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Abstract: There are quite some machine learning (ML) models, frameworks, AI-based services or
products from different IT solution providers available, which can be used as building blocks to
embed and use in IT solution architectures of companies. However, the path from initial prototypical
proof of concept solutions until the deployment of proven systems into the operational environment
remains a major challenge. The potential of AI-based software components using ML or knowledge
engineering (KE) is huge and the majority of small to medium enterprises are still unsure whether
their internal developer teams should be extended by additional ML or KE skills to enrich their IT
solution architectures with novel AI-based components where appropriate. How can enterprises
manage the change and visualize the current state and foreseeable road-map? In the current paper,
we propose an AI system landscape for the public transport sector, which is based on existing AI-
domains and AI-categories defined by different technical reports of the European Commission. We
collect use-cases from three different enterprises in the transportation sector and visualize them
on the proposed domain specific AI-landscape. We provide some insights into different maturity
levels of different AI-based components and how the different ML and KE based components can be
embedded into an AI-based software development life-cycle (SDLC). We visualize, how the AI-based
IT-solution architecture evolved over the last decades with respect to coupling and decoupling of
layers and tiers in the overall Enterprise Architecture.

Keywords: AI architecture; AI maturity model; AI landscape; machine learning; knowledge
engineering; software development life-cycle; domain-specific AI; AI in transportation industry;
enterprise architecture; MLOps

1. Introduction

When looking at the evolution of software architectures that started from mainframes
and dumb 3270 terminals to N-Tier architectures, the distribution of specialized function-
ality to dedicated hardware-related tiers such as database servers or logical layers such
as the presentation layer, which was triggered by a substantial technology gap between
HTML as a markup language for the graphical user interface (GUI) and the object-oriented
programming languages used to implement the application- and business-logic. With an
increasing focus of organizations to business processes, workflow and rule engines were
incorporated into the software architectures, leading to additional layers or tiers. With
the increasing capabilities of artificial intelligence (AI), which in itself can be decomposed
into machine learning (ML) and Knowledge Engineering (KE) sub-domains, additional
layers and tiers slowly establish and need to be incorporated into the overall IT architec-
ture and the software development life-cycle (SDLC) of all these different building blocks.
In case of ML models, an additional challenge is added to the life-cycle management of
components, which is equally severe as the gap between the markup and the programming
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languages in the past. The models no longer can be designed, developed, tested and put
into production when being compliant to their specification, but their quality is rather
validated based on probability scores and, even more challenging, can modify its behavior
or learn during its operation and potentially degrade over time due to data and concept
shifts [1]. Such scenarios are new and require not only an additional focus to the initial
maturity of the components but are also challenging the maturity of an organization with
respect to managing these components over it’s life-cycle. How can an enterprise manage
these issues? What are appropriate changes in the software development life-cycle when
AI-based components, that are trained instead of programmed need to be incorporated
in the IT-Architecture? How can the maturity of the components be tracked during an
experiment-driven and data-driven development process? How can it be monitored in the
runtime environment? We will analyse and visualize these changes from a structural as
well as a behavioural perspective. Maturity models have been applied in many different
domains. It is quite common to specify the maturity of organizations with respect to busi-
ness process management, whether the processes are explicitly modeled with BPMN [2],
implemented with the help of workflow engines. It is even possible to extract dedicated
business rules from the processes. The rules can be modelled with the decision model
and notation DMN [3] and handed over back to the responsibility of the business units,
where they can be quickly modified according to their needs. Maturity models such as
the CMM or BPMM have been developed in order to characterize the different awareness
level, to which software development processes or business processes are managed in
enterprises [4]. More recently, maturity models seem to gain focus for the assessment of
AI-based software components [5] such as the one of Gartner [6] or Forrester [7]. Based
on general AI-categories and domain specific railway related sub-themes, we first focus
on creating an overview of AI-based components in public transport service industries
from a structural perspective, resulting in a domain-specific AI-landscape. Second, we
visualize, how AI-based functionalities are embedded in appropriate layers and tiers in
the context of a domain-independent evolution of the overall IT Architecture. Third, we
provide domain-specific examples and different use-cases of AI-based components, how
they are developed and embedded into the organization’s software development life-cycle
from a behavioral perspective, which is driven by the different maturity levels from initial
prototypical implementations until the operation of AI-based components in production.
Other than previous papers, that do an in-depth analysis of current challenges of incorpo-
rating AI-capabilities into the software engineering process from Microsoft in large scale [8],
smaller organizations, which work in a specific business domain such as the transportation
service sector, face similar challenges. However, they are most probably starting from a
lower maturity level, both from the perspective of the organization, as well as from the
perspective of the maturity level of their AI-based software components. Our paper collects
cases from three different enterprises, in order to develop a common understanding of the
necessary changes to implement AI-based application architectures in a specific business
domain such as the public service transportation sector. For this purpose, we start with
some general definitions based on the technical reports of the European Commission before
we dive into some theoretical aspects of modelling the structural as well as behavioral
aspects of AI-related software engineering. Based on these insights, we present different
use cases of the different organizations, which all can be placed on a proposed AI landscape
for the public transportation business domain.

