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Abstract: Rolling bearings are some of the most crucial components in rotating machinery systems.
Rolling bearing failure may cause substantial economic losses and even endanger operator lives.
Therefore, the accurate remaining useful life (RUL) prediction of rolling bearings is of tremendous
research importance. Health indicator (HI) construction is the critical step in the data-driven RUL
prediction approach. However, existing HI construction methods often require extraction of time-
frequency domain features using prior knowledge while artificially determining the failure threshold
and do not make full use of sensor information. To address the above issues, this paper proposes
an end-to-end HI construction method called a multi-scale convolutional autoencoder (MSCAE) and
uses LSTM neural networks for RUL prediction. MSCAE consists of three convolutional autoencoders
with different convolutional kernel sizes in parallel, which can fully exploit the global and local
information of the vibration signals. First, the raw vibration data and labels are input into MSCAE,
and then, MSCAE is trained by minimizing the composite loss function. After that, the vibration
data of the test bearings are fed into the trained MSCAE to extract HI. Finally, RUL prediction is
performed using the LSTM neural network. The superiority of the HI extracted by MSCAE was
verified using the PHM2012 challenge dataset. Compared to state-of-the-art HI construction methods,
RUL prediction using MSCAE-extracted HI has the highest prediction accuracy.

Keywords: MSCAE; RUL; rolling bearing; health indicator

1. Introduction

Rolling bearings are the joints of rotating machinery and play an essential role in in-
dustrial production, intelligent manufacturing, and transportation [1,2]. Bearing mounting
methods, lubricant quality, bearing operating environment, load and speed can all affect
bearing vibration and life [3–5]. Once the rolling bearing fails, it will cause the machinery
and equipment to stop working, causing substantial economic loss or even threatening
the operator’s life [6]. Therefore, timely analysis of their working conditions and prediction
of their remaining useful life (RUL) is of great research importance [7]. The Prognostic
and Health Management (PHM) refers to the use of sensor monitoring data to predict,
monitor, and manage the health status of a system through models and algorithms [8–12].
RUL prediction is a crucial technique in PHM and is defined as the time interval between
the current moment and when a system or internal component fails [10,11].

Currently, RUL prediction methods are mainly divided into model-based and data-
driven methods [13]. The model-based method uses a mathematical approach to construct
a physical model of the degradation trend of mechanical components [14]. However, mod-
ern mechanical systems have dramatically increased in complexity, have highly coupled
internal components, and often operate in severe environments with heavy loads, variable
operating conditions, and multiple noise levels [15]. Therefore, building accurate degra-
dation models is a challenging task, limiting the development of model-based methods.
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The data-driven method is based on machine learning algorithms to construct a mapping
relationship between the monitoring data from the sensors and the RUL [16]. Deep learning
is currently one of the up-to-date research directions in machine learning. With its powerful
data processing and feature extraction capabilities, deep learning is widely used in com-
puter vision, natural language processing, and fault diagnosis [17]. With the advantages
of deep learning, more and more researchers are applying it in the RUL prediction model.
Wang et al. [18] proposed a multi-scale convolutional attention network. The multi-sensor
data are first fused, and then, feature extraction is performed using a multi-scale convo-
lution module with a self-attentive mechanism. Finally, regression analysis is performed
on the high-level representation using a dynamic dense layer. The validity of the model
was verified using milling tool life data. Ma et al. [19] proposed a convolutional long
and short-term memory model for bearing RUL prediction. Unlike the traditional method
that directly connects the convolutional neural network (CNN) and LSTM, this method
performs convolutional operations on all the state transitions in the LSTM. Cao et al. [20]
proposed a temporal convolution prediction framework with a residual self-attention mech-
anism. The marginal spectrum of the vibration signal is first extracted; then, it is used
as the input of the temporal convolution network, and finally, the residual self-attention
mechanism is introduced to achieve end-to-end remaining lifetime prediction. The validity
of the proposed method was verified with the PHM2012 challenge dataset and the XJTU-SY
dataset. Yao et al. [21] proposed a prediction method that combines a one-dimensional
convolutional neural network with simple recurrent units.

The extraction of health indicators (HI) is a crucial step in the RUL prediction pro-
cess. HI mainly reflect the degradation of mechanical equipment. Therefore, the quality
of HI will directly affect the RUL prediction accuracy. Qiu et al. [22] used self-organizing
mapping (SOM) to fuse the extracted features to construct the HI of rolling bearings.
Qin et al. [23] used the root mean square (RMS) error as the HI of a rolling bearing and
predicted the future HI sequence using a gated dual attention unit neural network to de-
termine the magnitude of the rolling bearing RUL. Chen et al. [24] proposed a simple HI
construction scheme that uses the ratio of the current moment’s RUL value to the initial RUL
as the HI, reducing the need for expensive prior knowledge. Five bandpass energy values
of the spectrum are used as features. The mapping relationship between the features and HI
is constructed directly using a circular autoencoder (AE) based on the attention mechanism.
Finally, the value of the RUL is calculated using linear regression. Guo et al. [25] used
CNN to extract the bearings’ HI and used outlier region correction techniques to detect
and correct the outlier points in the obtained HI.

