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Abstract: Aiming at solving the problems of large calculation, time-consuming, and low segmentation
accuracy of multi-threshold image segmentation, an adaptive threshold value based differential evolu-
tion algorithm is proposed in this paper. Firstly, an opposite learning strategy is introduced into the
initial population to improve the quality of the initial population; secondly, a threshold-value-based
mutation strategy is proposed to balance the exploration and development capabilities of the algorithm,
and the number of successfully evolved individuals is considered as a threshold value to adaptively
adjust the evolution of superior and inferior individuals. Experiments demonstrate that the proposed
algorithm has better performance in enhancing accuracy and speeding up the convergence.

Keywords: differential evolution; OTSU; multi-threshold segmentation

1. Introduction

Image segmentation is a classic problem in the field of computer vision, and it is also
the main step of image analysis. Image segmentation refers to the segmentation of an image
into several disjoint parts according to grayscale, color, spatial texture, geometric shapes,
etc., so that the parts with similar characteristics in the same area are clearly different from
the parts in different areas. It is widely used in machine vision, medical imaging, object
detection and other fields [1]. Segmentation accuracy is an important indicator for detecting
the quality of image segmentation, but in the process of research, the main challenge faced
by many researchers is to find a perfect solution to obtain higher segmentation accuracy.
At present, segmentation algorithms are mainly divided into threshold-based method,
region growth-based method, histogram-based method and edge detection-based method
and so on [2]. Among them, the threshold segmentation method is widely used in im-
age processing due to its simplicity, efficiency, and fast segmentation speed. The use of
threshold-based methods means that it is necessary to find an optimal threshold or a set
of optimal threshold combinations [3]. The traditional image thresholding algorithm is
effective for image binarization, but for multi-level image thresholding, the computational
complexity of exhaustive search will increase significantly due to the increase in the number
of thresholds, resulting in lower computational efficiency. Therefore, in order to reduce
the computational cost, many research scholars integrate the meta-heuristic intelligent
optimization algorithm such as Genetic Algorithm (GA) [4], Differential Evolution algo-
rithm (DE) [5], Particle Swarm Optimization algorithm (PSO) [6], Artificial Bee Colony
Algorithm (ABC) [7], etc., into the problem of multi-threshold segmentation of images. A
better solution was obtained, which improved the accuracy of image segmentation to a
certain extent and reduced the time complexity. Kurban et al. [8] took Kapur entropy as the
objective function, and applied it to the task of color image segmentation using ABC, and
achieved certain results in terms of computing efficiency and image segmentation quality.
In [9], DE is employed for solving thresholding based image segmentation problem using
Otsu objective function. Qi Qianhui et al. [10] studied several segmentation algorithms,
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and concluded that the threshold based segmentation method has a good segmentation
performance on images with obvious peaks and valleys. Cerfa et al. [11] applied the
fuzzy C-means (ARKFCM) clustering algorithm based on the adaptive regular kernel to
the magnetic resonance (MR) brain image segmentation problem, initialized the sensitive
cluster center value and combined the PSO algorithm to optimize the cluster centroid, and
obtained more Good to achieve the segmentation effect. In the research of Wang et al. [12]
they proposed an improved Otsu method and an improved GA for image segmentation.
First, a morphological weighted adaptive algorithm is used to reduce morphological noise,
and then the improved GA is used to optimize the largest Otsu globally. The image seg-
mentation function is the between-class variance function to obtain the optimal image
segmentation threshold. In fact, image segmentation based on the combination of threshold
method and optimization algorithm can not only reduce the computational time complexity
but also improve the segmentation accuracy and obtain higher segmentation quality pic-
tures. After conducting a lot of research on the segmentation results, combining intelligent
algorithms with Otsu’s method seems to be a feasible and worthy method [3].

Therefore, in this article, DE is used in Otsu’s method to improve the quality of im-
age segmentation. Common threshold segmentation algorithms, including the maximum
entropy method, balanced histogram threshold method, Otsu method, and k-means clus-
tering, are widely used in industrial applications. Among them, the Otsu method is one
of the most famous global threshold methods for binary segmentation problems, which
was proposed by the Japanese scientist Otsu in 1979 [13]. The main idea of this method
is to maximize the variance function between classes. Because of its strong adaptability
and high segmentation accuracy, it is often used in the field of image segmentation. Due to
the difference in image complexity, when single-threshold segmentation is extended to
multi-threshold segmentation, the search space increases, and the time complexity and
computational complexity increase accordingly.