2. Current Frameworks and Maturity Models Which Could Be Used to Build Up an AI
Landscape in Organizations

The recent advancements in AI research in general and machine learning in particular
have triggered broad interest also to global economies, to entire business domains and to
governments and politicians. In the global context of Industry 4.0, AI is part of the EUs
Digital Single Market Strategy and in the public transport sector, AI is a main topic in the
UIC (International Union of Railways). However, as stated by a recent technology report
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of the EU, there is up to now no single, commonly agreed definition of AI but a rather
huge variety of different definitions that emerged from early 1955 until today [9]. This
report is focusing on an operational definition of AI where they are listing different AI
core domains (CD) representing fundamental goals of AI as well as transversal domains
(TD) referring to common issues of integrating AI core domains across disciplines and
different knowledge areas. Both, core and transversal domains are listed in Table 1 with
their appropriate sub-domains.

Table 1. AI Core and Sub-Domains.

Domains Sub-Domains

CD—Reasoning knowledge representation, automated reasoning,
common sense reasoning

CD—Planning planning and scheduling, searching, optimization
CD—Learning machine learning
CD—Communication natural language processing
CD—Perception computer vision, audio processing

TD—Integration and Interaction multi-agent systems, robotics and automation,
connected and automated vehicles

TD—Services AI Services
TD—Ethics and Philosophy AI Ethics, Philosophy of AI

Based on these domains and subdomains, they further collected different keywords
which are relevant for the domains (e.g., case based reasoning, causal inference, expert
systems etc. to name a few in the domain of reasoning) which can be used to build an
entire AI taxonomy that is transparently mapped to the extensive list of definitions of AI
between 1955 and 2019. In a second report from AI Watch, they list the AI-Categories with
corresponding technologies as shown in Table 2. Furthermore, they define nine different
Technology Readiness Levels (TRL, Table 3) with their appropriate descriptions [10].

But in addition to the technology readiness, organizational readiness factors need to
be considered in the process of AI adoption, such as those considered by Jölnk et al. [11],
who compiled five categories with 18 different AI readiness factors (See Table 4) out of
exploratory expert interviews as well as findings from scientific and practitioners literature.

Aside of the conceptualization framework, they point out the importance that tech-
nology readiness and organizational readiness are “highly interdependent and mutually
reinforcing”. But how should this problem be solved by organizations? Which would be
the most adequate technologies to start with initial prototypes? Should each organization
come up with their own AI map or AI landscape in order to visualize the current state of
usage of AI components? In the following, we will show, how a domain specific template
can be compiled, which could be reused by individual companies, and help them to spot
out unused AI potentials.

Table 2. AI-Categories with corresponding technologies.

Categories Technologies

Knowledge Representation Expert Systems& reasoning

Learning Recommender Systems, apprentices by
demonstration

Communication Machine Translation, Speech Recognition
Perception Facial recognition, text recognition
Planning Transport and scheduling systems
Physical Interaction (Robotics) Self-Driving Cars, Home Cleaning Robots
Social & Collaborative Intelligence Negotiation Agents
Integration Technology Virtual Assistants
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Table 3. Technology Readiness Levels (TLRL).

Technology Readiness Levels Descriptions

TRL 1—Proof of concept Basic principles observed
TRL 2—Proof of concept Technology concept formulated
TRL 3—Proof of concept Experimental proof of concept
TRL 4—Prototype Technology validated in lab
TRL 5—Prototype Technology validated in relevant environment

TRL 6—Prototype Technology demonstrated in relevant
environment

TRL 7—Prototype System prototype demonstration
in operational environment

TRL 8—Product or Service certified System complete and qualified

TRL 9—Deployment Actual System proven
in operational environment

Table 4. Organizational AI Readiness Factors.

