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Abstract: Fifth-generation (5G) and beyond networks are envisioned to serve multiple emerging
applications having diverse and strict quality of service (QoS) requirements. To meet ultra-reliable
and low latency communication, real-time data processing and massive device connectivity demands
of the new services, network slicing and edge computing, are envisioned as key enabling technologies.
Network slicing will prioritize virtualized and dedicated logical networks over common physical
infrastructure and encourage flexible and scalable networks. On the other hand, edge computing
offers storage and computational resources at the edge of networks, hence providing real-time, high-
bandwidth, low-latency access to radio network resources. As the integration of two technologies
delivers network capabilities more efficiently and effectively, this paper provides a comprehensive
study on edge-enabled network slicing frameworks and potential solutions with example use cases.
In addition, this article further elaborated on the application of machine learning in edge-sliced
networks and discussed some recent works as well as example deployment scenarios. Furthermore,
to reveal the benefits of these systems further, a novel framework based on reinforcement learning
for controller synchronization in distributed edge sliced networks is proposed.

Keywords: network slicing; edge computing; machine learning; SDN controller synchronization

1. Introduction

Compared with existing 4G, there are significant improvements in 5G networks in
terms of coverage, management, and accounting capabilities [1]. Such improvements boost
the rapid pace of innovation in cellular communication technologies and generate new use
cases in the era of the Internet of Things (IoT), autonomous driving, and augmented and
virtual reality services. Empowered by these emerging applications and growing number
of end-users, the number of interconnected devices as well as the volume of generated
data have also been growing tremendously from year to year. According to the most recent
Ericsson mobility report, currently there are around 8.1 billion mobile subscriptions and
it is expected that total mobile data traffic will reach around 288 EB per month in 2027,
meaning leading mobile networks will carry almost 300 times more traffic than in 2011 [2].
As a result, one of the main goals of 5G systems has become solving challenges that are
not effectively addressed by 4G, such as demands for higher data rates, higher capacities,
lower latency, real time processing, connectivity of massive numbers of devices, higher
reliability, lower cost, improved QoS, and quality of experience (QoE).

As the conventional networks based on “one-size-fits-all” design are unable to address
these requirements efficiently and effectively, recent efforts have sought paradigm shifts in
the network architecture [3]. In this respect, the concepts of network function virtualization,
software defined networking, and edge computing has appeared. These technologies are
recognized as the key enablers of 5G networks as they are able to provide a scalable, flexible,
and programmable network platform to manage multiple services with heterogeneous
requirements within strict performance limits. All of these efforts will also enable new
vertical business segments and services for consumers and enterprise customers.
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1.1. Edge Computing

The main idea of edge computing is to extend the capabilities of cloud servers to edge
of networks by performing computationally-intensive tasks and storage at the closest point
of interaction to fulfil low latency requirements [4]. As the long-distance transmission of
data from end devices to the cloud servers incurs a great propagation delay, bringing the
computational resources to the edge of the networks that is close to Radio Access Network
(RAN) and User Equipment (UE) reduces latency and provides applications with real-time
performance [5]. There are also several other advantages of processing data at the edge of
the networks such as mitigating the threat of data leakage by eliminating the risk of single
point of failure, minimizing the risk of traffic congestion, and providing scalability to the
networks which makes edge computing one of the major enabler of 5G systems [6].

In this respect, European Telecommunications Standards Institute (ETSI) formerly de-
fined and standardized edge computing concept as Multi-Access Edge Computing (MEC) to
allow the efficient and seamless integration of applications from vendors, service providers,
and third-parties [7]. In their white paper, they defined the necessary specifications for
MEC, provided reference architectures and recommendations, and also discussed some
application scenarios such as massive sensor data analysis, active device location tracking
and big mobile data. In addition to providing an execution environment for applications at
the edge, MEC provides services with UE and RAN statistics, such as the radio channel
quality of users and their location in the network, allowing us to build context-aware
applications [8]. In particular, several 5G use cases are expected to rely on edge computing:

1. Healthcare: Edge computing in healthcare focuses on capturing, analysing, and synthe-
sizing of necessary information by effectively prioritizing critical traffic, accelerating
computer-intensive operations such as compression and decompression of medical
surgery images, eliminating performance overheads, and helping to improve secu-
rity [9].

2. Video analysis: A major benefit of edge computing is to allow processing of video
data within the end devices such as cameras, mobile phones, or vehicles that have
processing power. This enhances the transition efficiency, reduces the network band-
width load significantly, and allows end users to make faster decisions in critical
situations [10].

3. Smart home and city: Edge computing can be useful to manage and orchestrate devices
for smart homes and cities by reducing response times of these devices by performing
computations and data caching locally [11].

Although edge computing reduces latency, offers low operating costs, and increases
consumer satisfaction, it also brings new challenges in the field of privacy and energy
efficiency [12]. Enormous real-time data collection from mobile devices, and the challenge
of storing and processing them in edge servers could potentially lead to a violation of
the security and confidentiality of the data. In addition to that, continuous collection and
transmission of data between mobile devices and edge servers consumes a huge amount
of energy which introduces an energy efficiency challenge, as mobile devices are often
powered by batteries. Thus, such issues should not be overlooked while designing edge
sliced network solutions.

1.2. Network Slicing

Network slicing has been proposed to address the diversified service requirements [13].
The basic idea of network slicing is to create multiple virtual networks (i.e., slices) on
top of a common physical network infrastructure to provide a flexible, centralised and
programmable control and abstraction to the networks as well as eliminating the tight
coupling between network functions and specific hardware units. Specifically, a network
slice is a self-contained network with its own virtual resources, topology, traffic flow,
and provisioning rules which gives the slice tenant the ability to operate its own dedicated
physical network. These logical networks are created and managed by observing the
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demands of end-users and administrators and then provided to different services to fulfil
users’ varying communication requirements. Therefore, network slicing is considered as
one of the key enablers of 5G systems as it enables dynamic, agile, and scalable networks
to respond rapidly to changing business requirements.

Software-Defined Networking (SDN) and Network Function Virtualization (NFV) are
two enablers of the network slicing approach. In particular, SDN separates the control plane
from the forwarding plane to offer administrators the ability to configure the network [14].
On the other hand, NFV aims to decouple network functions from physical network
resources such as routers, firewalls, etc., and delivers equivalent network functionality
without any specialized hardware. In this respect, there are several applications where
network slicing could be beneficial:

1. Autonomous driving: Network slicing supports the performance of autonomous
driving by providing mobility management, seamless continuity, and ultra-high reli-
able and low latency communication between the vehicles and the network, even at
high speeds. In particular, creating dedicated slices for this use case can ensure that
shared infrastructure absolutely does not cause any negative impact on the service
operation [15].