2. Otsu Multi-Threshold Image Segmentation Principle

Multi-threshold image segmentation is mainly to find several optimal thresholds that
can accurately segment the image into different segments.

The Otsu method takes the maximum variance function between classes as the
objective function. It is the most commonly used method and has the advantages of simple
application, simple calculation, and is easy to understand [14]. When solving the problem
of image segmentation, this method eliminates the interference of contrast and brightness,
thus realizing the effective separation of background and target information. With the
inter-class variance between foreground and background becoming larger, the difference
between the two parts also becomes larger. The threshold obtained by Otsu will be inclined
to the type with a large variance when the difference between the inter-class variance
of the two parts is large, some pixels with a large inter-class variance will be classified
into those with small inter-class variance, resulting in incorrect segmentation. When the
threshold value could maximize the inter-class variance function, then the probability of
misclassification reaches the minimum.

The basic principle of Otsu is as follows:
Let f (x, y) be a grayscale image with a pixel grayscale value ranging from 0 to L− 1,

where L represents the total number of gray levels, which represents the total number of
pixels whose gray level value is equal to, then:

N =
L−1

∑
i=0

ni. (1)

ni represents the number of pixels with pixel value i in the image. N is the total number of
pixels in the entire image. If pi represents the probability of a pixel whose gray value is i, it
can be approximately expressed as a frequency, which is defined as:
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pi =
ni
N

. (2)

If T is used to represent the threshold, then for the problem of binary image seg-
mentation, pixels can be divided into two different parts, labeled as C0 and C1, where
C0 and C1 contain pixels with different characteristics respectively, Threshold T divides
the gray values into two ranges, and their gray values are within the range [0, T] and
[T + 1, L− 1], respectively. For the definition of variance between classes, several data
should be obtained first, namely µ0(T),µ1(T), ω0(T), ω1(T). The calculation formula for
the above statistical data is as follows:

µ0(T) =
∑T

i=0 ipi

ω0(T)
(3)

ω0(T) =
T

∑
i=0

pi (4)

µ1(T) =
∑L

i=T+1 ipi

ω1(T)
(5)

ω1(T) =
L

∑
i=T+1

pi (6)

µ =
∑L

i=0 ipi

∑L
i=0 pi

=
L

∑
i=0

ipi = ω0(T) · µ0(T) + ω1(T) · µ1(T). (7)

In Formulas (3)–(7), µ0(T) and µ1(T) represent the gray value expectation of the
background and foreground, respectively, ω0(T) and ω1(T) represent the sum of inter-class
probability of background and foreground respectively. µ is the average gray value of
all pixels in the entire image. Based on the above definition, the between-class variance
function can be expressed as:

σB(T) = ω0(T)(µ0(T)− µ)2 + ω1(T)(µ1(T)− µ)2. (8)

The formula consists of two parts, corresponding to C0 and C1.
In the Otsu method, when the between-class variance function obtains the maxi-

mum value with T∗ as the threshold, T∗ is used as the threshold. Therefore, the image
segmentation problem can be transformed into an optimization problem, which can be
described as:

For the multi-threshold image segmentation problem, the weighted sum of variance
between categories is calculated. If the image has m categories to be classified, and the cate-
gories are divided by m–1 thresholds (T1, T2, . . . , Tm−1), the objective function is expressed
as follows:

σ(T1, T2, . . . , Tm−1) = ω0(µ0 − µ)2 + ω1(µ1 − µ)2 + . . . + ωm−1(µm−1 − µ)2. (9)

The corresponding multi-threshold image segmentation problem can be denoted as:

T∗ = argmax(σ(T1, T2, . . . , Tm−1)). (10)

That is, it is necessary to find a set of (T1, T2, . . . , Tm−1) to maximize the inter-class
variance function.