Categories AI Readiness Factors

Strategic alignment
AI-business potentials, Customer AI readiness,
Top management support, AI process fit,
Data-driven decision making

Resources Financial budget, Personnel, IT infrastructure
Knowledge AI awareness, Upskilling, AI ethics
Culture Innovativeness, Collaborative work, Change management
Data Data availability, Data quality, Data accessibility, Data flow

3. Compiling an AI Landscape for the Public Service Transportation Business Domain

In order to build such an AI landscape for the railway transportation service industry,
we propose to reuse the definitions from AIWatch from the previous chapter and combine
it with the AI knowledge map (AIKM) of Corea [12]. Corea’s 2-dimensional AIKM uses the
AI-domains on the vertical and the AI-paradigms (e.g. symbolic, statistical, subsymbolic) on
the horizontal axes. This AIKM has been reused as a pragmatic definition of AI technologies
for the debate of AI ethics in healthcare [13] as well as a starting point for a paper addressing
future applications of AI based on insights, risks, success stories and failures from the
past [14]. In order to generate a domain specific landscape, the very high-level and general
purpose dimension of the AI-paradigms can be replaced domain specific sub-themes, which
were defined in the context of the Transport Research and Information Monitoring and
Information System (TRIMIS) [15]. These sub-themes are developed by the European
Commission for the development, testing, adoption and integration of new technologies
into the railway industry and published a Joint Research Centre (JSR) report. Although not
focusing explicitly on the incorporation of AI-based components, the sub-theme clusters of
the EU’s railway related research and innovation (R&I) framework seem to be standardized
in the transportation domain and can be reused: The original domain independent AIKM
places the AI technology solutions on a two dimensional map with AI Problem domains
on one axis and AI paradigms such as symbolic AI, statistical AI and sub-symbolic AI on
the other. Since we want to compile a domain specific AI landscape, we want to focus on
specific AI components rather than the general AI technology solutions. In order to do that,
we keep the AI problem domains and replace the AI paradigms by the domain specific
problem sub-themes identified by TRIMIS and listed in Table 5.
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Table 5. Rail R&I sub-themes.

Sub-Theme Sub-Theme Focus

Efficient stock design and
manufacturing:

Innovations in the area of rail stock (passenger trains,
freight locomotives and wagons) in terms of both design
and manufacturing.

Emissions and noise
reduction:

Research projects investigating the reduction of railway
noise and emissions; through reduced energy consump-
tion and reduced railway vibrations causing noise (in-
cluding track interventions to reduce noise)

Track and stock
maintenance:

Technologies to predict maintenance needs of both rolling
stock and the railway tracks, as well as techniques for
monitoring the condition of each in real-time.

Efficient rail operations: Improving the efficiency of the railway through traffic
management systems, automation and control systems.

Infrastructure
management:

Optimal management of railway infrastructure, which
includes electrical infrastructure (overhead lines), level
crossing safety and protection from potential threats.

Information and Commu-
nications Technologies
(ICT) solutions to enhance
the rail travel experience:

Services to improve the passenger experience, includ-
ing smart-ticketing systems spanning multiple transport
modes and considering passengers with restricted mobil-
ity.

In the following sections, we first present the structural aspects of incorporating AI
into the IT architectures of transportation service industries, then describe some behavioral
aspects, about how AI can be embedded into the organizations in the form of AI-based
Software Development Lifecycle and finally visualize how the AI-specific components are
incorporated into the technical IT-architecture similar as other heterogeneous tiers or layers
in the past.

3.1. AIKM Landscape—The Domain-Specific Structural View

The following AI landscape visualized in Figure 1 shows the domain specific AI
landscape for transportation service industries, where we place different AI-components.

As public transport is a very infrastructure-heavy business, it is obvious that the
focus of the AI application also lies in the optimisation of its railways infrastructure.
Especially in the sub-theme of track and stock maintenance, ML-based components are
most suitable. Figure 1 shows only a few concrete examples, some of which, such as AISI
(see Section 4.3), are already at the TRL9 operational level, others such as the predictive
maintenance of the pantograph-catenary system (Section 4.2), are in early TRL5 prototype
levels. AI technologies are used or tested in many other maintenance ares as for example in
vegetation and neophyte control or to monitor and ensure safety regulations of passing
railway vehicles at camera gantries (Wayside Intelligence).

In the efficient rail operations sub-theme, KE-based components, such as the Traffic
Management System can be allocated to the reasoning and planning AI-Domain, while the
ML-based Passenger Counting system uses perception and learning to optimize occupancy
and the Shunting Communication component is used for more efficient and safer shunting
execution by replacing PDF manuals with a voice-controlled information system.



Appl. Sci. 2022, 12, 6073 6 of 17

Figure 1. AI landscape in public transportation.

A wide variety of AI applications are conceivable in different sub-themes and some
are already in use. Customer Flow Optimization (CFO) can be used in stations to optimise
customer flows and increase safety. With the help of an IA, visually impaired people
can be guided to the boarding points of their train thanks to haptic signals or with the
wagon occupancy forecast WSBP (Wagenscharfe Belegungsprognose), passengers can find
out about the expected occupancy in the individual train sectors even before they start
their journey.