2. Energy consumption: Having a centralized view of network, network slicing can
play an important role in promptly and precisely responding to power outages
by transmitting and monitoring the critical data and controlling the necessary sig-
nals/switches [16].

3. Augmented Reality (AR)/Virtual Reality (VR): AR/VR applications demand extremely
low-latency as well as high resolution and bandwidth requirements to construct a
virtual environment where people can have real-time interaction. In this respect,
a purpose-built network slice may fulfil these heterogeneous performance require-
ments and ensure minimal processing overheads [15].

4. Industry 4.0: Network slicing is considered a key enabler of industry 4.0 use cases and
simultaneously requires latency, reliability, device synchronicity, data rates, seamless
mobility, and energy efficiency [16].

It should be noted that network slicing may also give rise to privacy and security
issues [12,17]. Unlike previous generations, where only mobile operators had access and
control over the system components, 5G and beyond networks allow many partners to
slice network components for different use cases and vertical-specific blocks. Thus, while
designing solutions with network slicing, it is important to ensure the privacy of each
user and security of each slice, as well as the overall network to guarantee safe and
accurate operations.

1.3. Machine Learning

In addition to these, machine learning (ML) is also expected to be necessary for 5G
networks and the emerging use cases. Broadly speaking, an ML algorithm can analyse
huge volumes of data, detect anomalies, predict future scenarios, and quickly adapt to
fluctuating environments. Such functionalities allow ML to improve and automate network
management within the network environment. In fact, there are a number of use cases
where ML can be useful such as power-saving, fault management, maintenance, operation,
power control, network configuration, QoS prediction, and throughput and performance
of coverage.

There are three main categories into which ML algorithms can be divided:

1. Supervised Learning: supervised learning is useful for classification or prediction
of the tasks based on a labeled dataset. In general, supervised learning has been
beneficial for applications that can create large amounts of data, as the number of
instances directly influences the algorithm robustness [18]. Some example application
areas of supervised algorithms can be predicting network demand, coverage area, or
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energy availability to dynamically allocate the resources and maximize the network
performance.

2. Unsupervised Learning: in unsupervised learning, the data used to train the algorithm
is not labelled. Thus, given the data, it tries to discover subgroups with similar charac-
teristics without any guidance. This technique is especially useful to detect patterns
and relationships that may not be clearly visible in the dataset [18]. As an example, the
unsupervised learning technique can be useful when detecting abnormality or fault
in wireless networks, capturing correlations within the data traffic, or clustering fog
nodes in heterogeneous edge networks.

3. Reinforcement learning: reinforcement learning (RL) algorithms are especially useful
in stochastic environments under uncertainty. In an uncertain environment, the system
dynamics can be modelled using a Markov decision process (MDP). Then, the RL algo-
rithm is used to find the optimal policy by trying possible actions and learning from
the feedback in a given state [18]. Some application areas of RL are user scheduling,
resource allocation, channel allocation, and handover decisions.

Considering the necessity of automation of network functions for design, deployment,
control, and management of the networks, Ref. [19] elaborated a comprehensive overview
on possible ML techniques for the network functions. Details are presented in Table 1.

Table 1. Network functions and relevant ML techniques [19].

Function ML Technique Objective

Network planing, management
and monitoring

• K-means clustering;
• Deep neural network;
• Reinforcement Learning;
• SVM.

• Clustering users and service requirements;
• Routing and forwarding decisions;
• Resource optimization;
• Parameter configuration;
• Forecasting resource usage.

Fault detection and security
• Principal component analysis;
• Logistic regression;
• Deep neural network.

• Classification of users and applications;
• Anomaly detection;
• Predicting unusual behaviour.

In addition to these, ML algorithms have also demonstrated significant improvements
in enhancing the communication reliability for various applications such as radio resource
allocation, physical security, signal decoding, and channel estimation [20,21]. Such applica-
tions require high computational power as well as accurate and efficient estimation, where
ML plays a critical role. In this respect, recent studies also showed that Bidirectional LSTM,
KNN, and Random Forest algorithms in particular can outperform traditional methods in
terms of estimation performance and computational complexity.

1.4. Paper Motivation

Although such technological innovations have shown promising results, network
operators still search for a better integration of 5G to unveil its full potential and consolidate
5G driven applications across multiple vertical industries. This is due to the fact that new
application areas such as real-time wireless video streaming services demand multiple
requirements from the use of 5G networks at the same time. As an example, it requires
networking resources to broadcast video, computational resources to process it, and storage
resources to locally cache it [10]. Similarly, some applications, such as ultra-high definition
video and augmented reality need high-speed, high-capacity communications, while others
such as the mission-critical IoT and autonomous vehicles require ultra low latency, ultra-
reliable services. In this respect, a new term called edge slicing has arisen. By combining two
promising approaches, SDN and edge computing, network operators aim to efficiently and
simultaneously meet the diverse and multiple requirements of several vertical applications,
offering flexible data transmissions and computing capabilities with minimal latency.
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In this paper, our aim is to provide an extensive and comprehensive literature review
of the recent research on joint edge computing and network slicing applications and
integration of ML into them. Although there are previous works reviewing network slicing
and edge computing mechanisms in 5G and beyond networks, our paper focuses on their
combination and provides recent works on edge enabled network slicing mechanisms
together with currently used ML methods. In this respect, to the best of our knowledge, this
is the first review paper on edge enabled network slicing mechanisms and ML applications.

The remainder of this paper is outlined as follows. Section 2 presents a literature
survey on the applications of network slicing to edge of the networks. Section 3 presents a
literature survey about network slicing and edge computing with the contribution of ML
techniques. Then, Section 4 describes our solution and model based on network slicing,
edge computing, and RL techniques. Lastly, Section 5 concludes the paper.