3. Original DE Algorithm

Due to the disaster of dimension, the task becomes more challenging. When the
dimension is increased, the search space expands exponentially and the distribution of
good solutions is sparse. Differential evolution is an effective population-based meta-
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heuristic algorithm, which has been successfully used in various applications [15]. DE is
based on three main operators, mutation, crossover, and selection. Mutation is the core
operator in DE, which generates mutation vectors based on the linear combination of
different candidate solutions. The role of the crossover operator is to combine the mutant
vector with its target vector to produce a test vector. Finally, the selection operator adopts
a greedy strategy to select and enter the formula here. Choose the better one of the test
vector and the target vector.

Differential Evolution (DE) is a meta-heuristic algorithm proposed by Price and
Storn in 1995. The algorithm has been used to solve multiple applications in various
engineering fields. It is similar to other evolutionary algorithms (EA) used for optimiza-
tion problems, and DE is a population-based algorithm that evolves through differences
between individuals and achieves evolution through three operators: mutation, crossover,
and selection. The execution of the three operators also contains three control parameters:
population size NP, scaling factor F, and crossover rate CR.

Initialization: starting from the candidate solution randomly generated by NP, usually,
a DE population is composed of NP individuals, denoted as:

xi,G = (x1,G, x2,G, . . . , xD,G) i = 1, 2, ..., Np, (11)

where Np is the population size. Np test individuals are generated from the current
population through mutation, crossover, and selection of each generation. This step forms
a loop until the termination condition is met. The initial population is randomly generated:

xi,j,G = xL
i,j,G + rand× (xU

i,j,G − xL
i,j,G), (12)

where xi,j represents the jth component of the ith individual; L and U in xL
i,j and xU

i,j represent
the lower and upper bounds of the jth component respectively. rand represents a random
decimal in the range of [0, 1].

Mutation operator: a mutant individual is generated through the difference between
two random individuals and F (scaling factor) and a target vector, DE achieves individual
mutation through a differential strategy. This is also the embodiment of DE’s central idea,
which is based on the current individual in the population and randomly selects several
vectors for differential operation and generates a differential v vector. Several commonly
used differential mutation strategies are as follows:

(1) DE/rand/1
vi,G = xr1,G + F× (xr2,G − xr3,G) (13)

(2) DE/best/1
vi,G = xbest,G + F× (xr1,G − xr2,G) (14)

(3) DE/current-to-best/1

vi,G = xi,G + F× (xbest,G − xi,G) + F× (xr1,G − xr2,G) (15)

(4) DE/current-to-rand/1

vi,G = xi,G + rand× (xr1,G − xi,G) + F× (xr2,G − xr3,G) (16)

where r1, r2, and r3 represent the index subscripts of three different individuals
randomly selected from the population. F represents the scaling factor, which controls
the strength of the difference. xbest represents the individual with the best fitness value.

Crossover operator: The purpose of the crossover is to generate a new candidate
solution based on the combination of the mutation vector and the parent vector to generate
a test vector. The crossover operation between the individual xg,i of the gth generation and
the mutated intermediate individual vg,i can be denoted as:
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ui,j,G =

{
vi,j,G, i f rand ≤ CR or j = jrand
xi,j,G, otherwise,

(17)

where jrand is an integer randomly selected from 1, 2, . . . , D to ensure that at least one
individual is from a variant individual. CR is the crossover rate, which determines the ratio
of inheritance from variant individuals to test individuals.

Selection operator: the selection operation is performed according to the greedy
algorithm, and the individual with the optimal function value is selected from the test
individual ui,G and the original individual xi,G to enter the next generation. When the
problem is a minimization problem, then the individual with the smallest function fitness
value will be chosen to replace the original individual and enter the next generation.
The specific formula can be expressed as:

xi,G+1 =

{
ui,G, i f f (ui,G) ≤ f (xi,G)
xi,G, otherwise,

(18)

where f (x) is the minimization function to be optimized and xi,G+1 is the individual
entering into the G + 1 generation for further evolution.

4. Opposition-Based Optimization after Initialization and Adaptive Threshold-Value-
Based Bi-Mutation Strategy
4.1. Opposition-Based Optimization after Initialization

Opposite learning was first proposed by Tizhoosh for the initialization process of intelli-
gent algorithms and subsequently was introduced to DE to find better individuals [16].

