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Abstract: In order to promptly evacuate personnel and property near the foot of the landslide and
take emergency treatment measures in case of sudden danger, it is very necessary to select suitable
forecasting methods for conduct short-term displacement predictions in the slope-sliding process.
In this paper, we used Python to develop the landslide displacement-prediction method based on
the eXtreme Gradient Boosting (XGBoost) algorithm, and optimized the hyperparameters through a
genetic algorithm to solve the problem of insufficient short-term displacement-prediction accuracy
for landslides. We compared the deviation, relative error (RE) and median of RE of predicted values
obtained using XGBoost, SVR and RNNs, and the actual value of landslide displacement. The results
show that the accuracies of slope displacement prediction using XGBoost and SVR are very high, and
that using RNNs is very low during the sliding process. For large displacement values and small
numbers of samples, the displacement-prediction effect of XGBoost algorithm is better than that
of SVR and RNNs in the sliding process of landslide. There are generally only fewer data samples
collected during the landslide sliding process, so RNNs is not suitable for displacement prediction in
this scenario. If the number of data samples is large enough, using RNNs to predict the long-term
displacement of the slope may also have a much higher accuracy.

Keywords: landslide; displacement prediction; XGBoost; SVR; RNNs

1. Introduction

Accurately predicting the displacement of a landslide under critical sliding state and dur-
ing the sliding process can mitigate its negative influence on both human lives and economic
loss. It is also a major issue to be solved firstly to control economically and scientifically the
disaster of residual soil slopes. However, it is still a difficult and important task.

Many scholars have carried out a lot of research on the prediction of landslide disasters
and obtained many achievements [1–8]. The load–unload response ratio method was used to
predict the failure time of landslides [1,2]. The temporal and spatial prediction of a shallow
landslide induced by rainfall was carried out by using a combination of probabilistic and
deterministic methods [3]. The occurrence times and displacement trends of landslides were
predicted by using the cusp catastrophe theory, the polynomial model, the displacement
critical-rate method and inverse velocity analysis [4–9]. Observed changes in rainfall amounts
were used to predict changes in landslide displacement rates from [10], which made future
landslide movements relate to expected rainfall scenarios [11]. Modern numerical methods
are able to simulate large mass movements, and there is an opportunity to utilize such
methods to evaluate the risks of catastrophic damage if a landslide occurs [12,13].

The coupling effect of periodic fluctuation of water level and rainfall, the displace-
ment and monitoring-time curve of a landslide appears “step-like” [14–18]. Therefore, the
cumulative displacement of a landslide should be decomposed into multiple displacement
components with different scale characteristics of time series. Then, a polynomial regression
model [19] and machine learning (backpropagation neural network [19], support-vector
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regression machine [20], long short-term memory network [21,22] and kernel extreme learn-
ing machine [23]) are used to train and predict each displacement component, respectively.
Finally, by superimposing the prediction results of each displacement component, the cu-
mulative displacement prediction of the landslide is obtained. Coupled with the time series
of landslide displacement, these methods can make clear the physical meaning of each part
of the displacement and reflect the relationship between each displacement component and
the triggering factors to improve the accuracy of displacement prediction [18].

With the improvement of computer calculating ability and the development of ma-
chine learning and artificial intelligence, the disaster-prediction ability of landslides has
been greatly improved. At present, the commonly used models for landslide displacement
prediction include the backpropagation neural network (BPNN) [14,15,23], support-vector
regression (SVR) [18,24–28], extreme learning machine (ELM) [29–32], kernel extreme
learning machine (KELM) [14,23,33], long short-term memory (LSTM) [25,34–37], decision
tree [38], and so on. Moreover, many algorithms are used to optimize the parameters of the
prediction models, including the genetic algorithm (GA) [28,39,40], particle swarm opti-
mization (PSO) [16,26,28,29,41,42], fruit fly optimization algorithm (FOA) [18], grey wolf
optimizer (GWO) [15], and so on. However, each algorithm has its limitations. Therefore, it
is vital to select the appropriate machine-learning models for the accuracy of displacement
prediction of landslides.

The disaster of granite residual landslides involves infiltration characteristics, the
intensity and pattern of rainfall, the transport mode of gas and liquid in soil, the temperature
of the earth surface, the development mode of soil creep and their coupling interaction.
This type of landslide is often induced by heavy rainfall and experiences multiple processes
of sliding, relative stability, re-sliding, then relative stability and re-sliding, which pose
a great threat to buildings and structures at the foot of the slope. Moreover, it is difficult
to judge the displacement trend of each new sliding by the displacement data collected
in the past. Therefore, it is very important to select a method that can predict the slope
displacement accurately during the sliding process.