AI adoption in the public transport can also be seen as strategic alignment in the
UIC (International Union of Railways). Their main objectives are security, operations and
efficiency in public transport. AI can recognize defect breaks rising the security or can be
used for optimizing timetables much beyond the possibilities considered so far. And finally,
a lot of assets are maintained today by a fixed time schedule, which means that assets are
maintained, even if they are still working well. With AI-enabled predictive maintenance,
assets will only be maintained if needed, which saves costs.
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Another major application of AI is around improving the customer experience. For
example, AI technologies are used to improve customer flows at railway stations, to
optimise support for the disabled, which is done by the Inclusive App or to recommend
where to find free seats, which is communicated by a WSBP as mentioned before.

The AI landscape can provide an overview of AI-based applications in the domain
specific area and help to spot out areas which are already covered by AI or spot out those
with open application potential. More detailed descriptions from the three organizations
SBB, RBS and BVB will be illustrated in a subsequent section, but first, we will cover
further aspects, of how these examples are embedded in a AI-based software development
life-cycle, which also needs to be adapted due to the different nature of AI and in particular
of ML-based components.

3.2. AI-Based Software Development Life-Cycle—Organizational Behavior View

The novel experimental characteristics of AI, of ML models in particular, as well as the
vast amount of data, which needs to be taken into the overall picture have a considerable
impact on how the components are developed and managed within the organisation.

The traditional SDLC needs modifications and new roles and responsibilities are
created, which influence how the exploratory ML-models evolve from an initial TRL1 proof
of concept state to the final TRL9 deployment state. Traditional software development is
well established. Wen the problem is recognized and analysed by the business, business
analysts conduct a well established requirements engineering sub-process and hand it
over to the software engineering team for implementation, testing and deployment to the
runtime environment for production, such as it is visualized in Figure 2 as a BPMN diagram.
In the case of engineering AI-based components, the process is less straight forward.
Developer skills are well established but Data Science skills or entire new teams need to be
integrated into the enterprise. Business analysts need to decide, whether the problem is
best solved with traditional Requirements Engineering and subsequent traditional Software
Development and well established Deployment pipelines, or whether it should be handed
over to the new path of Data Analytics and subsequent Hybrid-AI Engineering where ML
and KE have to be combined most efficiently. Once the problem is allocated either to the
Machine Learning or Knowledge Engineering sub-process, the different TRL levels from
proof of concept until TRL8 need to be evolved, until the production ready TRL9 artefact
can be deployed into production. The Software Engineering team is challenged to integrate
traditional DevOps with MLOps, and manage deployment pipelines with components
from traditional Software Engineering, ML and KE processes. The monitoring of the
software components (SCs) in production are also getting more challenging, since other
than traditional SCs that have static defects which might be fixed with appropriate static
patches, ML models may slightly degrade due to dynamic changes in data and KE models
need to be dynamically adjusted to changing semantics in the business domain models.

The Wagon Sharp Occupancy Forecast (WSBP) is a classic ML component placed in
Figure 2 in the communication AI-domain to increase customer experience, which is one of
the very first productive ML application of SBB. In fact it is a simple recommender system
that shows the expected carrier occupancy to the passengers during the ticket purchase.
While analysing the problem, it was clear that a simple rule based procedure would not
work and that the recommendations need to consider patterns in the data. Thus a proof of
concept was made that confirmed the hypothesis and a ML procedure was trained with
occupancy data from over a year. This occupancy indication was then integrated into the
ticketing application. New occupancy data is continuously added to the data pool and
outdated data has to be discarded. In such a way, changes in behaviour, as it was the case
with the Covid-19 pandemic, were taken into account and the quality of forecasts could be
adjusted within a short period of time.
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Figure 2. Embedding AI solutions into the SDLC.

3.3. Towards an AI-Embedded Software Architecture

As already described in the introduction section, the incorporation of AI into the IT
architecture is about equally important, as the incorporation of dedicated database systems,
the global trend of switching to a web-based system architecture or the incorporation of
business processes as mature sub-systems, which all need to be treated with care in terms
functional coupling and decoupling from the rest of the system components. It needs a
major change in the overall architectural design in order to be scalable and manageable
over time.