Evolutionary optimization methods usually try to improve the initial population
toward optimal solutions. The generation of individuals in the initialization process
embodies the traits of randomness. Although without prior information about the solution,
we can improve our chance of starting with a fitter solution by simultaneously considering
the opposite solution [17]. Through this operation, the better individual (random and the
opposite of random) can be selected as an initial solution. There is a 50% possibility that the
opposite individual is better than the initial solution, so starting with the individual that has
the potential to accelerate convergence is quite sensible [17,18]. The opposition optimization
is arranged after the initialization process. Supposing that X = (x1, x2, x3, ..., xD) is a
feasible solution to the maximum inter-class variance function and the opposite solution
X̂ = (x̂1, x̂2, x̂3, ..., x̂D) can be defined as follows:

x̆j = aj + bj − xj, (19)

where X = (x1, x2, x3, ..., xD) is an individual in D dimensional space, and x1, x2, x3, ..., xD ∈
R, xj ∈ [aj, bj]. For each initial individual, calculate the corresponding opposite individual,
and the opposite population is generated after initialization.

4.2. Adaptive Threshold-Value-Based Bi-Mutation Strategy

In the evolution of DE, historical prior information often plays a crucial role in the
subsequent evolution of the population, and can guide the evolutionary direction of the
next generation to a certain extent.

Therefore, designing a mutation strategy that facilitates both exploration (discovering
more global optimal regions) and exploitation (refining the accuracy of the solution in each
global optimal region) is indispensable for DE-based multi-threshold image segmentation
algorithms. For example, in the traditional DE algorithm, the mutation mechanism with
high randomness focuses on exploration, while the greedy mutation mechanism guided
by local optima focuses on exploitation. When using otsu to solve the multi-threshold
image segmentation problem, it works better for images with unimodal between-class
variance. However, when the inter-class variance between background and object is small,
the multiple peaks of the inter-class variance function are relatively close, which makes it
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easy for the individual to fall into the local optimum. In this case, the application of a single
mutation mechanism will show certain defects. Using mutation strategy with high diversity
for sufficient exploration can greatly increase the running time of the algorithm, however,
if the greedy mutation strategy guided by the local optima is used for rapid exploration, it
would easily fall into local optima and the optimal solution will not be searched.

To address these shortcomings, a dual mutation strategy DE (named as historical
adaptive threshold-based dual mutation strategy DE) is designed. The adoption of this
strategy enables each individual to choose a suitable mutation strategy to meet its own
needs of exploration and exploitation, which can not only better balance the diversity of
the population to improve the accuracy of the solution, but also accelerate the convergence
to save the search cost of the algorithm. In this way, the entire population can reach a
state of balance between exploration and exploitation. The proposed mutation strategy
divides the population of each generation into two parts by using the number of successful
mutations in the previous generation as a threshold. The better part uses the individual
as the mutation base vector, and combines with a group of differential vector to generate
mutant individual, because the individual is superior in this generation, it is sensible to
further seek surrounding feasible areas to speed up the exploitation process; while for the
poor part, DE/rand/1 is used as the mutation operator so as to fully search the solution
space and speed up exploration.

After sorting the whole population, the individuals with better fitness values are
chosen and the idea of adaptive bi-mutation strategy is illustrated in Figure 1. The number
of successful variant individuals—svi in the last generation—is considered as a threshold
value to divide the individuals into superior individuals and inferior individuals [19]. The
svi value can well reflect the evolution of the whole population. When fewer individuals are
successfully mutated, the entire population is stagnated, and more individuals are required
to perform the DE/rand/1 mutation strategy. Therefore, the small svi can exactly adjust the
direction of population variation and meet the requirement of exploring better individuals.
Instead, when there are quite a lot of individuals successfully mutated, which means the
svi is large, the threshold-value-based mutation strategy can be executed to help exploit its
neighborhood to speed up the convergence and to refine the accuracy of the solution.

Figure 1. Flowchart of Bi-mutation Strategy Framework.
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Among the sorted population, individuals within the threshold value are considered
as the superior individual, while individuals out of the threshold value are reckoned as
inferior individuals. Meanwhile, the threshold value varies adaptively as the numbers of
successful mutant variants in each generation are different. If the current individual belongs
to the superior region, it should exploit further to accelerate the convergence speed and
refine the accuracy of the solution. On the contrary, if the current individual belongs to the
inferior individuals, then another strategy is conducted to maintain population diversity.