In the paper, we used Python to develop the landslide displacement-prediction method
based on the eXtreme Gradient Boosting (XGBoost) algorithm, and optimized the hyper-
parameters through a genetic algorithm to improve the prediction accuracy of landslide
displacement. The proposed XGBoost algorithm may effectively solve the problem of
insufficient prediction accuracy of small samples and meet the actual needs for short-term
displacement prediction of landslides during the sliding process.

2. eXtreme Gradient Boosting (XGBoost)

XGBoost uses Newton’s method to solve the extreme value of loss function, and adds a
regularization term to the loss function, which is an improvement on the gradient boosting
algorithm, developed by Chen and Guestrin [43]. The loss function of XGBoost is denoted
by the second-order Taylor expansion. Thus, it can better capture nonlinear information.
Moreover, XGBoost may reduce the overfitting effect caused by the gradient-boosting
algorithm by introducing regular terms.

2.1. Methodology

Given a training sample data set (x1, y1), (x2, y2), · · · , (xM, yM), xi ∈ X ∈ Rm, X
is sample input space, yi ∈ Y ∈ R, Y is output space, m is input-space dimension. If
X is divided into nonintersecting regions R1,R2, · · · ,RJ , and cj is the constant output
determined in each region. The tree may then be expressed by Formula (1):

T (x;Qk) =
J

∑
j=1

cjI
(
x ∈ Rj

)
(1)

where Q =
{
(R1, c1), (R2, c2), · · · ,

(
RJ , cJ

)}
represents tree region division and the con-

stants in each region; J is the number of leaf nodes.
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The boosting-tree model of XGBoost may be denoted by Formula (2) as an additive
model of decision trees:

fD(x) =
D

∑
d=1
T (x;Qd) (2)

where T (x;Qk) is decision tree; Qd is decision-tree parameters; D is the number of trees.
The forward step-by-step boosting tree algorithm in XGBoost is used as follows.
(1) The initial boosting tree is determined as f0(x) = 0.
(2) The model at the d-th step is expressed by Formula (3):

fd(x) = fd−1(x)+T (x;Qd) , k = 1, 2, · · · , K (3)

where fd−1(x) is the current model;Qd is decision-tree parameters determined by Formula (4):

Q̂d = argmin
Qd

D

∑
i=1
L(yi, fd−1(xi) + T (xi;Qd)) (4)

where Q̂d is the d-th tree parameters; L(yi, fd−1(xi) + T (xi;Qd)) is the loss value between
observed value y and predicted value fd(x) for the i-th sample point.

The loss function can be denoted asL(y, f (x)) = (y− f (x))2 by the least-square-error criterion.

l
(
y, y′

)
= L(y, fd−1(x) + T (x;Qd)) = [y− fd−1(x)− T (x;Qd)]

2 = [r− T (x;Qd)]
2 (5)

where r = y− fd−1(x) is fitting residual of the current model; f (x) is the prediction value
obtained from the fitted model, y′ = f (x); fd−1(x) is the fitted model at the d-1-th step.

(3) The fitting residual is calculated by Formula (6).

rdi
= yi − fd−1(xi), i = 1, 2, · · · , D (6)

A regression tree is learned according to the fitting residual rdi
, and T (x;Qd)

is obtained.
(4) fd(x) = fd−1(x)+T (x;Qd) is updated.

(5) The boosting tree of regression problem fD(x) =
D
∑

d=1
T (x;Qd) is solved.

The loss function of XGBoost L(φ) is denoted by Formula (7).

L(φ) =
n

∑
i=1

l(yi, y′i) + ∑
d
W( fd) =l

(
y, y′

)
+ ∑

d
W( fd) =[r− T (x;Qd)]

2 + ∑
d
W( fd) (7)

where n is the number of training samples;
n
∑

i=1
l(yi, y′i) is loss value caused using the

gradient-boosting algorithm, calculated by Formula (5), assuming it is a differentiable
convex function;W( fd) is regular terms; fd is weak learner function.