In the context of Industry 4.0, a wide potential of data-driven advancements of existing
or new products and services exist and most often also causes challenges not only to
adapting the SDLC in the organization, but also to manage the change in the context of the
overall Enterprise Architecture. The vision of smart homes, smart cities, smart companies
creates pressure to investigate into the application potential of new technologies and poses
the challenge for small to medium enterprises (SMEs) to create the necessary awareness
to the potential of the new technology trends and continuously monitor the application
potential as window of opportunity to further develop their existing business models or
create new ones. What Schröder [16] stated for the process of incorporating new technology
in SMEs in the production sector can be generalized and as such can also be applied for
the public transport service sector. The overall IT Architecture has to absorb the new
characteristics of AI in the context of the evolution of layers and tiers, with appropriate
possibilities for coupling and de-coupling of the different software components. The more
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the IT grows in enterprises, the more important are the aspects of the overall Enterprise
Architecture. The AI landscape shown before provides an AI-domain specific view of
how the different SCs are related to a domain-specific business domain, in our case the
transportation service industries. However, the overall Technical Architecture is domain
independent and is also evolving over time, such as visualized in Figure 3. The role of the
data in the enterprise, which was the first sub-system that was decoupled as layer or even
dedicated tier from the rest of the IT needs to be adjusted caused by both types of AI, ML
and KE. In the context of ML, the relevance increased drastically. The quality of the data not
only needs to be controlled for the purpose of being aggregated by Business Intelligence
(BI) tools from different operational platforms to generate the management reports, which
in turn enable to make data-driven decisions and to adjust the organization and the overall
business according to customer and market needs, but is meant to be the source of making
decisions in the operational businesses. As pointed out in the AI-based SDLC BPMN in
the lane of the Runtime Environment, autonomous decisions are made out of AI-based
components and potential data- or model-drifts need to be recognized. In the context of
security and privacy relevant scenarios, where video data is used for ML-based passenger
counting systems, as we will elaborate in the use-cases section, it needs to be insured, that
the data only is used on the edge devices for making appropriate decisions and is directly
discarded afterwards and never reaches out to any server-based storage, where personal
data could cause potential privacy issues. A further most important attention has to be
dedicated to the coupling and de-coupling of ML and KE based AI. Although in the past,
decoupling of appropriate functionalities, for instance the decoupling of the GUI layer
from the DB layer is considered as state-of-the art quality criteria in traditional software
development, the opposite fact seems to hold true for the coupling of KE and ML-based
functionality in the AI-domain. The fact that neither ML nor KE alone will lead to most
adequate solutions, but that the coupling of both sub-symbolic and symbolic reasoning is
essential for a long-term success, is the cause of conducting a conference symposia such as
AAAI Make [17], or the reason for issuing a special issue journal such as this one.

Figure 3. N-Tier Software Architecture incorporating AI based Tiers.

4. Current State of Use-Cases from Different Transportation Service Providers

In the following sections, we will show different stages of ML-based software compo-
nents from a Software Development Life-Cycle SDLC perspective, starting with two pilot
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projects in smaller transportation companies, followed by use-cases, where the AI-based
solutions are already deployed in operational businesses of SBB, the largest transportation
service provider in Switzerland.

4.1. Use Case—Passenger Counting at BVB

Basler Verkehrs-Betriebe (BVB) operates a network of more than 180 km in the city of
Basel. With 85 streetcars and almost 90 buses, nearly 340,000 people are transported daily.
This makes BVB the largest partner of the public transport association of northwestern
Switzerland (TNW), which provides its customers with barrier free transport to various
cantons as well as to the neighboring countries of Germany and France. As a TNW
partner, BVB is obliged to record passenger counts in order to determine the percentage
of total passengers carried within the TNW network to receive the associated financial
compensation. This data is currently collected using light barriers in the infrared spectrum.
The optical barriers are interrupted upon passing the entrance and can thus measure
and count the number of direct movements into or out of the vehicle. This simple but
reliable method is not capable to recognize different object types as bikes or wheelchairs
or to detect passenger movements that do not follow the previously described simple
movement pattern. Regarding the TNW application purpose mentioned at the beginning,
these additional possibilities are not crucial and therefore not desirable for the business
at present. An initial analysis of purchasable solutions to solve such complex visual tasks
within the CD Learning and Perception was unsuccessful. One of the main reasons behind
this fact is that the software supply for the public transport sector is largely monopolized
by a handful of software providers. Consequently, emerging technological trends such as
AI-based systems are not always immediately available. Thus, the only option left is to
develop the systems internally. Yet the small to medium-sized public transport companies
are not in a position to achieve a TRL above 7, nor are their internal IT departments. Missing
R&D teams and a not fully implemented AI-SDLC lead to that fact. After consultation with
the management respectively the FHNW, BVB was able to find a possibility to conduct such
a project as a bachelor thesis [18,19]. Thereby a proof of concept of a TRL 6 level should be
created to initiate the awareness in the management for AI and its feasibility in the domain
of efficient rail operations.