For superior individuals, the first mutation strategy—the adaptive historical threshold-
value-based mutation strategy as shown in Formula (19)—should be conducted to enhance
local searchability, while for inferior individuals, exploiting their neighborhoods is un-
necessary but they can be utilized to explore more areas. The second mutation strategy—
DE/rand/1—shows a good performance in diversity and is suitable for inferior individuals
to ensure the population diversity:

vi =

{
xi + F× (xr2 − xr3)
xr1 + F× (xr2 − xr3),

(20)

where xi is the current individual and used as base vector, as explained before, to further
exploit the individuals around the splendid individuals. xr2 and xr3 are the random
individuals different from the current and best individuals. F is the scaling factor.

The detailed procedure of the adaptive threshold-value-based bi-mutation strategy is
presented as follows:

• step1: Randomly generate the initial populations.
• step2: For each individual, calculate the corresponding opposite individual and gener-

ate the opposite population;
• step3: Calculate the fitness values of the whole initial population and opposite popula-

tion;
• step4: Replace the initial individual with its opposite individual if the opposite indi-

vidual is better than initial individual;
• step5: Sort the population in descending order according to fitness value;
• step6: The svi value is considered as a threshold to divide the whole population into

two groups and respectively execute different mutation strategies;
• step7: For superior individuals, execute threshold-value-based mutation strategy, and

for inferior individuals, execute DE/rand/1 strategy;
• step8: Execute crossover and selection operation.

4.3. Experiment Results and Analysis
4.3.1. Evaluation Criterion

SSIM and PSNR are used in our experiment to evaluate the effectiveness of the seg-
mentation algorithm. Both of those criteria follow the rule that the higher the value, the
better the image quality. As it is easy to extract structural information from images with
human vision, then the structural similarity is practicably computed to appraise the quality
of the image after being segmented. The range of SSIM is 0 to 1, and if the same two images
are measured, the SSIM value of those two images equals 1. The formula is as follows:

SSIM =
(2µxµy + C1)(σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
, (21)

where µx and µy is the mean value of x and y respectively, µ2
x and µ2

y are the variance of x
and y respectively, and σxy represents the covariance between x and y, C1 and C2 are two
constants for stabilization denoted as C1 = (k1L)2, C2 = (k2L)2, among which k1 = 0.01,
k2 = 0.03, and L refers to the dynamic range of the pixel value and is usually equal to 255.
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PSNR is Peak-Signal-to-Noise-Ratio, which is also the image objective evaluation
index. It is the most commonly and widely used criteria and the unit of the measurement
of PSNR is decibels (DB). The formula is as follows:

PSNR = 10log10
2552

MSE
(22)

MSE =
∑M

i=1 ∑N
j=1 ( f ′(i, j)− f (i, j))2

M × N
, (23)

where f ′(i, j) and f (i, j) refer to the image to be evaluated and the original image respec-
tively, M and N represent the length and width of the image. MSE in image segmentation
indicates the mean value of the sum of squares of the difference of pixel values between
the segmented image and the original one.

4.3.2. Contrast Experiments for High-Dimensional Segmentation

In the DE algorithm, the scaling factor can adjust the variation interval range of the
population. As in image segmentation, the gray value of an image can only be integers and
there are only 256 possibilities to vary, therefore, a larger F is not friendly for individuals to
attain suitable mutation results as thresholds are prone to be out of bounds. The experiment
shows that when F is set as 0.5, the optimal threshold can be obtained with relatively less
iteration compared to other settings and CR is the crossover rate and is set as 0.9; empirical
experience shows that high crossover can decrease the time.