The complexity of XGBoost model is denoted by Formula (8):

W( fk) = γTln +
1
2

λ‖ω‖2 = γTln +
λ

2

J

∑
j=1

ω2
tj (8)

where γ and λ are two coefficients set artificially; ω is the vector formed by the values of
all leaf nodes of the decision tree; Tln is the number of leaf nodes; ωtj is the weight of leaf j.



Appl. Sci. 2022, 12, 6056 4 of 16

The final goal of XGBoost is to minimize L(φ) in Formula (7). L(φ) is approximately
solved by the Newton’s method, and can be expressed by the second-order Taylor expansion
at the point y′i,t−1 and Formula (9):

Lt(φ) ≈
n
∑

i=1

[
l
(

yi, y′i,t−1

)
+

∂L(yi ,y′i)
∂y′i

∣∣∣y′i=y′i,t−1
ft(xi) +

1
2

∂2L(yi ,y′i)

∂y′i
2

∣∣∣y′i=y′i,t−1
f 2
t−1(xi)

]
+γTln + λ

2

T
∑

j=1
ω2

tj

(9)

where ft(xi) is the current weak learner; xi is the i-th training sample.

2.2. XGBoost-Based Relationship between Displacement and Time

We used XGBoost to map the nonlinear relationship between time T and monitoring
displacement Y. The mathematical model of XGBoost, XGBoost(T), is defined as:{

XGBoost(T): RN → RM

Y = XGBoost(T)
(10)

where T = (t1, t2, · · · , tN), ti (i = 1, 2, · · · , N) is a vector of time; N is the number of
monitoring time; Y = (y1, y2, · · · , yM) is the M dimensional vector of monitoring data,
such as displacement.

In this paper, the genetic algorithm is used to tune its hyperparameters of the XGBoost
model to improve the prediction accuracy of landslide displacement.

3. Recurrent Neural Network Prediction Algorithm

In addition to the interlayer connections, the RNNs allow for the addition of the
intralayer connection that allows the RNNs to accumulate the information in the time
domain. The RNNs allow the information in the previous steps to continue to affect
subsequent steps, so the RNNs can effectively handle sequence-data problems and become
more suitable for processing sequence-related machine-learning tasks.

The recurrent neural networks (RNNs) generally consist of an input layer, a hidden
layer, and an output layer, used to model sequential data. In Figure 1, W is the weight
matrix between the input of hidden layer at the current moment and the output of the
hidden layer at the previous moment; U is the weight matrix between the input layer and
hidden layer; V is the weight matrix between the hidden layer and output layer; xt is the
input at time t; Ot is the output at time t; St is the hidden state at time t.
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3.1. BPTT Training Algorithm

The parameter training of the RNNs can be performed by the backpropagation-
through-time (BPTT) algorithm proposed by Werbos [44]. In BPTT, the network is first
trained with the training data, and the output error gradient is saved for each time step.
Then, the network is unfolded in time, as shown in Figure 1, originating an equivalent
feedforward network called an encoding network.

During the error propagation, the gradient of the sum of squared errors err(t) of all
the copies of the RNNs are stored and summed up to form one explicit error term, used
to compute the appropriate ∆W and ∆V of the networks at the end of each h steps. The
training cycle of the RNNs consists of forward propagation and error backpropagation [41].

The local gradient δ(l) is denoted by Formula (11):

δ(l) = − ∂(err(l))
∂x(l − 1)

(11)

where t− h < l < t, and t denotes the time required to learn a temporal task starting from
time t0 all the way up to time t.

The actual updating of the weights is denoted by using Formula (12):{
W(h) = W(h− 1) + ∆W(h)
V(h) = V(h− 1) + ∆V(h)

(12)

where ∆W is the variations of input weights; ∆V is the variations of output weights.

3.2. Loss Function of RNNs

In this paper, a cross-entropy function L(y, ŷ) is selected as loss function, denoted by
Formula (13):

L(y, ŷ) = −
K

∑
i=1

p(yi) log p(ŷi) (13)

where p(yi) =
eyi

∑K
j=1 e

yj ; p(ŷi) =
eŷi

∑K
j=1 e

ŷj
is the output value of the last fully connected layer

obtained by the softmax function; K is the dimension of the output value of the RNNs, K= 5
in this paper.

L(y, ŷ) is a function that measures the difference between the calculated value and
the true value. Training the RNNs is the process of minimizing L(y, ŷ).