There are three main problems with the above methods. (1) In the HI construction
process, it is often necessary to analyze the vibration signals in the time-frequency domain
and extract the features in the time domain, frequency domain or time-frequency domain
as the input to the model. However, different combinations of features may produce
different results. In the literature [26,27], 14 specially designed features and 14 commonly
used features were used for HI construction, respectively, and the trend, monotonicity, and
scale similarity of the two HI differed. This approach requires a large amount of expert
prior knowledge and does not allow automatic HI extraction. (2) The temporal information
of the vibration signals is not fully utilized, and usually, only a single size time window
is used for feature extraction of the vibration signals, which cannot utilize the local and
the global information comprehensively. The bearing vibration signal is a vector containing
time information, and the lack of adequate consideration of the time scale can affect
the effectiveness of HI. (3) Usually, when using HI for RUL prediction, the failure threshold
of HI needs to be determined. In the literature [23], the RMS maximum value of 1.903
at bearing failure was chosen as the failure threshold. In the literature [28], the failure
threshold for HI was determined to be 0.17 by calculating the average of the last five local
minimum HI points of the tested motor. These methods often carry a particular element
of subjectivity and conjecture, leading to errors in RUL predictions.
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To solve the problems mentioned above, a novel deep learning framework, called
a multi-scale convolutional autoencoder (MSCAE), is proposed in this paper for the auto-
matic extraction of rolling bearing HI. MSCAE is obtained by fusing multiple convolutional
autoencoders with different convolutional kernel sizes. Convolutional autoencoders with
small convolutional kernels can perform feature extraction for locally degraded features.
In contrast, convolutional autoencoders with large convolutional kernels can perform
feature extraction considering the degenerate trend of the whole sequence. Combining
both of the advantages can solve the problem of underutilization of temporal information.
Meanwhile, the construction of labels using quadratic functions and the training of MSCAE
using composite loss functions can realize end-to-end HI extraction and automate HI ex-
traction. After obtaining the HI of MSCAE, the LSTM is used for bearing RUL prediction.
Unlike other methods, HI obtained by the proposed method does not require the addi-
tional step of failure threshold determination, and the failure threshold is directly set to 0.
The main contributions of this paper are listed below.

(1) A novel autoencoder-based HI construction method, called MSCAE, is proposed.
Compared with the traditional HI construction method, it can effectively use local
and global temporal information to obtain a more robust HI and, at the same time,
realize the automatic HI extraction.

(2) The HI obtained by MSCAE is compared with single-scale convolutional autoencoders
with different convolutional kernel sizes, and the superiority of the proposed method
is verified by a comprehensive evaluation index consisting of monotonicity, correlation
and robustness.

(3) The HI obtained by MSCAE does not require artificial determination of the failure
threshold, which is directly set to 0 and can be directly used for RUL prediction.

The remaining parts of this paper are organized as follows. Section 2 introduces
the relevant theoretical knowledge covered in this paper. Section 3 presents the proposed
HI construction method. Section 4 conducts relevant experiments and comparisons to verify
the validity of the proposed method. Section 5 concludes this paper.

2. Related Theory
2.1. AE

AE was first proposed in the literature [29] as an unsupervised learning method and
is often used for feature dimensionality reduction. AE consists of two parts: the encoder
and the decoder. The encoder reduces the dimensionality of the input signals and extracts
the high-level representations. The decoder takes the output results of the encoder as the in-
put and reconstructs the input signals. AE uses a back-propagation algorithm to update
the internal parameters to minimize the reconstruction error. The structure of a typical AE
is shown in Figure 1.

Assume that the input of the encoder is x = [x1, x2, . . . , xl ]. l is the length of the input
data. Then, the output s of the encoder can be expressed as:

s = fe(Wex + be) (1)

where We and be denote the weight and bias, respectively, and fe denotes the encoder
activation function. Then, the the decoder output x̂ = [x̂1, x̂2, . . . , x̂l ] can be expressed as:

x̂ = fd(Wds + bd) (2)

where Wd and bd denote the weight and bias, respectively, and fd denotes the decoder
activation function. The autoencoder optimizes the internal parameters by minimizing
the reconfiguration error. The reconfiguration error LAE can be expressed as:

LAE =
1
l

l

∑
i=1

(xi − x̂i)
2 (3)
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Figure 1. The structure of AE.

2.2. LSTM Neural Network

Data-driven methods for predicting the bearing RUL are usually based on monitoring
data collected by sensors, such as temperature and vibration. There is a strong time
dependence on these data. The recurrent neural network (RNN) model is characterized
by taking sequence data as input and performing operations in the evolutionary direction
of the sequence. Therefore, RNN can recognize time series and suit to solve RUL prediction
problems. However, traditional RNN suffers from long-term dependency problems, and
when training on long sequence data, gradient disappearance or gradient explosion may
occur, resulting in ineffective training of the model. To solve this problem, Hochreiter and
Schmidhuber proposed the LSTM model [30]. The structure of LSTM is shown in Figure 2.
There are two information pathways in LSTM: one for storing long-term memory and
one for short-term processing information and adding valid information to the other
information pathway. In addition, three gating units, the input gate, forget gate and output
gate, are added to the LSTM to control the information flow of input data in the LSTM unit.
The formula of LSTM can be expressed as:

ft = σ
(

W f xt + Vf ht−1 + b f

)
(4)

it = σ(Wixt + Viht−1 + bi) (5)

c̃t = tanh(Wcxt + Vcht−1 + bc) (6)

ot = σ(Woxt + Voht−1 + bo) (7)

ct = ft � ct−1 + it � c̃t (8)

ht = ot � tanh(ct) (9)

where xt represents the input at moment t. ht and ct represent the hidden state and the cell state
at the moment t, respectively. ft is the output of the forget gate. it is the output of the input
gate. ot is the output of the output gate. W f , Vf , Wi, Vi, Wc, Vc, Wo, and Vo represent the weight
matrixes. b f , bi, bc, and bo represent the bias matrixes. σ and tanh denote the sigmoid and
hyperbolic tangent activation functions, respectively. � denotes point-by-point multiplication.



Appl. Sci. 2022, 12, 5747 5 of 20

Input

Hidden state

Cell state

Concatenate

S SS S TTS SS S T

++

SS S

Cell state

T

Hidden state

Cell state

SS

TT

++

Sigmoid activation function

Tanh activation function

Multiplication

Addition

S

T

+

Sigmoid activation function

Tanh activation function

Multiplication

Addition

1t−c

tf ti tc to

th

tX

1t−h

Input Gate

Forget Gate

Output Gate

Input Gate

Forget Gate

Output Gate

th

tctc

Figure 2. The structure of LSTM.

3. The Proposed Method
3.1. MSCAE

Based on the AE introduced in Section 2.1, the structure of the convolutional autoen-
coder is obtained by replacing the matrix operations in it with convolutional operations.
Usually, features are extracted using convolutional kernels of the same size in the con-
volutional autoencoder. The literature [18] verified the effectiveness of the multi-scale
convolutional network. Compared to traditional CNN, the use of parallel convolutional
paths with different convolutional kernel sizes enables multi-scale learning, allowing
the model to extract features from different time scales, ensuring the integrity of the rep-
resentations and making full use of both global and local information. In this paper, we
adopt the idea of multi-scale convolution to construct MSCAE to extract a more robust HI
based on the full utilization of global and local degradation information, and the automatic
extraction of HI can be realized. The structure of the proposed MSCAE is shown in Figure 3.

As shown in Figure 3, the proposed MSCAE uses three convolutional paths for feature
extraction of the input data. It is worth noting that the three convolutional paths use
one-dimensional convolution with different convolutional kernel sizes, aiming to make
full use of the global and local information of the input data for more effective feature
extraction.

In the encoding stage, three pathways perform parallel convolution and pooling
operations on the input data. Suppose Ei

n,m denotes the n-th channel of convolutional
layer data in the m-th encode block in the i-th(i = 1, 2, 3) pathway and Ne

m is the number
of convolutional layer channels in the m-th encode block. Then, the one-dimensional
convolution operation can be expressed as:

Zi,e
k,m+1 = fr

(
Ne

m

∑
n=1

Ei
n,m ∗ wi,e

k,n,m + bi,e
m

)
(10)

where ∗ is the one-dimensional convolution operation. wi,e
k,n,m denotes the weight of the k-th

convolutional kernel of the convolutional layer in the m-th encode block. bi,e
m is bias. fr

adopts the ReLU activation function. Zi,e
k,m+1 denotes the k-th channel data of the convolu-

tional layer operation result in the m-th encode block of the i-th pathway.
After performing a convolution operation, a downsampling operation is performed

on the convolution result using maximum pooling to reduce the size of the data. The pool-
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ing result Ii
k,m+1 for the k-th channel data of the pooling layer in the m-th encoding block

of the i-th pathway can be expressed as:

Ei
k,m+1 = P

(
Zi,e

k,m+1, pm, sm

)
(11)

where P denotes the maximum pooling operation, pm is the size of the pooling window
in the m-th convolution block, and sm is the stride. After the input data are extracted by L
encoding blocks of features, the Flatten layer is used to turn the high-level representations
into one-dimensional data, which is input to the fully connected block for HI extraction. It
is worth noting that the fully connected block of MSCAE proposed in this paper uses only
one fully connected layer in both encoding and decoding parts, and the number of hidden
neurons is the same. Then, the extracted HI can be expressed as:

ŷ = σ
(

W f eXe + b f e

)
(12)

where ŷ denotes the extracted HI, W f e and b f e denote the encoded partial weight and bias,
respectively, and σ denotes the Sigmoid activation function.