2. Edge Enabled Network Slicing

In the current context, where there is a wide variety of services and devices that wire-
less networks have to deal with, both network slicing and edge computing techniques help
us to satisfy QoS and QoE requirements for heterogeneous use cases. However, to achieve a
complete cross-layer solution and to manage, program, and slice a heterogeneous wireless
network, both paradigms seem to be necessary [22]. This is because neither network slicing
nor edge computing is able to satisfy the strict timing and performance requirements of the
5G services alone [23]. Indeed, as shown in Figure 1, MEC plays different roles for different
network slices [24,25]. For ultra-reliable, low-latency communication (URLLC) services,
both storage and computational resources to undertake the function of data processing,
analysis, and storage can be provided to ensure low latency and high reliability. In case
of enhanced Mobile Broadband (eMBB) services, as high bandwidth is crucial, caching
and traffic offloading at the edge can help to increase overall capacity of the mobile core.
Similarly, for massive machine type communication (mMTC) applications, to provide high
performance and scalability, computational and storage resources can be provided by the
edge to deal with huge amounts data generated by IoT devices.

Figure 1. The role of edge computing and slicing for different type of services.

However, deploying and managing a sliced wireless network at the edge to achieve
an effective slicing mechanism is not an easy task. This is because both computation
and storage resources are very limited at the edge of networks, which makes them hard
to efficiently manage. Each task requested by applications need to be satisfied and to
maximize the benefit of edge slicing, one should accurately compute and analyse the
requirements of slices and prioritize if necessary. Another critical challenge aroused from
the fact that the wireless channel and backhaul conditions are time-varying and cannot be
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discovered in advance. Therefore, before deciding how to slice an edge resource, which is a
long-term decision, several things need to be considered simultaneously to guarantee the
QoS of multiple differentiated services.

There are also set of challenges that sets MEC slicing apart from traditional resource
allocation problems. Here, the key issue is that MEC resources are usually coupled, meaning
that slicing one resource usually leads to a performance degradation in another type of
resource [23]. Although algorithms that do not take isolation of slices into account can
have lower time complexities compared to isolated ones, isolation among the partitions
have better guarantees for QoS as well as Service Level Agreements (SLAs). Based on this
observation, we classified all the studies we want to present into two categories as papers
with non-isolated slices and with isolated slices.

2.1. Edge Enabled Network Slicing without Slice Isolation

Having these issues in mind, some frameworks for virtualizing wireless networks
have been proposed in the last years. As an example, ETSI is one of the research institutes
that publishes a group report on the support of network slicing in MEC systems where
they present some use cases, requirements, and recommendations [26]. In their report,
they first discussed different definitions and specifications of network slicing concepts of
different institutes such as NGMN, ONF, 3GPP, and ETSI ISG NFV. Then, based on these
concepts, they discussed some use cases on the support for MEC-enabled network slicing
and provided some recommendations and key issues. This is an important work in the
sense that it gathers all the existing deployments of network slicing and tries to come up
with a common MEC-enabled slicing technique that is consistent with all the platforms by
analysing what they currently have, what is necessary, and what should be done in the
future to fully realize such a scheme.

Ref. [27] introduced a 5G enabled platform for vertical automotive industry. On the
integration of NFV to the edge of the networks towards fast and reliable 5G systems, and
considering critical slicing requirements of such an infrastructure, they proposed a novel
slicing framework called Katana which basically is an end-to-end (E2E) slice manager.
The key advantage of this architectural approach is that it offers simplicity in building
and maintaining applications, flexibility, and scalability, while the containerized approach
makes the applications independent of the underlying system. The results show that,
the proposed framework is promising as it provides noteworthy improvement on the
access time, reducing the latency by up to 9 times compared to not using it. In addition
to that, they measured the scalability performance of ETSI-Open Source MANO platform
which is an E2E network service orchestrator [28]. For the performance analysis, they
considered slice deployment and termination times along with slice deployment time
scalability which is a measure of scalability of slice deployment operations. As a result of
this experiment, obtained graphs are linear which shows that OSM orchestrator has an
excellent scalability. In particular, their study is promising as it shows that deployment of a
NFV at the edge proves to be a pivotal step towards an acceleration in vertical industries.

Similarly, Ref. [29] focused on the benefits of edge slicing for vehicular technologies.
In their work, they proposed an edge computing algorithm based on network slicing
and load balancing techniques to satisfy the demands of powerful computation and large
storage resources by the vehicles. As part of their solution, they used both NFV and SDN
slicing techniques. That is, they utilized NFV to virtualize the data plane of the sliced edge
nodes and SDN to decouple the control plane from the data plane. When compared to
state-of-the-art algorithms based on how successfully they are able to manage offloading
the demanded tasks from the vehicles and their processing power utilization, which is
the ratio between consumed processing power and maximum processing power averaged
for all nodes in the physical network, their algorithm improved the resource utilization
by 48%.
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Ref. [30] also focused on the management of vehicular networks by utilizing MEC
and the two key techniques of network slicing. Considering the increased volume of data
traffic generated by map-assisted drivings, they proposed an edge slicing architecture to
satisfy the increased number of computing and storage tasks and to avoid delays resulting
from the transmission of data between MEC and the cloud servers. Here, by enabling
NFV in MEC, they are able to program different functions on the server and support
diversified applications. In addition, by using SDN concepts, they are able to provide a
global control plane to the MEC servers and manage resources and the data traffic more
efficiently. The proposed MEC-based architecture is basically a two-tier server structure in
which a cloud-computing server resides in the first tier and some MEC servers reside in
the second tier. Considering the availability of resources and demanded QoSs, necessary
computing tasks can be processed directly on vehicles, be uploaded to MEC servers or to
the cloud-computing server. For example, delay-sensitive applications, such as platooning
management, dynamic HD map management, and other safety-related applications, are
prioritized to be processed on MEC servers to decrease the latency. As a result of this
work, they are able to achieve about 50% higher network throughput compared to other
state-of-the-art schemes.

Ref. [31] also investigated network slicing for MEC systems. They realized that existing
works are only focused on effective edge slicing from the perspective of mobile devices,
therefore they aimed to maximize operator’s revenue in a system where multiple requests
had been made and no prior-knowledge of traffic distributions existed. Mainly, they
developed a stochastic optimization algorithm that decides whether to accept a slice request
that may need low-latency computation offloading based on sub-carrier assignments and
CPU cycle frequency of the system and the amount of power allocation required to fulfil
this request. The simulation results showed that their algorithm can achieve a balance
between the revenue and the average delay, and can significantly increase the operator’s
revenue compared to existing schemes. Here, they compared their results with three main
schemes which are a scheme that does not have slice request admission, a scheme that has
a fixed channel allocation, and a scheme that only optimizes slice request admissions.