3.3. RNN-Based Relationship between Displacement and Time

We used RNNs to map the nonlinear relationship between time T and monitoring
displacement Y. The mathematical model of RNNs, RNNs(T), is defined as:{

RNNs(T): RN → RM

Y = RNNs(T)
(14)

where T = (t1, t2, · · · , tN), ti (i = 1, 2, · · · , N) is a vector of time; N is the number of
monitoring time; Y = (y1, y2, · · · , yM) is the M dimensional vector of monitoring data,
such as displacement.

4. Support-Vector Machine Regression Algorithm (SVR)

SVM is a machine-learning method used in the fields of classification, forecasting, and
pattern identification [45]. The purpose of SVM is to find a plane that can divide training
sets into two sets with the largest interval.
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For the sample set D, SVR hopes to obtain a fitting relation such as Formula (15) so
that the error between f (x) and y satisfies a certain condition, where f (x) is predicted value
and y is sample value.

min
ω,b

1
2
‖ω‖2 + C

m

∑
i=1

lε( f (xi)− yi) (15)

where C is the penalty coefficient, termed as regularization constant; lε is insensitive loss
function.

SVR gives certain tolerance ε for the error between f (x) and y, as long as the error
does not exceed ε; that is, the distance from sample point to f (x) = ωTx + b is less than ε,
the regression model denoted by Formula (15) is considered correct.

The final form of the support-vector regression machine is denoted by Formula (16):

f (x) =
m

∑
i=1

(
αi − α′i

)
κ(xi, xj) + b (16)

where κ(xi, xj) = ϕ(xi)
T ϕ(xj) represents a kernel function for a support=-vector machine.

In the paper, κ(xi, xj) = exp
(
− ‖xi−xj‖

2σ2

)
, and σ is the bandwidth of the Gaussian kernel,

σ > 0. αi, α′i are obtained by Formula (17).
αi( f (xi)− yi − ε− ξi) = 0
α′i
(
yi − f (xi)− ε− ξ ′i

)
= 0

αiα
′
i = 0, ξiξ

′
i = 0

(C− αi)ξi = 0,
(
C− α′i

)
ξ ′i = 0

(17)

where ξi and ξ ′i are slack-variable.

5. Description of the Investigated Slope

The Liangyeshan landslide is located in Wuping county, Fujian province, China. It is
a typical drag medium-sized landslide. The landslide is composed of silty clay, residual
sandy clay, fully weathered granite, and fragmented strong weathered granite (Figure 2).
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Figure 2. Engineering geological profile.

The natural grade of the slope varies greatly, which is about 5~25◦, and the vegetation
on the slope is developed. The sliding body is in the shape of a chair and is located on
the right side of the main line of the expressway. The width of the landslide is about 60 m.
The elevation of the trailing edge of the slope is 352.85 m, the elevation difference is about
36.6 m, and the azimuth of the main slide direction is about 337◦. There are the typical
characteristics of landslide accumulation, with thin leading and trailing edges, and thick
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middle. The initial sliding surface can be defined as the interface between residual sandy
clay and fully weathered granite.

There are buildings of the highway service area near the foot of Liangyeshan landslide
(Figure 3). In order to evacuate personnel and property in time and take emergency
treatment measures in case of sudden danger, it is necessary to predict the short-term
displacement during the slope-sliding process.
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Figure 3. Study area background.

Before the slope slides, we arranged ten displacement-monitoring points, D1–D10,
in the direction of the main sliding line, as shown in Figure 4. Slope displacement is
automatically collected by the displacement-monitoring system installed on the slope, and
then transmitted remotely to the database of the monitoring platform through the Internet
of Things (Figure 5). We also buried soil-moisture sensors in the slope, so as to monitor the
moisture content of soil.
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Figure 5. Automatic data collection and monitoring system.

We started monitoring the slope on 1 June 2013. We recorded monitoring data of
precipitation, soil moisture content and slope displacement during rainfall and after the
rain through the Internet of Things. The slope had been monitored for two years. After
it rained for six days from 2 June, the slope soil reached a saturated state, and the slope
started to slide on 8 June. In this paper, we selected 151 sets of slope displacement and time
collected for 20 h during the sliding process as the training dataset.

For the purpose of mitigating the disaster caused by the landslide, we used XGBoost,
RNNs and SVR to predict the displacement corresponding to the predetermined sliding time
of the slope after the slope reached the saturation state. Furthermore, we investigated the
variation law of slope displacement with time during the slope-sliding process. We collected
151 sets of data of the resultant displacement of the slope after the soil was saturated to carry
out the displacement-prediction research by using XGBoost, RNNs and SVR.