In this experiment, the Berkeley segmentation dataset image was adopted as the
experimental dataset, in which images 1–3 (forest, kangaroo, actinia) are a typical image
with relatively concentrated image gray value distribution and small inter-class variance,
and their corresponding histograms are shown in Figure 2, while images 4–6 (numbered
41033, 385039, 145086) have a more obvious difference in the image gray value distribution,
that is, the inter-class variance is relatively large. For typical images, this paper segments
the image through three higher dimensions when D = 8, 9, 10 to test the segmentation
effect of the image. The time cost of the algorithm is concerned with the real-time problem,
and it is an important standard to evaluate the performance of algorithms. As most
practical problems are related to multi-threshold segmentation, which means that multiple
parts need to be segmented, the multi-threshold image segmentation problem has high
computational complexity and long time consumption. Thus, under the same condition,
the time cost is not stable but fluctuated. In our experiment, with the same hardware
configuration, the iteration time of DE is set as 1000 to sufficiently evolve, run the same
image segmentation algorithm 50 times and take its average running time as an objective
evaluation standard. The results of our proposed DE on three typical images with respect
to the evaluation criterion including fitness value, PSNR, SSIM, iteration times and running
time are given in Tables 1–6. Two of five algorithms that perform better on the evaluation
criteria are marked in bold. It can be seen from the tables that every criterion of our
method is marked in bold, which means that our method outperforms other competitive
methods nearly in overall performance. The comparison of every single indicator is shown
in Figures 2–4.
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Figure 2. Histogram distribution.

Table 1. Results comparison of five algorithms for segmentation of images 1–3 on different criteria
when D = 8.

D = 8 Algorithm
Evaluation Criterion

Fitness Value PSNR SSIM Iterations Running Time

Image1(Forest)

DE(DE/rand/1) 924.2405 30.0992 0.8936 114.06 2.9308

DE(DE/best/1) 922.4241 29.8563 0.8845 30.96 1.0445

CSDE 924.3083 30.1454 0.8956 327.36 7.5639

VNCDE 924.1787 30.1439 0.89501 130.32 45.8256

Our Method 924.3082 30.1521 0.8954 99.32 2.6921

Image2(Kangaroo)

DE(DE/rand/1) 889.8179 29.8395 0.8769 107.48 2.7631

DE(DE/best/1) 887.5622 29.6249 0.867 31.26 0.9713

CSDE 889.9062 29.8681 0.8785 328.68 8.6718

VNCDE 889.7553 29.8422 0.8778 152.12 53.0893

Our Method 889.9043 29.8668 0.8783 95.3 2.5922

Image3(Actinia)

DE(DE/rand/1) 1116.6892 29.4944 0.7632 105.12 3.5271

DE(DE/best/1) 1113.7184 29.2255 0.7598 31.06 0.9773

CSDE 1116.703 29.4996 0.7638 304.02 7.1308

VNCDE 1116.5651 29.4879 0.764 235.86 81.6603

Our Method 1116.7014 29.4959 0.7636 97.24 2.8167
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Table 2. Results comparison of five algorithms for segmentation of images 1–3 on different criteria
when D = 9.

D = 9 Algorithm
Evaluation Criterion

Fitness Value PSNR SSIM Iterations Running Time

Image1(Forest)

DE(DE/rand/1) 928.3622 30.5839 0.9102 135.28 4.2656

DE(DE/best/1) 925.5307 30.1935 0.8938 33.22 1.0158

CSDE 928.4816 30.6411 0.9132 369.8 8.9023

VNCDE 928.1165 30.5994 0.9129 134.14 54.7727

Our Method 928.477 30.6273 0.9139 119.2 3.18

Image2(Kangaroo)

DE(DE/rand/1) 894.7103 30.4694 0.8953 132.66 4.14

DE(DE/best/1) 891.3213 29.9178 0.8813 33.66 1.1719

CSDE 894.8415 30.5598 0.8972 384.76 8.3398

VNCDE 894.7194 30.4893 0.8969 161.24 59.9547

Our Method 894.8188 30.5214 0.8967 115.98 3.2098

Image3(Actinia)

DE(DE/rand/1) 1121.1749 29.8381 0.7793 124.36 3.7242

DE(DE/best/1) 1118.2762 29.5798 0.782 33.36 1.0423

CSDE 1121.2952 29.8734 0.7808 378.92 8.1109

VNCDE 1120.91 29.8418 0.7809 290.74 107.641

Our Method 1121.2713 29.8735 0.7835 116.14 3.6367

Table 3. Results comparison of five algorithms for segmentation of images 1–3 on different criteria
when D = 10.