In the run-up to the project, it already became evident that visual sensors used in public
spaces in Switzerland face serious obstacles. Due to data protection laws, it is not possible
to transfer image data from the public space to a central computer system. Therefore, the
first step was to find a way to perform the computationally intensive computer vision tasks
in a distributed manner at the edge of the network inside the vehicle. This architecture
would allow AI systems to be employed for advanced analytics, despite the legal obstacles.
Fortunately, in 2019, various embedded systems optimized for AI operations have been
introduced. Furthermore, AI libraries such as TensorFlow or Pytorch were available, which
facilitated the development of AI applications. After various discussions with experts from
different departments involved in passenger counting at BVB along with use case specific
observations, the appropriate setup for the project was defined. The Coral Dev Board
produced by Google was chosen as the hardware, together with the suitable AI library
TensorFlow Lite. For the subsequent selection process regarding the object recognition
model, all available scanners were assessed. The assessment included test cases with the
individual models with simulated images from the vehicle. Thereby it soon became evident
that both the accuracy of the detection but also the performance of the entire model plays
a crucial role when it comes to development on an integrated system. This development
approach is consistent in most respects with the AI-SDLC process proposed in Figure 2,
except that due to BVB’s smaller organizational size, most activities were conducted within
a single traditional Software Engineering department, in partnership with the business.
Given the limiting hardware capabilities coupled with the ARM architecture of the Coral
Dev Board, optimization of any additional components required had to be performed over
several iterations, with consideration given to both of these factors. For example, the AI
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model for object detection was only executed at a pre-defined frame interval. In between,
a less resource-intensive correlation tracker from the DLIB library was utilized. Finally, a
simple Centroid Tracker was applied for the re-identification of the objects. This tracker
compares the transmitted coordinates and measures on the basis of the Euclidean distance
whether it is likely that the object identified in the last frame has made such a movement.
Each of the previously mentioned features as well as their partly complex parameters such
as the camera placement had to be tested and evaluated in the vehicle as illustrated in
Figure 4.

Figure 4. Simulated boarding and deboarding scenarios were performed to measure the accuracy of
the newly developed AI as well as the infrared passenger counting system.

Both, common and unique scenarios of passenger movements into and out of the
vehicle were studied. This includes individual boarding as well as boarding in larger
groups, varying complexity and velocity. With such an agile oriented methodology, a
simple but quite effective passenger counter could be developed in a relatively short time.
The final comparison between the AI and the infrared system demonstrated promising
results even without domain-specific training of the AI-based object recognition model.
Nevertheless, it should also be noted that the system in its current design was not fully
capable to beat the existing counting system in terms of accuracy.

4.2. Predictive Maintenance of the Pantograph-Catenary System at RBS

Regionalverkehr Bern-Solothurn (RBS) is a Swiss public transport company in the
region of Bern and Solothurn. RBS operates a fleet of 50 trains and 48 buses, a train network
of 54 kilometers and the corresponding infrastructure. Over 86,000 passengers using RBS’
transport services on peak days. RBS is part of the S-train network in the city of Bern and
has a very dense and optimized timetable. Therefore, it is important to prevent incidents
as efficient as possible. However, faulty infrastructure or rolling stock can cause delays,
and even minor disturbances could provoke major disruption to the entire timetable. There
are many causes for delays, some of them can be predicted and some of them cannot.
Nevertheless, periodic maintenance can help to minimize the risk of delays and accidents.
However, they are time-consuming and cause idle times. Furthermore, it is important
to know what the source and root cause of the defects are. This allows to determine
appropriate maintenance activities.

Today, with the help of sensors, it is possible to collect plenty of data. However,
processing and detecting anomalies in the collected data is too complex and time-consuming
for a human to perform. In this use case, machine learning could help to minimize
this effort.

In order to localize arc ignitions in the pantograph-catenary system during train
operation, which is an anomaly, no automatic detection system can be drew on today. The
time of the occurrence, the location, the acceleration of the train or further context data
would be interesting to know in order to determine why arcs occur and where the catenary
system should be inspected.
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To address these challenges the arcVision System prototype was developed in the
context of a master thesis at FHNW in corporation with RBS [20]. The system consists
of two different parts. The first part is the arcVision Scanner, which is able to collect the
necessary sensor and context data, consisting of a single board computer, a GPS receiver,
a camera, a temperature and humidity sensor. The second part is the arcVision Model,
a Convolutional Neural Network (CNN) used for arc detection of the recorded pictures
from the arcVision Scanner. The goal of the prototype was to achieve a TRL6, where the
prototype needs be demonstrated in the operational environment and had to be mounted
on the roof of a train in order to collect data. A supervised ML approach was used to train
the ArcVision Model, which is a CNN based on Keras TensorFlow.

As visualized in the Hybrid-AI Engineering lane of the AI-SDLC in Figure 2, the
prototype is developed in the sub-process Machine Learning and optimized iteratively. The
amount of time for the design, implementation and testing of the TRL3 prototype was quite
reasonable and the return on investment of an AI-based solution was feasible even with
limited resources and prior knowledge about machine learning.