In the decoding stage, there are also three parallel paths. The decoding part in the fully
connected block performs a dimensional expansion operation on the extracted HI, and
the results obtained can be expressed as:

Xd= fr

(
W f dŷ + b f d

)
(13)

where Xd denotes the output of the decoding part in the fully connected block, W f d and b f d
denote the weight and bias of the decoding part in the fully connected block, respectively,
and fr is the ReLU activation function. After obtaining Xd, it is dimensionally changed
using the Reshape layer, and the transformed shape is the same as the shape of the input
data in the Flatten layer. L decoding blocks reconstruct the results of the Reshape layer, i.e.,
three parallel upsampling and convolution pathways. Suppose Di

n,m denotes the n-th
channel data of the upsampling layer in the m-th encoding block of the i-th(i = 1, 2, 3)
pathway. Then, the operation of the upsampling layer can be expressed as:

Zi,d
n,m = U

(
Di

n,m, um, lm

)
(14)

where Zi,d
n,m is the result of the upsampling layer, U denotes the upsampling operation, and

um and lm represent the upsampling window size and stirde of the m-th decoding block,
respectively. In a decoding block, the upsampling layer is connected after the convolution
layer, and the convolution result of the m-th decoding block can be expressed as:

Di
k,m+1 = fr

 Nd
m

∑
n=1

Zi,d
n,m ∗ wi,d

k,n,m + bi,d
m

 (15)

where Di
k,m+1 is the k-th channel data of the output of the m-th decoding block, Nd

m de-

notes the total number of channels of the input data of the m-th decoding block, wi,d
k,n,m

denotes the weight of the k-th convolutional kernel in the m-th decoding block, bi,d
m is

the bias, and fr is the ReLU activation function. The reconstruction of the input data is
obtained after processing by L decoding blocks. Assume that the i-th input data of MSCAE
is xi = [xi,1, xi,2, . . . , xi,l ], and the corresponding real RUL label is yi, i = 1, 2, . . . B. l
is the length of the input data, and B is the total life of the bearing. Then, the HI ex-
tracted by MSCAE is ŷi, and the reconstruction of the input data is x̂i = [x̂i,1, x̂i,2, . . . x̂i,l ].
In this paper, we use the composite loss function to evaluate the HI extraction capability
of MSCAE. The composite loss consists of two parts: one is the error between the input
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data and the reconstructed data, and the other is the error between the HI and the true
RUL. The composite loss function is calculated as follows.

Jθ =
1
2

B

∑
i=1
‖xi − x̂i‖2 +

ν

2

B

∑
i=1
‖yi − ŷi‖2 (16)

where θ denotes the internal parameters of MSCAE and ν is a scaling factor to adjust the weight
between the two errors. Compared with the traditional AE, the composite loss function con-
structed by MSCAE combines the supervised learning approach with the unsupervised learning
approach for model training, which fully utilizes the degradation information of the bearings
and enhances the extraction capability of the model HI. In the training phase of the model,
the vibration data and labels of the training bearings are used to optimize the internal parameter
θ using the back-propagation algorithm to minimize the composite loss. In the testing phase
of the model, the vibration data of the testing bearing serve as the input, and the HI is obtained
using the encoder part of the trained MSCAE.

Convolution Pooling Convolution Pooling

Flatten Reshape

HI Upsampling Convolution Upsampling Convolution

Input Encoder block of multi-scale convolution autoencoder Decoder block of multi-scale convolution autoencoder Output

Encoding Block 1 Encoding Block L Decoding Block 1 Decoding Block LFully connected Block 

Figure 3. The structure of MSCAE.

3.2. HI Extraction and RUL Prediction Process
3.2.1. Construction Method of Degradation Labels

After obtaining the vibration data of the bearings, it is necessary to divide them into
training and testing sets. Since the obtained original data do not have corresponding labels,
it is necessary to construct the degradation labels corresponding to the vibration data.
There are mainly two conventional methods for constructing degradation labels: linear
degradation and segmental smoothing, and Figure 4 shows the differences between the two
methods.

The degenerate label construction equation of Figure 4a can be expressed as

yi =
B− ti

B
(17)
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where B denotes the total life of the bearing, ti denotes the current time the bearing has been
in operation, and yi denotes the current degradation level of the bearing. The degenerate
label construction equation of Figure 4b can be expressed as:

yi =

{
1 i f ti ≤ th

1− ti−th
B−th

else (18)

where th indicates the degradation starting threshold; when ti is less than or equal to th,
it is determined that the bearing has not started to degrade and the degradation label is
always 1. When th exceeds the threshold, it starts to show a linear degradation trend.

(a)

(b)

(c)

Figure 4. Three degradation label construction methods. (a) Linear degradation method. (b) Piece-
wise smoothing method. (c) Quadratic function method.

The first two methods of describing bearing degradation trends shown in Figure 4
have their own limitations compared to the true degradation of the bearing. The true
bearing degradation does not exhibit a linear characteristic but rather degrades faster and
faster as the operating time of the bearing increases. Therefore, the linear degradation
method does not satisfy this operating characteristic. For the segmented smoothing method,
the threshold th at the degradation onset moment is usually determined artificially. How-
ever, th is usually not the same for different operating conditions, and there are different
bearings th for the same operating conditions, which limits the application of the segmented
smoothing method. The literature [31] proposed a method for constructing a degenerate
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trend based on a quadratic function, as shown in Figure 4c, and the specific expression can
be expressed as:

yi = 1−
t2
i

B2 (19)

The quadratic function-based method overcomes the shortcomings of the above two
methods, and its constructed labels are more satisfying to the real degradation of the bear-
ings. With the increase of the operation time, the degradation of the bearings is gradually
accelerated, which is shown in Figure 4c as the slope of the curve gradually increases. More-
over, it is a convenient and effective method without artificially specifying the degradation
threshold, so this paper adopts the quadratic function method to construct the degradation
labels of bearings.