D = 10 Algorithm
Evaluation Criterion

Fitness Value PSNR SSIM Iterations Running Time

Image1(Forest)

DE(DE/rand/1) 931.1964 30.9917 0.9187 165.72 5.0252

DE(DE/best/1) 927.9442 30.466 0.9057 34.46 1.0486

CSDE 931.541 31.2247 0.9242 414.88 9.6212

VNCDE 931.3505 31.2011 0.9245 149.26 60.1333

Our Method 931.5102 31.2395 0.9246 132.4 3.776

Image2(Kangaroo)

DE(DE/rand/1) 898.2523 31.0023 0.9084 154.12 4.7712

DE(DE/best/1) 895.4196 30.3822 0.8963 36.68 1.1319

CSDE 898.481 31.1343 0.9115 430.58 9.5338

VNCDE 897.977 31.0215 0.9101 201.24 79.1909

Our Method 898.4808 31.1409 0.9119 125.68 3.4951

Image3(Actinia)

DE(DE/rand/1) 1124.6503 30.4593 0.799 148.24 3.9829

DE(DE/best/1) 1121.1936 29.8745 0.8017 34.26 0.8487

CSDE 1124.7492 30.5089 0.8008 459.64 8.4798

VNCDE 1124.2897 30.4549 0.8092 338.84 125.4491

Our Method 1124.7372 30.5241 0.8006 140.82 3.6164



Appl. Sci. 2022, 12, 5759 11 of 15

Table 4. Results comparison of five algorithms for segmentation of images 4–6 on different criteria
when D = 8.

D = 8 Algorithm
Evaluation Criterion

Fitness Value PSNR SSIM Iterations Running Time

Image1(41033)

DE(DE/rand/1) 3434.6711 29.0786 0.7675 100.8667 2.6089

DE(DE/best/1) 3433.6338 29.1543 0.7683 31.2333 0.8624

CSDE 3434.6965 29.0487 0.7587 366.7333 7.6867

VNCDE 3434.6609 29.0267 0.7634 120.432 65.3453

Our Method 3434.6894 29.1625 0.7686 98.8 2.7308

Image2(385039)

DE(DE/rand/1) 4030.9421 28.5971 0.8249 84.4333 4.8844

DE(DE/best/1) 4030.9409 28.5958 0.8242 88.3333 3.3523

CSDE 4030.9397 28.594 0.8233 88.1333 7.5729

VNCDE 4030.9132 28.4387 0.8078 167.9087 70.4665

Our Method 4030.9418 28.5996 0.8254 84.7667 2.3907

Image3(145086)

DE(DE/rand/1) 3725.232 28.5494 0.7921 94.76 4.5831

DE(DE/best/1) 3724.4946 28.5059 0.7916 28.54 1.5662

CSDE 3725.2315 28.5514 0.7922 275.32 10.5008

VNCDE 3724.9765 28.5439 0.7786 242.579 86.7562

Our Method 3725.2336 28.5533 0.7922 89.24 4.3692

Table 5. Results comparison of five algorithms for segmentation of images 4–6 on different criteria
when D = 9.

D = 9 Algorithm
Evaluation Criterion

Fitness Value PSNR SSIM Iterations Running Time

Image4(41033)

DE(DE/rand/1) 3441.5956 29.3233 0.7951 107.9333 2.9114

DE(DE/best/1) 3439.5199 29.2966 0.7889 31.1333 0.8228

CSDE 3441.6141 29.3404 0.7969 333.4 6.212

VNCDE 3441.543 29.2994 0.7129 141.25 62.6528

Our Method 3441.5978 29.3406 0.7959 107.6333 3.033

Image5(385039)

DE(DE/rand/1) 4038.7195 28.7989 0.8417 106.2 3.0852

DE(DE/best/1) 4038.3371 28.9104 0.8461 28.7333 0.7629

CSDE 4038.7681 28.7269 0.8376 500.7 11.3685

VNCDE 4038.5453 28.6893 0.8369 153.5 69.7843

Our Method 4038.7209 28.8138 0.8424 104.2667 2.88

Image6(145086)

DE(DE/rand/1) 3734.052 28.6686 0.8021 109.38 4.9802

DE(DE/best/1) 3733.1225 28.6688 0.8035 106.2 4.8643

CSDE 3734.1269 28.6798 0.8041 357.32 11.8959

VNCDE 3734.1235 28.6701 0.7809 290.74 107.641

Our Method 3734.1244 28.6704 0.8039 108 5.9049
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Table 6. Results comparison of five algorithms for segmentation of images 4–6 on different criteria
when D = 10.