Similarly, Ref. [32] proposed a novel method of realizing E2E network slicing by jointly
addressing the requirements of physical network and locations of users. In particular,
their algorithm utilizes Dijkstra’s shortest path algorithm to choose the servers with fewer
bandwidth usages for the placement of VNFs and to calculate a feasible path with a
minimum bandwidth consumption. Their results showed that they are able to improve the
load balancing by reducing the load of edge data centres.

Ref. [33] proposed a network slicing model for 5G mobile networks, including MEC,
C-RAN (Cloud radio access network), and cloud data centre to provision QoS. Mainly,
they utilized queueing theory to derive some QoS performance metrics such as the CPU
utilization, throughput, drop rate, average number of message requests, average response
time, and average waiting time. In addition, they highlight how to use the proposed
network slicing model for the dynamic scalability of C-RAN/MEC cores. The researchers
also gave significant illustrations on the impact of MEC nodes on the system delay by
stating that the average response time without any MEC node is approximately nine times
higher than with 10 MEC nodes. However, the average time response as a function of the
MEC nodes saturates after a certain threshold. The systematic outcomes and experimental
processes demonstrated that MEC nodes are important to provide low latency and the
proposed slicing model has a robust capability to allocate the count of MEC and C-RAN
cores required to attain the quality of service targets of 5G slices.
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Based on these studies, it can be seen that slicing the edge resources offer several
performance and security advantages as it provides significantly lower latency as well as
better scalability, coverage flexibility, and cost-efficiency. Leveraging the edge deployments,
network operators can increase their operational efficiency with central slice management
and can scale their solution to serve multiple customers.

2.2. Edge Enabled Network Slicing with Slice Isolation

One of the common characteristics of the previously mentioned studies is that they
did not take the isolation of resources into account during slicing which is also one of the
key expectations of network slicing. Isolation can be defined as the ability to ensure that
congestion, attacks, and lifecycle-related events on one network slice does not negatively
impact other existing slices. In this respect, the use of a shared infrastructure makes
isolation a key requirement of network slicing. Thus, slice isolation can further enhance end
user experience for use cases that require low latency and high bandwidth for optimized
device and application performance.

Aiming to provide isolation among different services, Ref. [23] proposed a MEC slicing
framework that allows network operators to instantiate heterogeneous slice services (e.g.,
video streaming, caching, and 5G network access) on edge devices. They pointed out
that this is a challenging process as MEC resources are usually coupled. Hence, slicing
one resource may lead to a performance degradation of another resource. To address this
problem, they mathematically modelled coupling relationships among networking, storage
and computation resources at each edge node by using collateral functions. Basically,
collateral functions reflect whether the necessary resources are coupled and also determine
the portion of different resources needed to be allocated on a given edge node. Their results
are promising in a sense that they are able to instantiate slices six times more efficiently then
state-of-the-art MEC slicing algorithms. Furthermore, their experimental results showed
that they can simultaneously provide highly-efficient slicing of LTE connectivity, video
streaming over WiFi, and video transcoding.

Ref. [34] posited that enabling resources isolation among slices is one of the most
significant challenges for realizing softwarized base stations based on MEC. In this study,
their aim is to isolate low latency slices as the primary concern and usage area of MEC is
to enable low-latency applications. In this respect, they proposed an MEC-enabled slicing
framework and proposed a novel slicing method for improving the isolation of low latency
slices from the others. Their evaluation results showed that the proposed method can
achieve minimal latency, even with a competing low-latency slice.

Ref. [35] took the isolation issue one step further and proposed a wireless network
slicing solution considering both inter-slice isolation (i.e., no interference among slices),
and intra-slice isolation (i.e., no interference between users in the same slice). In particular,
they pointed out that in presence of selfish agents or data greedy applications, it is important
for infrastructure providers to design an appropriate incentive plan to achieve and protect
the social efficiency. Indeed, they use bidding algorithm where each slice, requested by
network operators, needs to submit an individual bidding value. After receiving bids from
different operators, the provider allocates resources to each bidding agent proportionally
to their bidding values. After that, to provide fairness, they analysed optimal resource
allocation under the Nash equilibrium and introduced a penalty value for each bidder. They
mentioned that the key benefit of using such a resource bidding and allocation framework
is that the network infrastructure providers do not know the true valuation of the network
operators. Thus, isolation and fairness between slices can be provided by their proposed
problem formulation. The proposed scheme achieves performance gain up to 13% in
comparison to the equal sharing mechanism.
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Specifically for the mMTC use case, Ref. [36] proposed an isolated network slicing
approach for IoT applications. They considered the use case of a smart city required several
different applications including air quality, temperature, traffic monitoring sensors, and
smart buildings devices. As utilizing such IoT infrastructure can be costly, to reduce the
market entry barriers and to efficiently exploit the potential of IoT devices, they proposed a
scheme enabled by network slicing and virtualization technologies that enables the sharing
of the IoT infrastructure between multiple isolated tenants. They concluded that the
proposed NFV slicing orchestration mechanisms enabled the sharability of IoT resources
and the automated life-cycle management of the IoT Slices.

There are also some studies focused on E2E slicing together with isolation of resources.
As an example, Chien et al. proposed an E2E slicing framework for both computing and
communication resources across the MEC architecture [37]. They pointed out that, when
deploying E2E slicing in a MEC platform, the problem of isolating and allocating the
computing resources in the central office and mobile edge, and network resources in the
transport network and RAN must be carefully considered. As a result, they provided
an NFV-enabled MEC infrastructure where a controller periodically reports the network
resource status to the resource orchestrator agents which then maps this information to a
physical resource to create a slice for the corresponding service. They showed that their
framework successfully isolates the 5G resources between slices and ensures that resources
of the deployed slices are merely sufficient to meet the latency requirements of the tenants.
They also proved that the edge resources are very critical and crucial for the necessary
computing and communication resources of URLLC and mMTC services.

Similarly, Ref. [38] designed an NFV-based MEC to realize E2E slicing over hetero-
geneous wireless networks. In particular, they focused on providing guaranteed E2E
bandwidth and isolated resources to be able to serve applications that have QoS guarantees.
Here, for big data related applications, QoS guarantees could be a high throughput or
a delay-sensitive application, or it could be low latency. Specifically, the problem they
focused on is that, when UEs connect to a wireless network and share a media, it would be
difficult to ensure E2E QoS guarantees, especially for bandwidth hungry applications such
as services that require video streaming. They pointed out that most of the current solutions
do not rely on edge slicing, need modifications on devices, and have compatibility issues.
In this respect, they provided the first solution that can create application-aware slices and
provide QoS guarantees through the orchestration of MEC-enabled slices, without requiring
any modifications of UEs.

