Bergström and Hultman [19] demonstrated that continuous stimulation can
cause less decrease in force than intermittent stimulation in their study using a 1:1 duty
cycle delivered at 300 µs and 20 Hz. Similarly, Chasiotis and colleagues [20] also suggested
that intermittent stimulation may cause more fatigue than continuous over a shorter period
of time. However, if a muscle is subjected to continuous stimulation for much longer, there
will be much more fatigue than a continuous stimulation analogue. Therefore, the degree
of “chronicity” in the application of stimulation at different duty cycles may influence
the relative effects of ON, OFF, and ON + OFF time permutations in fatiguing the muscle
of interest.
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5. Conclusions

In this paper, a novel algorithm was presented that could calculate peak torques from
torque–time data from a muscle that underwent electrical stimulation. The algorithm
put forward was able to detect these peaks with minimal user assistance, then unjumble
and align them based upon a series of randomized pulse trains delivered to the muscle.
This algorithm and data analysed post hoc showed that modest differences in average
normalized torque occur when stimulation is delivered in an acute, randomized fashion.
Therefore, it has been demonstrated that the algorithm developed was a simple-to-use
method by which torque peaks may be calculated from acute data and unjumbled when
the muscle is subjected to randomized stimulation pulse trains. This will provide future
researchers with a method by which they may be able to understand how randomizing duty
cycles of stimulation can influence knee joint torque over an acute period of stimulation.
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