3.2.2. Overall Framework Flow

The overall framework flow of MSCAE-based HI extraction and RUL prediction
proposed in this paper is shown in Figure 5. The framework is divided into two main
phases, offline training and online testing. There are three main steps in the offline training
phase, and the process is as follows.

1.Run-to-failure

training data
Vibration data

2.Quadratic function 

to construct RUL label
RUL labels

MSCAE Encoder

HI

MSCAE Dncoder

Reconstructed 

data

3.Train the MSCAE 

model

Vibration data 4.Testing data online

HI

LSTM Prediction

If HI exceeds the threshold

RUL

Yes

No

5.HI construction

6.RUL prediction

Offline Training Online Testing

Calculate the loss

Figure 5. Flow chart of HI extraction and RUL prediction.

1. Vibration data from training bearing operation to failure are obtained using vibration
sensors. Suppose the vibration data are X = [x1, x2, . . . , xB], xi = [xi,1, xi,2, . . . , xi,l ],
xi represents the vibration data at the moment ti, i = 1, 2, . . . B, B is the total time
of bearing operation, and l is the length of the data.

2. The degenerate labels for each moment of the vibration data are calculated using
Equation (19), and the labels y = [y1, y2, . . . yB] are obtained by the calculation.

3. Training the proposed MSCAE model. First, the vibration datum X of the training
bearing is input to the model, and the output of the MSCAE encoding part is the ex-
tracted HI, which is denoted as ŷ = [ŷ1, ŷ2, . . . ŷB]. After that, HI is used as an input
to the decoding part of MSCAE to obtain the reconstructed data X̂ = [x̂1, x̂2, . . . , x̂B]
of the vibration data X. Finally, the composite loss function is calculated using
Equation (16), and the internal parameters θ of the model are updated using the back-
propagation algorithm. After the MSCAE is trained offline, it moves to the online
testing phase.
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4. The vibration data from test bearing operation to failure are obtained, which are
defined as X′ = [x′1, x′2, . . . x′T ], and T is the total operating time of the testing
bearing.

5. The vibration signal X′ of the testing bearing is input to the encoder of the MSCAE
trained in step 3 to obtain in HI H = [h1, h2, . . . hT ] of the test bearing.

6. After obtaining the HI of the testing bearing, the first N points of H are taken to con-
struct the training data for training the LSTM model. The training matrix can be
expressed as follows.

V =


h1 h2 · · · hN−M
h2 h3 · · · hN−M+1
...

...
. . .

...
hM+1 hM+2 · · · hN

 =


ν1
ν2
...

νM+1

 (20)

where M is the neurons number of the LSTM output layer, νi = [hi, hi+1, . . . , hi+N−M−1],
(i = [1, 2, . . . , M+ 1]). The LSTM is trained by taking the first M vectors of the training
matrix V as the input of the LSTM and the last vector νM+1 as the output. Assuming
that the mapping function of the trained LSTM is denoted as f , the last M vectors
of the matrix V are passed as input to the trained LSTM to obtain the first prediction
result ν̄M+2, and the specific expression is:

ν̄M+2 = f ([ν2, ν3, · · · , νM+1]) (21)

Then, the matrix V can be updated as follows:

V = [ν1, ν2, · · · , νM+1, ν̄M+2]
T (22)

The above method allows the prediction of HI vectors to be performed continuously
and the matrix V to be continuously updated. Thus, ν̄k can be expressed as:

ν̄k = f
([

νM−k, νM+1, . . . , ν̄M+2, . . . , ν̄M+(k−M−1)

])
(23)

Meanwhile, the matrix V is updated as follows:

V = [ν1, . . . , νM+1, ν̄M+2, . . . , ν̄k]
T (24)

where ν̄k =
[
hk, . . . , hN , h̄N+1, . . . , h̄k+N−M−1

]
. When h̄k+N−M−1 is less than the threshold

0, the prediction step is stopped, and the RUL of the bearing is obtained as (k−M)× Ts,
and Ts is the sampling interval of the vibration sensor. If the prediction result is not less
than the threshold, the iterative prediction is continued until the predicted value is less
than the threshold and the corresponding RUL is obtained.

4. Experimental Analysis
4.1. Data Introduction

The experimental data in this paper were obtained from the PHM Challenge [32]
organized by the Institute of Electrical and Electronics Engineers in 2012, and the data were
obtained from the PRONOSTIA experimental bench, as shown in Figure 6. The experimen-
tal bench consists of three main parts: the rotation part, the degradation generation part
and the sensor part. The rotating part consists of an asynchronous motor with a gearbox
and two shafts to provide the working environment for the test bearing. The degradation
generating part can apply radial load to the testing bearing to simulate the actual working
operation with load and accelerate the degradation, which can complete the whole process
of bearing operation to failure in a short time. The sensor part consists of three sensors,
two of which are vibration sensors positioned 90° apart, measuring the magnitude of hori-
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zontal and radial vibrations, respectively, and the other is a temperature sensor, measuring
the temperature of the bearing during operation.