In order to collect all the necessary data, the arcVision Scanner was integrated into the
operational environment respectively into the regular daily time schedule for a few days.
Fortunately, the recorded data was viable for the validation and testing of the arcVision
Model. Eventually, the arcVision System had an adequate accuracy in arc ignition detection
and TRL6 could be achieved. However, the model has still some problems with false
positives and predicts arc ignitions, which did not exist on the image.

Figure 5 shows various characteristics of arc ignitions, which were part of the data-
set and provided valuable insights about the arc ignition patterns, which were out of
reach before.

Figure 5. Arc ignitions in tunnels (a,b,d,e,g) and in open air (c,f).

Although, one could argue, that the arcVision Scanner and Model are both demon-
strated in the operational environment, the entire arcVision does not yet achieve TRL7,
since it is not yet embedded into the overall IT system architecture and neither the data
management, nor the model management, nor the rules are defined, for which value
ranges of accuracy or F-scores of the arc ignition patterns should trigger a real maintenance
task. However, a side effect of the presentation of the prototype and the data-set was the
increased awareness of applicability of AI-related technology in the management.

4.3. AI in Rail-Inspect at SBB

SBB is an early adopter when it comes to the application of AI. SBB’s goals are to
increase the safety of its railways infrastructure, reduce costs, enable new business models
and cope with the ever-growing transportation demand. SBB has different use-cases
ranging including supervised ML, reinforcement and unsupervised learning, knowledge
representation or optimization. Some of them are described on the flatland-challenge
website [21]. Below we will provide a summary of one of the flagship cases, called AISI (AI
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in Railwaysinspect), which is the first major operational project at SBB that makes massive
use of deep learning technologies and can be classified as a TRL9 application.

We also summarize the lessons learned both during implementation and operation.
The project AISI was initiated with the aim to automate the track inspection and to close
the gap between demand and availability of resources. The goal of AISI is to analyze image
data with the objectives to increase the network safety and to reduce the overhead for track
inspection. It uses state-of-the-art Deep Learning methods to detect infrastructure defects
from high resolution images captured by line-scan cameras of diagnosis vehicles. Five
parallel installed line-scan cameras capture detailed images from the tracks and transfer
them to the AISI ML system for further analysis. The defects found are market with
bounding boxes and categorized by the type of defects, as depicted in Figure 6 below.

Figure 6. Difficulty in detecting defects based on image data with AISI.

The first ML-model has been put into production but covers only a subset of the
250 different known defect types. However, it achieves much higher detection rates
compared to previous non-ML algorithms. AISI was started in 2017 as a research prototype
showing promising results. However, the path from a research prototype on TRL4 to an
enterprise ready product on TRL9 is very elaborate and expensive, especially for products
that have to incorporate many other aspects apart from the yet complex model development.
The following sections describe the main challenges to integrate ML components into
operational processes and propose possible approaches to tackle them.

4.3.1. Data and Model Life-Cycle

Data is most critical for the success of ML-models and needs to be proactively man-
aged during its entire life-cycle, from its acquisition to its incorporation as part of the
model development.

Figure 7 shows a section of the SDLC of Figure 2, which illustrates the image life cycle.
It is not only the quantity, but also the quality of data which needs to be managed and
the transition from big data to good data is crucial [22]. There are two main issues related
to data quality: (1) non-consolidated definition of objects of interest and (2) inconsistent
labelling. Usually data is labelled by different experts. Without a systematic business
consolidation we observed quite often very heterogeneous definitions of the objects of
interest. As depicted in Figure 8, two experts can have a different view about the size of the
defects to categorize an object as being a defect or not.

Such different views consequently not only lead to low quality models but also to
different opinions from experts, i.e., some will complain that not all defects were de-
tected (false-negatives) and some will complain that too many defects were detected
(false-positives). The consolidation is a crucial prerequisite for successful models. The
consistency of the labels has also a great impact on the model performance. Quite often
we observed many inconsistent labelling, which include too large or to narrow bounding
boxes as well as labelling the same defect more than once (Figure 9).
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Figure 7. Model and Data Life-Cycle in the SDLC for TRL9 solutions.

Figure 8. A non-consolidated definition of objects of interest.

Figure 9. Inconsistent labelling—inconsistent size of boxes confusing the ML model.

The experts need clear guidelines on how to label the data and must be aware of
the consequences of inconsistent labelling on model performance. Moreover, the tedious
labelling is boring for humans and concentration quickly drops off [10].