Ref. [39] also focused on E2E slicing and proposed a novel E2E network slicing frame-
work for IoT services in 5G systems. Mainly, their solution is the first real implementation
of an IoT slicing framework integrated with a 5G core network. As part of this study,
they provided the complete slice building procedure, as well as its integration with the
OpenAirInterface and the OpenBaton orchestrators. They concluded that their slicing
framework permits to host a high number of IoT devices with diverse QoS requirements
compared to non-sliced networks.

Comparing the isolated and non-isolated methods, isolated slices offer guaranteed
QoS and QoEs. In particular, as the slice isolation enables slices to be able to operate
without any interference, preserving the isolation guarantees the performances as well as
maintains the fairness between slices.

To summarize, an overview of all previously mentioned edge slicing studies is listed
in the Table 2.
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Table 2. Overview of edge-enabled slicing studies mentioned in Section 2.

Ref. Methodology Objective E2E Slice
Isolation Outcome

[27] NFV Scalable E2E service slicing Yes No Lower latency for various web services

[29] SDN &
NFV

Resource utilization and load
balancing No No Up to 48% higher resource utilization than

SOTA algorithms

[30] SDN &
NFV Flexible and intelligent traffic steering No No Up to 50% higher network throughput than

SOTA algorithm

[31] - Maximize operator’s average revenue No No Flexible balance between the revenue and the
average delay

[32] NFV Improve network slice acceptance
ratio Yes No Improved load balancing and reduced load of

edge data centers

[23] - Efficient and scalable network slicing No Yes Instantiates slices 6 times more efficiently than
SOTA algorithms

[34] NFV Isolation of low latency slices No Yes Maintains the same minimal latency with a
competing low-latency slice

[35] - Efficient resource allocation No Yes Nearly optimal bandwidth allocation
[36] NFV Automated E2E slicing No Yes Lower E2E instantiation times for mMTC slices

[37] NFV Automated and flexible dynamic
resource allocation Yes Yes Guaranteed latency

[38] SDN& NFV Application-aware E2E slices on
demand Yes Yes Guaranteed E2E bandwidth

[39] NFV Flexible and dynamic placement of
micro-services Yes Yes Guaranteed QoS for migrating application

flows

[33] - Achieve QoS goals of slices Yes - Assigns the necessary number of C-RAN and
MEC cores

3. Integrating Machine Learning into Edge Sliced Networks

To analyse large amounts of data and obtain useful information for detection, classifi-
cation, and prediction of future events, machine learning techniques are often applied in a
lot of different applications and services. As it enables fast inference and autonomy within
the networks, it is also envisioned to be an important component of 5G networks and
beyond. An example of how ML algorithms can be integrated into edge-enabled network
slicing architecture is presented in Figure 2.

Figure 2. Integration of ML into wireless network architecture.
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3.1. Machine Learning Applied to Network Slicing

As mentioned in Section 1, network slicing in 5G networks is realized by creating self-
contained logical networks consisting of a combination of dedicated and shared resources
depending on the needs and demands of each request. In order to efficiently perform
construction and management of network slices, a large amount of data generated by
mobile device users and vertical industries that are using the emerging services such as
automotive communication, AR/VR, and remote healthcare needs to be examined. As it is
complex for human beings to handle such high volumes of data in a limited time, one can
utilize the machine learning for analysing the data as well as automating the network slicing
processes. In particular, the knowledge and patterns we received from ML algorithms can
provide us insight on how slices should be created to efficiently and effectively to utilize
the edge resources.

There are several works in the literature taking advantage of ML during the slicing
process. As an example, Ref. [40] developed a novel ML-based scheme for dynamic re-
source scheduling for networks slicing, aiming to achieve automatic and efficient resource
optimization and E2E service reliability. As it is difficult to obtain user data due to privacy
concerns, they used RL to extract knowledge by interacting with the network itself. In ad-
dition, aiming to improve the feature extraction of the RL framework and automate the
decision-making process for resource allocation, the authors used Convolutional Neural
Networks. Their experiment results showed that the proposed scheduler outperforms the
heuristic, best-effort, and random approaches.

Ref. [41] also utilized ML in their study. Considering the fact that data-driven decisions
may accelerate the performance of 5G networks, they proposed a Deep Learning Neural
Network algorithm that analyses the overall traffic pattern, predicts future traffic, and is
able to handle network load. In particular, the three main goals of their study were to
effectively create slices, to improve slice creation and allocation processes by predicting
traffic, and to be able to respond network failures by adapting the slices. To achieve that,
they used random forest algorithm along with deep learning algorithm. Mainly, their
algorithm is able to distribute incoming applications to the appropriate slices among eMBB,
URLLC, mMTC, or master slices depending on the load and the outputs of their model.
As a result, they achieved 95% slice prediction accuracy, i.e., whether the given device is a
type of eMBB, URLLC, or mMTC, for unknown devices.

Similarly, Ref. [42] designed an RL-based network slicing framework. Mainly, they
utilized three network slicing blocks which are a forecasting block that predicts the fu-
ture traffic based on past information, a slicing admission control block, and a slicing
scheduler block to meet the agreed SLAs and report back deviations to the forecasting
block. With the help of RL, they are able to learn contemplated traffic models and hetero-
geneous mobility within slices. As part of this work, isolation between slices, allocation
of resources, and the admission of resource requests by network slice tenants are also
considered. Their experimental results revealed that the proposed forecasting technique
boosts the system utilization up to 100% while reducing the computational time by 20%
compared to non-forecasting algorithm.

Ref. [43] pointed out that there are still some conflicts on whether to use conventional
ML algorithms or to use combination of ML and deep learning for efficient network slicing.
To overcome this issue, they compared different techniques and report the performances.
Mainly, they proposed an algorithm that combines ML and deep learning which involves
three main phases: (1) data collection such as UE type, duration, packet loss ratio, band-
width, delay rate, speed, jitter, etc.; (2) optimal weighted feature extraction; and (3) slicing
classification to classify the network slices as eMBB, mMTC, or URLLC by a hybrid classifier
using deep neural networks. As part of their experimental process, they compared their
algorithm with other ML algorithms and proved that the combination of Ml and deep
learning algorithms outperforms the conventional ML models by up to 45%.
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Ref. [44] presented a conference paper on an ML aided network slicing algorithm
which predicts if a service provider will be able to fulfil a new network slice request given
the conditions of the channel and the allocated resources. The main aim of this study is
to predict the channel conditions in the near future using the Long Short-Term Memory
algorithm. Experimental results showed that their DL based algorithm is able to reduce the
number of false positive allocations by 75%.