The PHM2012 challenge data give the full cycle life data of the bearings from operation
to failure for three operating conditions. The three operating conditions are 1800 rpm and
4000 N; 1650 rpm and 4200 N; and 1500 rpm and 5000 N. There are 7, 7, 3 test bearings
for each of the three operating conditions. The PRONOSTIA test bench has a sampling
interval of 10 s, a sampling duration of 0.1 s, and a sampling frequency of 25.6 kHz,
indicating that every 10 s, the sensor can collect 2560 data points.

In order to verify the effectiveness of the MSCAE proposed in this paper, the data
set needs to be divided into training data and testing data. The division method in this
paper is shown in Table 1. As can be seen from Table 1, all bearings under three operating
conditions are used in this paper to validate the proposed method. The training set contains
5, 6, 2 bearings, and the testing set contains 2, 1, 1 bearings.

Figure 6. PRONOSTIA test bench.

Table 1. Training set and test set division.

Training Set Test Set

Condition 1
Bearing1_2 Bearing1_4
Bearing1_5 Bearing1_6

Bearing1_7
Bearing1_1 Bearing1_3

Condition 2
Bearing2_1 Bearing2_2
Bearing2_3 Bearing2_4
Bearing2_5 Bearing2_7

Bearing2_6

Condition 3 Bearing3_1 Bearing3_2 Bearing3_3

4.2. Evaluation Metrics

To verify the effectiveness of the proposed MSCAE to extract HI in this paper, three
evaluation metrics, monotonicity, correlation and robustness, were used to quantify the per-
formance of HI [31]. It is worth noting that the range of all three metrics is within [0, 1].

• Monotonicity: It aims to assess the tendency of HI to increase monotonically or de-
crease monotonically as the running time increases. The stronger the monotonicity
of HI, the closer it is to 1. The specific formula for monotonicity can be expressed as:

Mon(H) =

∣∣∣∣No. of dH > 0
T − 1

− No. of dH < 0
T − 1

∣∣∣∣ (25)
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where dH denotes the first-order derivative between two HI values and T denotes
the number of HI and also the number of sensor samples.

• Correlation: It aims to measure the correlation between HI and runtime. The more
correlated the two are, the closer the value of correlation is to 1, and vice versa.
The formula for correlation can be expressed as:

Corr(H) =

∣∣∣∣ T
∑

i=1
(hi − H̄)(ti − T̄)

∣∣∣∣√
T
∑

i=1
(hi − H̄)

2 T
∑

i=1
(ti − T̄)2

(26)

where H̄ = ∑T
i=1 hi/T and T̄ = ∑T

i=1 ti/T.
• Robustness: It aims to measure the ability of HI to resist outlier interference; the stronger

its ability, the closer the robustness is to 1, and vice versa. The extracted HI can be seen
as a superposition of the average trend and noise, whereby H can be expressed as:

H(ti) = HT(ti) + HR(ti) (27)

where HT(ti) denotes the average trend of HI at the moment T, and HR(ti) denotes
the noise disturbance of HI at the moment T. Then, the robustness is calculated by
the formula:

Rob(H) =
1
T

T

∑
i=1

exp
(
−
∣∣∣∣HR(ti)

H(ti)

∣∣∣∣) (28)

In order to comprehensively evaluate the advantages and disadvantages of the extracting
HI, a Composite Indicator (CI) containing the above three indicators is proposed, which is
defined as:

CI =
1
3
(Mon + Corr + Rob) (29)

4.3. The Validity of MSCAE

The specific structure of the MSCAE proposed in this paper is shown in Figure 7. As can
be seen from Figure 7, MSCAE consists of three encoding blocks, three decoding blocks and
one fully connected block. The number of convolutional kernels in the three coding blocks is
8, 16, 4, and the size of convolutional kernels in the three pathways is 3 × 1, 7× 1 and 11 × 1,
respectively, and the size and stride of maximum pooling are 8. The number of convolutional
kernels in the three decoding blocks is 16, 8, 1, and the size of convolutional kernels in the three
pathways is the same as the decoder, and the size and stride of upsampling are 8. The Sigmoid
activation function is used in the fully connected block when the second layer obtains HI.
The activation function is not used when reconstructed data are obtained. All the remaining
layers use the ReLU activation function, and each layer uses the BatchNormalization (BN) layer
to improve the model generalization. The detailed hyperparameter settings of the model are
shown in Table 2. Comparative experiments are conducted in this paper to choose the scale factor
v of the composite loss function. In this paper, five values of 0.2, 0.4, 0.6, 0.8 and 1.0 are selected
for comparison and validation. Ten experiments are conducted on four test bearings using
these five values, respectively, and the final box line diagram is obtained, as shown in Figure 8.
From Figure 8, it can be seen that v is taken as 0.6, 0.6 and 0.4, respectively, as the best choice
for the three working conditions.
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Figure 7. The details of MSCAE.

Table 2. Hyperparameter setting of the model.

Hyperparameter Value

Batch size 128
Epoch 100

Learning rate lr Adam (0.0001)
Number of Encoding Block 3
Number of Decoding Block 3

Kernel size [3× 1], [7× 1], [11× 1]
Pooling size 8

Upsampling size 8
Number of fully connected layer units [60, 1, 60]

(a) (b)

(c) (d)

Figure 8. The results of the selection of different scale factors ν. (a) The result of Bearing1_1.
(b) The result of Bearing1_3. (c) The result of Bearing2_6. (d) The result of Bearing3_3.