Assessing the quality of data and model performance are not one-shot activities,
but need to be continuously monitored and managed during their entire life-cycle. As
measurement data are inferred with the deployed models, their performance needs to be
assessed and based on these results, additional data might be necessary (Figure 7). After
that, the models need to be retrained in order to close the gaps identified by the assessments
of the model performance. The following reasons lead to the necessity of this process. First,
there might be a data and concept shift [23,24] causing different data distributions as well
as different mappings of data to labels over time. In our case, if we change the cameras,
the resolution of images will most probably increase and consequently trigger a change to
consider even smaller defects with a length of 1mm (see Figure 8) to be reported. In the first
case, the data distribution has changed, whereas in the second case the mapping of data to
labels is different. Furthermore, in many cases, existing data does not cover the entire target
application domain or problem space. In AISI, we initially only covered a subset of the
entire network. As we rolled-out the model to more tracks we faced new defect situations,
which were not covered by the initial model and caused a performance degradation of the
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model on these extended network tracks. As depicted in Figure 2, such boundary events
caused by drifts in data or changing rules can trigger additional investigations in the ML as
well as KE sub-processes to constantly adapt to the changing business requirements. This
is the reason why we introduced two complementary procedures, which we call crowd-
evaluation and expert-labelling. Both procedures make the data a first-class citizen [25]
and support the aforementioned continuous management process.

The goal of crowd-evaluation is to let different experts label data based on the model
performance in a crowd-manner (assign the task to more than one expert). As part of the
expert-labelling we choose a set of data to be verified on the field, which will be used for the
evaluation of the new model version (see Figure 7). Crowd-evaluation aims at increasing
the quality of training data at low cost and is part of the consolidation process (Figure 8).
Expert-labelling strives towards high quality data, which is used for the performance
assessment of the models. Clearly, the amount of data collected by expert-labelling is
much lower compared to that of training data. One of the main open issues is the choice
of the most representative tracks that should be used for expert-labelling and also the
development of technical solutions to ensure that we don’t mix tracks that were team-labeled
with those of expert-labelling since training and test data must be disjoint.

4.3.2. Pipelines and Release-Management

A pipeline consists of all steps from data acquisition to data analysis and the necessary
post-processing to deliver the data to the experts in the desired format. We have two types
of pipelines: (1) a training pipeline, which is used for (re-)training our models and (2)
an inferencing pipeline, which is used for analyzing production data from the inspection
runs. Both pipelines must be highly automated and traceable. Especially for fulfilling the
traceability requirement, it is crucial to version the code, data and the model. To allow
this traceability, a well established ML meta data management is essential, that allows for
tracking all images that have been used to train a given ML model.

Thus, a well-defined release management needs to be established which incorporates
code, data, models and the ML meta data. New models can only be deployed if they are
carefully tested beforehand and if it can be ensured, that on one hand the performance of
the current models can be assured, and on the other hand, the models infer also correctly
on new data. This requires a continuous monitoring and means of automatically evaluating
new model versions based on clearly defined evaluation data (see expert labelling).

5. Conclusions and Outlook

There is a considerable amount and broad spectrum of research about the potential of
using AI-based IT-systems for various tasks in transportation industry. Many organizations
already started to build more “intelligent” systems for autonomous driving, passenger
safety, crime detection, traffic management or to implement condition based and predictive
maintenance. Further use cases consider building digital twins of train stations based on
symbolic AI in terms of analysis of different application cases, case-based reasoning to
develop rules from existing paper based customer documents, system reports or to apply
sub-symbolic supervised or semi-supervised ML for video-based analysis using the many
cameras that are already installed in many public areas. However, many AI use-cases
fail due to the high complexity in achieving enterprise-readiness, i.e. in the transition
from initial prototypes to validated and proven products. We analysed the different use-
cases from tree different organizations and provide a BPMN diagram, that visualizes from
a behavioural and responsibility perspective, how an AI-based software development
cycle can be implemented in the organization. Furthermore, we provide a template of a
2-dimensional domain specific AI landscape, that can provide a good overview of existing
AI components with respect to the AI Domains, that have been determined by several
technical reports of the European Commission. Based on that, we described different
use cases of AI-based components, how they are positioned in the different organizations
and where they are located on the proposed AI landscape. We classified the different
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AI components according their maturity levels and described the challenges that are
involved during the engineering from initial prototypes to production ready deployable
solutions. These cases help to draw some conclusions and provide a shared vision, to
establish a common IT Architecture and to work out concepts how the existing AI-based
components from different technology readiness levels can be shared and reused among
different organizations in order to leverage their potential for all transportation services in
Switzerland or even in cooperation with the EU. A common IT architecture will ease the
sharing of knowledge, data and models and speed up the adoption of AI in enterprises of a
common business domains.
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