Ref. [45] also focused on integrating ML algorithms, SDN, and NFV to build a com-
prehensive 5G architecture and an experimental framework. In this study, the authors
proposed an approach for clustering and classifying mobile applications at an early stage,
then each application is preserved a relevant bandwidth controlled by an SDN controller to
guarantee that the network is working at high efficiency. The proposed framework is very
promising as it is able to classify a high-quality YouTube video successfully to the correct
slice, i.e., selected cluster. It also includes applications that require low latency and high
bandwidth and, as a result, the UE played the video smoothly without any dropped frames.

Taking current gaps on 5G experimental prototypes into account, Ref. [46] proposed a
5G micro-service-based prototype that is able to auto-configure radio resources for network
slices with ML. Mainly, the authors focused on eMBB and mMTC types of slices. To orches-
trate the slicing mechanism and detect slicing ratio, they used ML-based forecasting. That
is, once the training of ML model is completed, their algorithm dynamically provisioned
the optimal slicing ratio and created new slices accordingly. As a result, they were able to
increase the throughput by approximately 30% compared to the no forecasting case. How-
ever, they also pointed out that, this automation comes at the cost of increased utilization
of CPU of the host system.

Ref. [47] dealt with the prediction and management issues of vehicular use cases in
the existing research. Having these issues in mind, they proposed an ML-based resource
allocation strategy for vehicular network slicing. Their algorithm works as follows. Firstly,
a Convolutional Long Short-Term Memory algorithm is used to analyse temporal and spa-
tial dependencies of service traffic. Then, to keep resource management in accordance with
user mobility, a new wireless resource management scheme is used. Finally, the resource
allocation algorithm based on the primal dual interior-point method is used to solve the
optimal slice weight allocation. Their results showed that the proposed method can success-
fully predicts the future service traffic and is able to adjust the slice weights accordingly.

Ref. [48] also studied vehicle use case in 5G networks. In particular, they focused on
electrical vehicles by trying to assign them to charging stations with minimum collision
and maximum usage of the network. In order to maintain all the requests, in addition
to network slicing, they also utilized an unsupervised ML algorithm. To measure the
performance of their algorithm, they conducted several experiments and concluded the
that proposed algorithm can allocate resources more efficiently and hence can serve more
vehicles compared to a first-come-first-served approach.

Similarly, Ref. [49] proposed an intelligent network slicing architecture for vehicular
communication services using NFV and ML algorithms. Mainly, their algorithm composed
of four layers which are a network infrastructure virtualization layer, which virtualizes
resources from a dedicated hardware; an intelligent control layer, which determines patterns
of vehicular networks and performs self-configuration of network slices; a network slice
layer, which defines different slices based on QoS requirements; and a service layer which
captures the QoS requirements. In this work, they used Deep RL in combination with
convolutional networks as well as a Long Short-Term Memory algorithm. This is because
their data is stochastic but also has many dimensions. They concluded that the proposed
framework is promising as it can improve QoS by allowing the control layer to make
decisions according to historical observations.
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Focusing on the Industrial IoT application, Ref. [50] proposed a dynamic slicing
method to guarantee QoS by isolating urgent traffic and eliminating resource starvation.
To do that, they utilized an online learning method that clusters devices to the most appro-
priate slices using Online Gaussian Mixture Model. Their simulation results highlighted the
efficiency of the proposed method in avoiding resources starvation and providing QoS for
devices while respecting the latency requirements and decreasing the energy consumption.

Different to the above studies, Ref. [51] presented a fairly new approach. In particular,
to optimize load balancing further, they designed an ML-based network sub-slicing model,
where each logical slice is also divided into slices, called as sub-slices. Considering the
fact that each network slice needs to fulfil several different requirements, such as low
latency, high reliability, and high spectral efficiency, their aim was to create sub-slices
where each sub-slice focuses on a single requirement. As an example, one sub-slice focuses
on spectral efficiency, whereas the other focuses on providing low latency with reduced
power consumption. In particular, to identify requirements of different applications, they
utilized a Support Vector Machine algorithm. In addition, to create clusters of sub-slices for
grouping similar types of application services, they used K-means algorithm. Experimental
results showed that the proposed algorithm outperforms the state-of-the-art algorithms in
terms of improved performance and reduced energy consumption.

Considering the above applications, it can be seen that ML is a powerful and commonly
used tool for network slicing as it yields improved performance and faster convergence
in network management automation. That is, due to the complexity of the performed
tasks which address different purposes, network slice controllers, being responsible for
the monitoring and management of the functionalities of the overall system, can use the
feedback and results obtained from ML algorithms. In particular, for network resource
management in large-scale systems, ML-based slicing methods can be used by network
controllers to solve the joint allocation problem of communication, caching, and computing
resources due to its ability to handle complicated, dynamic, and heterogeneous features.

3.2. Machine Learning Applied to Edge Computing

As mentioned in Section 1, machine learning models are built from the collected data
to enable the detection, classification, and prediction of future events. Due to bandwidth,
storage, and privacy concerns, it is often impractical to send all the data to a centralized
location. As the edge servers have limited storage resources and processing capabilities,
using machine learning algorithms can optimize the performance of these servers. In this
section, we will present a comprehensive literature review on ML applications in edge
computing systems.

Utilizing a deep neural network model, Ref. [52] proposed an offloading mechanism
for UEs to offload computational intensive tasks to the edge servers, as running such tasks
on UEs can limit the potential of Ml models and reduce their accuracy. In this respect,
they proposed an ML based scheduling and placement algorithm. More specifically, their
proposed solution automated the orchestration and deployment of edge applications while
guaranteeing efficient usage of resources, scalability, and fault-tolerance of the network.
Their experimental results showed a significant gain compared to cloud-based offloading
strategies in terms of accuracy and latency.