After training the MSCAE using the training bearing data, the MSCAE was tested
using testing bearings, and the HI extracted by four testing bearings is shown in Figure 9.
In Figure 9, the green color indicates that the value of HI is closer to 1, and the blue color is
closer to 0. The red curve is the HI trend curve fitted using polynomials. Four bearings



Appl. Sci. 2022, 12, 5747 14 of 20

in Figure 9 have a clear downward trend in HI, and by the time sampling stops, the value
of HI is close to 0.

(a) (b)

(c) (d)

Figure 9. The HI of four testing bearings. (a) The HI of Bearing1_1. (b) The HI of Bearing1_3.
(c) The HI of Bearing2_6. (d) The HI of Bearing3_3.

In order to verify the superiority of MSCAE, this paper sets up a comparison between
MSCAE and three convolutional autoencoders (CAE) with constant convolutional kernel
sizes of 3× 1, 7× 1 and 11× 1, respectively. To ensure the completeness of the exper-
iments, the structure of the CAE is the same as the structure of a pathway in MSCAE.
Moreover, when the model is trained, the hyperparameters are set the same as MSCAE.
The obtained results are shown in Figure 10. From Figure 10, it can be seen that MSCAE
exceeds the other three models in CI for the tested bearings under each operating condition.
It shows that MSCAE can combine the advantages of different convolutional kernel sizes
to identify different time scale information and make full use of the local and global in-
formation of the original vibration signal to extract a more effective HI. To further verify
the superiority of MSCAE, four models were used to extract the HI of Bearing2_6 bearing
for analysis, as shown in Figure 11. When the convolution kernel size is set to 3, the final HI
trend increases, which is against the degradation law of the real bearing. Moreover, when
the convolution kernel size is 7 and 11, the final HI trend decreases to 0. However, both
undergo abrupt changes when the bearing is damaged, i.e., the HI value directly decreases
to 0. The abrupt change is most obvious when the convolution kernel size is 7, and this
phenomenon affects the prediction of RUL. Therefore, it is desired to obtain an HI that can
satisfy the real degradation trend of the bearing, and the degradation process of the HI is
relatively flat, which is conducive to the continuous prediction of RUL. It can be found that
the HI extracted by MSCAE proposed in this paper can meet the above requirements.
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Figure 10. The HI of four testing bearings.

(a) (b)

(c) (d)

Figure 11. Four models to extract HI of Bearing2_6. (a) MSCAE. (b) CAE (kernel_size = 3).
(c) CAE (kernel_size = 7). (d) CAE (kernel_size = 11).

4.4. RUL Prediction

After extracting the HI of the testing bearing using MSCAE, it can be found that
the extracted HI has obvious degradation characteristics with time, which indicates that
the HI is a time series. Therefore, LSTM is used to perform the RUL prediction of bearings.
For Bearing1_1, assuming that the last 100 HI are unknown and the first 2703 HI are known,
the known 2703 HI points are used as training data for the LSTM to predict the unknown HI
points, and when the predicted value of the LSTM is less than the threshold 0, it means that
the predicted current moment bearing has been damaged, and the time interval between
the current moment and the starting moment of the prediction is the predicted RUL value.
Similarly, for Bearing1_3, assuming that the last 100 HI points are unknown, the training
data for the LSTM are the first 2275 HI points. The parameters of the LSTM are configured
as shown in Table 3. The number of neurons in the input, hidden, and output layers
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of the LSTM are 360.29 and 1, respectively. The internal parameters of the LSTM are
optimized using the Adam optimizer, and the learning rate is set to 0.07.

Table 3. Hyperparameter configuration of LSTM.

Parameters Value

The number of neurons in the input layer 360
The number of neurons in the hidden layer 29
The number of neurons in the output layer 1

Learning rate lr 0.07
Optimizer Adam

To demonstrate the superiority of the HI extraction method proposed in this paper
on RUL prediction, two state-of-the-art deep learning-based HI construction methods are
used for comparison. One is the recurrent convolutional neural network (RCNN), which
was proposed in the literature [33], and the other is the CNN proposed in the literature [25].
The RCNN is an end-to-end HI extraction framework consisting of a convolutional neural
network with residual structure and an LSTM serially connected with the specific structural
parameters described in the literature [33]. The CNN-based HI construction method
proposed in the literature [25] is divided into two steps, first using two convolutional
layers for feature extraction and later using a fully connected layer for HI construction.
It is worth noting that both methods, as in this paper, use the original vibration signal
as the input to the model without a manual feature extraction step. All three methods are
trained using the same training data, and the RUL prediction ability of the extracted HI is
verified on Bearing1_1 and Bearing1_3. For convenience, the HI extracted by the proposed
MSCAE, RCNN and CNN are MSCAE-HI, CRNN-HI and CNN-HI.