6. Results
6.1. Deviation between Predicted Value and Actual Value

For the monitoring points D5 and D7, the deviation between the actual values and the
predicted values obtained using SVR is the smallest among the ones using three landslide
displacement-prediction methods, and the one using RNNs is the largest (see Figures 6 and 7).

For the monitoring point D6, the deviation between the actual values and the predicted
values obtained using XGBoost is the smallest among the ones using three landslide
displacement-prediction methods (see Figure 8), and the prediction values using the other
two prediction methods deviate greatly from actual values. From Figure 8, we note that as
the curvature of the curve changes from large to small, the deviation of predicted values
obtained using RNNs from real values becomes larger and larger.

For the monitoring points D8, D9 and D10, the deviation between the actual values
and the predicted values obtained using SVR and XGBoost is smaller than that using RNNs,
and the predicted values using RNNs are the largest among that using these three landslide
displacement-prediction methods (see Figures 9–11). However, the prediction values using
these three prediction methods are not very different from actual values when the curvature
of the curve is very small (see Figures 9–11).
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6.2. Relative Error (RE) between Predicted Value and Actual Value

The maximum RE values using XGBoost, SVR and XGBoost are 5.0%, 9.55% and 20.14%
(see Table 1), respectively. From Figures 12–17, we note that the REs of predicted values
obtained using the XGBoost method are less than 5.0% for all monitoring points. From
Figures 12–16, we note that the REs using the SVR method also are mostly less than 5.0%.
The REs using the RNNs method are mostly more than 6.0% for all monitoring points, vary
greatly, and their data are very discrete.

Table 1. Median of relative error and upper limit (%).

Monitoring
Point Number

Median Upper Limit

XGBoost RNNs SVR XGBoost RNNs SVR

D5 4.21 4.86 2.89 5.0 12.53 5.45
D6 2.52 4.33 6.79 4.89 8.0 9.55
D7 4.04 5.88 1.83 4.93 19.76 6.16
D8 1.66 7.01 2.52 4.96 15.63 6.05
D9 3.08 5.2 2.93 4.79 20.14 6.0

D10 1.37 10.37 3.41 4.76 20.12 7.15
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From Figures 12–16 and 18, we note that after the curvature variation of the curve of
displacement with time is stabilized, the RE values using XGBoost, SVR and RNNs are all
less than 5.0%. However, from Figures 17 and 18, we also note that the RE values using
SVR and RNNs fluctuate greatly with the displacement when the curvature variation of
the curve of displacement changes greatly with time.
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7. Discussion

The deviation between the actual values and the predicted values obtained using SVR
and XGBoost is much smaller than that using RNNs. However, the prediction values using
these three prediction methods are not very different from actual values when the curvature
of the curve is very small.

The RE median of the predicted values obtained using XGBoost is very small and
less than 5.0% for every monitoring point. The REs of predicted values obtained using
the XGBoost method are less than 5.0% for all monitoring points, and the REs using the
SVR method also are less than 5.0%, except when the curvature variation of the curve of
displacement with time changes greatly. Among using XGBoost, SVR and RNNs, the RE
variation of RNNs is the biggest, and the RE variation of XGBoost is mostly the smallest. It
may be related to the strong ability of XGBoost to better capture nonlinear information.
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For large displacement values and small numbers of samples, the displacement-
prediction effect of the XGBoost algorithm is better than that of the other two predic-
tion methods in the sliding process of landslides. It is consistent with existing research
results [46,47].

Both XGBoost and SVR can predict the displacement of landslides accurately in the
sliding process, and RNNs is not suitable in this condition. In further research work, we
will investigate the comparison of the predictive abilities of XGBoost and SVR with other
deep-learning algorithms.

If these displacement-prediction methods are used for other landslides, the accuracy
of the automatic collection of displacement data should be guaranteed. XGBoost, SVR and
RNNs should be selected in order, according to the number of data samples from small to
large and the nonlinear degree from large to small. In order to improve the early warning
level in the critical slip state, it is recommended to evaluate the reliability of the prediction
scheme by combining the three-dimensional numerical simulation test of nonstationary
rheological parameters and the multivariate Bayesian update inverse analysis theory.
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