Sun et al. focused on an Industrial IoT case. Different than the existing works that are
aimed to improve either power efficiency or the latency of industrial IoT devices, in this
work, the authors also focused on improving the service accuracy. Mainly, they used
DL-based transfer learning for image recognition tasks and for offloading decisions [53].
As a result, they showed that AI-enabled edge servers could serve more traffic compared to
AI-enabled cloud servers.
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Ref. [54] worked on a vehicular use case. In their work, they focused on how to select
which node on which to offload the computationally intensive tasks to make efficient of-
floading decisions and proposed an ML-based vehicular edge orchestrator. Their algorithm
is based on a classifier which detects whether the offloading decisions are successful. In ad-
dition, a regression model estimated the service time of all the offloading decisions. Based
on these two outcomes, an edge node that has the lowest service time is selected. In this
respect, to identify the most successful ML algorithm, they experimented with several ML
algorithms such as naive Bayes, support vector machine, etc. One of the key contributions
of their work is that they evaluated their algorithm in a realistic setting and proved that
their algorithm outperforms random simple moving average based, multi-armed bandit
theory based, and game theory based vehicular edge orchestrators in terms of the task
failure rate and service times.

In their paper, Ref. [55] evaluated the performance of three machine learning algo-
rithms which are k-nearest neighbour, support vector machine, and naive Bayes, running
on the edge servers. In particular, they utilized online ML tasks where patterns are ex-
tracted from continuous streams of data and the learned models evolved over time to
capture complex relationships among many different variables. They stated that, for energy
consumption, support vector machine has the largest reward, whereas naive Bayes has the
lowest. In fact, their evaluation results are very promising as they are also able to prove the
benefits of using ML in the edge nodes on energy consumption.

Aiming to provide a scheduling mechanism in real time to realize intelligent cognitive
assistant applications, Ref. [56] proposed a novel RL based task assignment approach for
the edge servers. As these applications work in real time, especially for healthcare scenarios,
they formulated an RL based program to reduce the running time of the assignment task
itself. Their simulation results showed that they are able to reduce the task processing time
by 13–22% compared to other existing methods.

Ref. [57] investigated a joint task, spectrum, and power allocation problem for wireless
networks equipped with MEC servers. Mainly, they formulated an optimization problem
to minimize the maximal computational and transmission delay among all users. To solve
this problem, they utilized an RL algorithm. Compared to the conventional RL algorithms,
their algorithm is able to record historical resource allocation schemes and users’ states
to avoid learning the same information, thus improving the convergence speed and the
learning efficiency. Thus, they are able to reduce the delay among all users up to 18%
compared to the standard Q-learning algorithms.

There are also some studies that handle the ML-based edge computing systems from
the point of view of security. As an example, trying to secure communications and actively
detecting unknown attacks, Ref. [58] proposed a combined deep and unsupervised learning
model for the MEC environment. Basically, their algorithm consists of a pretraining phase
that relies on unsupervised learning to detect hidden units and a fine tuning phase using
deep learning to fine tune the parameters that are already trained in the pretraining phase.
They compared their model with four other ML-based algorithms, where their algorithm
stood out from others based on its ability to capture the nonlinear relations between attacks
and corresponding features, and its multi-stacked modules that calculate the nonlinear
mapping between input and output. The results showed that their model is able to improve
the overall accuracy by 6%.

Trying to reduce data traffic and latency for IoT devices, Ref. [59] explored merging
ML and edge and cloud computing. They stated that the reason they used deep learning is
that it is able to transform data into hierarchical abstract representations that are beneficial
for IoT data analytics. They deployed the encoder part of the trained model on the edge
to reduce dimensionality, whereas the decoder was employed on the cloud to reconstruct
the original signal. As a result, they showed that their method outperforms other deep
learning solutions for IoT devices. In addition to that, they grouped the sensors according
to location and made comparisons with non-grouped cases, showing their method can
reduce network traffic up to about 80%.
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In short, ML assisted edge computing reduces latency as well as avoids high comput-
ing costs by processing the data at the edges rather than in centralized clouds. In addition,
it also empowers new technologies such as autonomous vehicles and medical devices by
enabling real-time feedback and results that are critical for these services.

3.3. Machine Learning Applied to Edge-Enable Network Slicing

As the emerging 5G services have highly diverse performance requirements such
as high bandwidth, low latency, high reliability, etc., efficient accommodation of those
needs requires the use of edge-enabled slicing together with ML techniques. In this respect,
there are a couple of studies in the literature that employ ML algorithms in edge-enabled
slicing frameworks. As an example, Ref. [60] proposed a resource orchestration method for
wireless edge networks based on decentralized deep RL and network slicing techniques.
In particular, the deep RL agent learns the resource demands of network slices and orches-
trates the resource allocation accordingly. The authors stated that, due to the temporal and
spatial dynamics of the slice traffic and the complex tradeoffs between the performance of
network slices and the resource orchestration, it is inefficient to use a centralized learning
agent to orchestrate resource allocations to network slices. Additionally, a centralized
learning agent needs to obtain network performance data from all the network nodes,
which introduces excessive communication overhead and delay. Thus, they adopted a
decentralized deep RL approach to automate dynamic E2E network slicing and to op-
timize the performance of the slices under the constrained networking and computing
resources. Simulation results showed that their orchestration agent is able to autonomously
orchestrate E2E resources under varying slice traffic.

Considering data-intensive and latency-sensitive tasks, Ref. [61] proposed to extend
network slices to aerial vehicles equipped with MEC nodes. This is because when data
are produced by ground devices they may not able to reach the edge servers in time. Par-
ticularly, this model consisted of a RL agent that analyses the environment and decides
whether to offload jobs to aerial vehicles based on power consumption, job loss, and in-
curred delay. Experimental results showed that this proposed method can work at runtime
with a great flexibility.

Combined with edge computing and network slicing, ML based solutions enable
autonomous slice management, control, orchestration, and optimization. In this respect, one
of the main advantages of ML is to accurately classify types of applications for automating
the network slicing process. In addition to that, ML models can also be useful for optimizing
resource allocation in edge enabled network slicing, particularly for predicting, assigning,
and optimizing the limited edge resources.

An overview of previously mentioned ML assisted studies is presented in Table 3.
It should be also noted that, in most of the systems with network slicing mechanisms,

all the useful information gathered and analysed by ML algorithms are conveyed to network
slice controllers which then manage slice life-cycles and configure necessary resources and
functions. Due to the complexity of these tasks, a network slice controller can be composed
of multiple orchestrators that are in charge of a subset of functionalities. Thus, to be able to
ensure and maximize the benefits received from these solutions, it is important to ensure
that the controllers are in coordination with each other about the status of the operations
and maintaining a centralized view.
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Table 3. Overview of studies that combine ML, network slicing, and edge computing techniques
mentioned in Section 3.