The RUL prediction results of HI extracted by the three models are shown
in Figures 12–14. From Figure 13, it can be found that RUL prediction using CRNN-HI
requires artificially set thresholds, and the choice of thresholds directly affects the RUL
prediction results. If the set threshold is large, it will cause the prediction to stop early, and
conversely, it will cause the prediction value of RUL to be larger than the real one, or even
the phenomenon that it cannot converge to the set threshold. In this paper, the failure
threshold of CRNN-HI is set to 0.2. In Figure 13a, the HI of Bearing1_1 extracted using
the CRNN method shows an increasing trend at the end of degradation, which deviates
from the actual degradation threshold and can affect the prediction ability of the LSTM.
In Figure 13b, there are a few outliers in the HI of Bearing1_3, and there are HI points less
than the threshold value when the bearing first starts running. It can be found in Figure 14
that there is a significant divergence of CNN-HI at the late degradation stage of the bearing,
resulting in the predicted HI value being more likely to be close to the failure threshold
when using CNN-HI for RUL prediction, resulting in the predicted RUL often being smaller
than the true RUL value. In Figure 12, the MSCAE-HI constructed in this paper has less
fluctuation and a smoother degradation trend, which can effectively reflect the real degra-
dation trend of the bearing. Using MSCAE-HI for RUL prediction, the predicted RUL
results are closer to the true values, and the predicted HI is more consistent with the true
degradation trend. Combining the above analysis, the MSCAE-HI method proposed in this
paper is more suitable for the RUL prediction of bearings.
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(a)

(b)

Figure 12. RUL prediction results of MSCAE-HI. (a) Bearing1_1. (b) Bearing1_3.

(a)

(b)

Figure 13. RUL prediction results of RCNN-HI. (a) Bearing1_1. (b) Bearing1_3.
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(a)

(b)

Figure 14. RUL prediction results of CNN-HI. (a) Bearing1_1. (b) Bearing1_3.

To further validate the superiority of MSCAE-HI, five metrics for evaluating the pre-
diction accuracy of RUL were used to compare the prediction performance of the three
methods. These five evaluation metrics are score scoring function, mean absolute error
(MAE), normalized root mean square error (NRMSE), root mean square error (RMSE)
and mean absolute percentage error (MAPE), which are defined in the literature [23].
Three methods were used to conduct five prediction experiments for Bearing1_1 and
Bearing1_3, and the final evaluation results are shown in Table 4. In Table 4, the MAE,
NRMSE, RMSE and MAPE of CNN-HI are the maximum among three methods. This
phenomenon can be explained that the fluctuation of CNN-HI is very obvious at the late
degradation stage, and the HI predicted by the LSTM is easily smaller than the degradation
threshold, resulting in a large deviation of the predicted from the true RUL. RUL prediction
using MSCAE-HI obtained the maximum score values and the minimum MAE, MRMSE,
RMSE, and MAPE values on both Bearing1_1 and Bearing1_3, which once again confirmed
the superiority of the HI indicator extraction method of MSCAE proposed in this paper.

Table 4. Results of RUL prediction evaluation for 3 HI.

Score

MSCAE-HI CRNN-HI CNN-HI
Bearing1_1 0.3315 0.2334 0.1379
Bearing1_3 0.4979 0.1366 0.0712

MAE

MSCAE-HI CRNN-HI CNN-HI
Bearing1_1 152 276 602
Bearing1_3 214 356 808

NRMSE

MSCAE-HI CRNN-HI CNN-HI
Bearing1_1 0.1516 0.2601 1.5480
Bearing1_3 0.2938 0.3596 4.2882
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Table 4. Cont.

RMSE

MSCAE-HI CRNN-HI CNN-HI
Bearing1_1 160.13 296.58 616.13
Bearing1_3 230.95 378.31 823.33

MAPE

MSCAE-HI CRNN-HI CNN-HI
Bearing1_1 15.2 27.6 60.2
Bearing1_3 21.4 35.6 80.8

5. Conclusions

In this paper, a novel framework for HI extraction, called MSCAE, is proposed. It can
overcome the disadvantages of traditional methods that require manual extraction of time-
frequency domain indicators as features and the need to set failure thresholds by experience
in RUL prediction. It relies solely on the raw sensor vibration signal to extract HI and does not
require additional determination of the failure threshold. MSCAE can use convolutional kernels
of different sizes to effectively exploit the global and local information of vibration signals,
enhancing the HI extraction capability. A quadratic function-based label is first constructed
for the original vibration data, after which the model is trained using the training data, and
the internal parameters are optimized using a compound loss function. Then, HI is extracted
using the test-bearing data to verify the validity of MSCAE. Finally, the RUL prediction is
performed using LSTM. The HI extraction capability of MSCAE is verified to be superior
to that of CAE models using a single scale with the PHM2012 dataset. Furthermore, it is
compared with two state-of-the-art HI construction methods, CRNN and CNN, to judge
the prediction performance of RUL using five evaluation metrics. The comparison results
confirm the superiority of the proposed MSCAE-extracted HI for RUL prediction. In this paper,
HI extraction and RUL prediction for rolling bearings achieved excellent results; however,
the generalization capability for mechanical components such as gears and engines needs
further validation. The future direction is to apply MSCAE to HI extraction and RUL prediction
of other mechanical components.
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