D = 10 Algorithm
Evaluation Criterion

Fitness Value PSNR SSIM Iterations Running Time

Image1(Forest)

DE(DE/rand/1) 3446.1561 29.7778 0.8202 135.0667 3.8724

DE(DE/best/1) 3444.6259 29.5565 0.8127 34.2333 0.883

CSDE 3446.1878 29.7858 0.8226 489.8 10.0595

VNCDE 3446.1678 29.7658 0.8206 207.0667 80.7313

Our Method 3446.1771 29.8002 0.8213 136.9333 4.2332

Image2(Kangaroo)

DE(DE/rand/1) 4046.1617 29.2401 0.8507 119.6 3.231

DE(DE/best/1) 4045.2943 29.271 0.8628 31.2667 0.9824

CSDE 4046.2345 29.2679 0.86 360.9333 7.7758

VNCDE 4046.2064 29.2415 0.9101 201.24 76.1909

Our Method 4046.2481 29.2975 0.8677 114.3333 3.248

Image3(Actinia)

DE(DE/rand/1) 3740.8882 28.9319 0.8066 125.12 5.4697

DE(DE/best/1) 3739.8085 28.9277 0.8217 31.46 1.3898

CSDE 3741.0143 28.9404 0.8155 387.22 14.4902

VNCDE 3740.9982 28.9334 0.8092 338.84 125.4491

Our Method 3741.0105 28.9376 0.8156 122.98 5.576

To further evaluate the performance of the segmentation of our proposed algorithm,
we compared the proposed algorithm with the original DE, DE with DE/best/1 operator,
CSDE [20], and VNCDE [21] on several evaluation criteria. The results of these algorithms
are obtained under different dimensions. It can be seen from Table 1 that our proposed
method presents a relatively better performance in terms of computational speed and
segmentation effect. A forest image, kangaroo image and actinia image were selected as
experimental images to testify the segmentation effect and the computational efficiency of
the OTSU algorithm. Taking “Forest picture” as an example, the PSNR value of the image
is 30.1521, which obviously precedes other comparative algorithms. The SSIM value of the
image is 0.8947, which is basically the same as other algorithms, indicating the low image
distortion, and the quality of the image after segmentation is guaranteed. On the premise of
maintaining the segmentation effect, the running time of our proposed method is 2.8 times
shorter than that of the CSDE algorithm, reduced from 7.5639 to 2.6921, which decreased
by more than 60% and greatly improved the running speed. Iteration times were 108.32,
although this cannot compare with DE using the DE/best/1 strategy but is better than the
original DE and CSDE, which reflects the fast convergence of the algorithm to a certain
extent. Analysis of the other two images also reached a similar conclusion. Regarding the
experiment of the second group of pictures, under the same experimental settings as the
first group of pictures, it can also be seen that although the DE algorithm using DE/best/1
has a better performance in terms of time, the accuracy of the algorithm is relatively low.
In the case of ensuring high precision, our proposed algorithm has obvious advantages in
comprehensive performance. The image after segmentation is shown in Figures 3 and 4.
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Figure 3. Group1: Original Images and Segmented Images on D = 10.

Figure 4. Group2: Original Images and Segmented Images on D = 10.

5. Conclusions

This paper aims to solve problems in traditional OTSU when tackling high dimensional
image segmentation, and a probability-based bi-mutation strategy is proposed in DE, which
achieves a better performance in refining the objective function and thus improves the
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quality of the image being segmented. According to maximal variance between classes,
the proposed strategy can effectively improve the calculation speed and segmentation
efficiency. The experiment results indicate that the DE with the proposed strategy can
not only outperform other contrast algorithms in terms of time cost, but also excels in
segmentation quality.
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