Ref. Application
Area Objective Methodology Outcome (Compared to SOTA

Methods)

[47] Network
Slicing Resource allocation for vehicles Convolutional Long

Short-Term Memory
Reduced transmission and waiting
delay by 15.33 ms

[45] Network
Slicing

Comparison of ML algorithms for
network slicing

Naive Bayes /SVM
/Neural Network /RF

Classification accuracy of different ML
methods

[51] Network
Slicing

Optimize network load balancing
problems SVM /K-means Improved latency, load balancing,

and power efficiency

[50] Network
Slicing

Dynamic slicing and resource
allocation for Industrial IoT

Online Gaussian Mixture
Model

Decreased energy and packet error
rate

[46] Network
Slicing Auto-configure radio resources Regression Model Increased throughput

[42] Network
Slicing

Enhance performance of network
slicing Regression Model Increased system capacity

[48] Network
Slicing

Efficient communication btwn the
vehicle and charging station Unsupervised Learning Increase the throughput and

decreased latency

[41] Network
Slicing

Optimize network load and
resources Deep Neural Network Predicts the most accurate network

slice for an application

[49] Network
Slicing

Comparison of network slicing
methods for V2X services

Deep Reinforcement
Learning

Improved packet latency and Block
Error Rate

[40] Network
Slicing

Automated resource optimization
and E2E service reliability

Deep Reinforcement
Learning

Dynamically allocated resources
within QoS requirements

[44] Network
Slicing

Predict a new network slice
request can be fulfilled or not Deep Learning Reduced the number of false positive

allocations by a 75%.

[43] Network
Slicing

Classify slices as “eMBB, mMTC,
or URLLC”

DNN and Unsupervised
learning Increase accuracy up to 1.19%

[55] Edge
Computing Smart healthcare applications K-nearest neighbours

/Naive Bayes /SVM
Reduced energy consumption and
computation time

[54] Edge
Computing

Efficiently operate self-driving
vehicles

Naive Bayes /SVM
/Multilayer Perceptron

Decreased task failure rate and service
time

[59] Edge
Computing

Reducing network traffic and
latency ML Reduced network traffic up to 80%

[53] Edge
Computing Increase service accuracy Transfer Learning Serve more traffic up to 10%

[58] Edge
Computing Improve communications security Deep Learning Improved classification accuracy by

6%

[52] Edge
Computing

Offloading mechanism for edge
devices Deep Neural Network Improved accuracy and latency

[56] Edge
Computing

Develop Intelligent Cognitive
Assistants Reinforcement Learning Reduced task processing time (22%)

and energy consumption (10%)

[57] Edge
Computing

Minimize the computational and
transmission delay Reinforcement Learning Reduced maximal delay up to 11.1%

[61]
Edge-
enabled
slicing

Minimize power consumption and
delay for aerial vehicles Reinforcement Learning Improved performance, scalability,

compatibility

[60]
Edge-
enabled
slicing

E2E resource orchestration Deep Reinforcement
Learning

Improved performance, scalability,
compatibility
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4. Proposed Solution

As mentioned earlier, while applying network slicing to heterogeneous networks with
multiple domains, hierarchical SDN controller architecture is largely preferred. In such
cases, different SDN controllers, each spanning a different domain, are needed to synchro-
nize with the root controller to preserve the consistency and reliability within the network
as well as to further utilize the benefits of edge enabled network slicing mechanism. In this
respect, despite various proposals on how to realize edge enabled network slicing, most
of them overlooked the question of how exactly controllers should synchronize with each
other and assumed that the logically centralized network view somehow existed.

Motivated by this idea and the benefits of ML, we propose a synchronization method
for hierarchically distributed SDN controllers using RL aiming to improve the decisions
of controllers on slice life-cycles, resource management, routing paths, and offloading
mechanisms, towards more effective edge-enabled network slicing. In this respect, there
are two main reasons why we believe that RL is a good candidate for the controller synchro-
nization problem. The first reason is that, in wireless networks where several applications
with human involvement exist, it is almost impossible to find labelled data for training
the ML algorithms, whereas unlabelled data are often abundant and easily available [62].
Secondly, optimizing the synchronization process for heterogeneous networks is indeed a
long-term decision that is affected by multiple conditions. Such problems are considered
decision-making tasks where RL offers fast near-optimal solutions; this is also validated by
other research in the literature [63,64].

Although there are a few existing works related to our research question, our solution
differs from them in the following ways [65,66]: (i) As opposed to existing works where
only some of the controllers are being synchronized at each time, our solution aims to
synchronize all controllers at once. By doing that, we are expecting to have lower run time
complexities as well as lower energy consumption in the long run compared to the partial
synchronization method. (ii) Previous works assumed that the synchronization times are
given. Contrarily, in our study, the more realistic case of detecting the synchronization
times as well as the frequency is going to be explored.

An example system architecture is presented in Figure 3. In particular, the data that we
are going to use in our RL solution are the number of users and devices, mobility of users,
link quality, CPU load, and memory usage of each edge server. During implementation,
we are also aiming to address several issues such as dependencies among different slices
and resources and the security of individual controllers, as well as edge cases such as the
procedures that we are going to apply in case of a main controller failure.
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Figure 3. An example system architecture representing proposed research idea.

5. Conclusions

Network slicing and edge computing are key enabling technologies of 5G and beyond
networks considering their ability to create scalable and flexible networks while meeting
the QoS and SLA requirements of different applications. Recent studies also showed
that slicing the edge resources reveals the network capabilities further by satisfying the
stringent QoS and QoE requirements of emerging applications. In this respect, this review
paper presented existing edge-enabled network slicing solutions, frameworks, and use
cases as well as potential benefits. Moreover, we also provided existing studies on how to
combine ML methods with these concepts. By doing that, we aim to guide the research
with a comprehensive analysis on edge enabled network slicing mechanisms combined
with ML methods. In addition, considering the fact that synchronization between the
slicing controllers improves the slicing decisions, we also proposed an RL-based controller
synchronization solution. In particular, we believe that our method will be useful in terms of
optimal routing path detection, resource balancing, and data offloading decisions between
both the edge servers and their slices towards more effective edge-enabled network slicing.
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MDPI Multidisciplinary Digital Publishing Institute
ML Machine Learning
DL Deep Learning
RL Reinforcement Learning
SDN Software-defined networking
NFV Network functions virtualization
MEC Multi-access edge computing
RAN Radio access network
QoS Quality of service
QoE Quality of experience
URLLC Ultra-reliable low-latency communication
eMBB Enhanced Mobile Broadband
mMTC Massive machine type communication
IoT Internet of Things
UE User equipment
SVM Support Vector Machine
RF Random Forest
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