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Abstract: Attempts to discover knowledge through data are gradually becoming diversified to un-
derstand complex aspects of social phenomena. Graph data analysis, which models and analyzes
complex data as graphs, draws much attention as it combines the latest machine learning techniques.
In this paper, we propose a new framework called link pruning for detecting clusters in complex
networks, which leverages the cohesiveness of local structures by removing unimportant connections.
Link pruning is a flexible framework that reduces the clustering problem in a highly mixed com-
munity structure to a simpler problem with a lowly mixed community structure. We analyze which
similarities and curvatures defined on the pairs of nodes, which we call the link attributes, allow
links inside and outside the community to have a different range of values. Using the link attributes,
we design and analyze an algorithm that eliminates links with low attribute values to find a better
community structure on the transformed graph with low mixing. Through extensive experiments,
we have shown that clustering algorithms with link pruning achieve higher quality than existing
algorithms in both synthetic and real-world social networks.

Keywords: community detection; graph clustering; node similarity; graph sparsification

1. Introduction

The importance of data has increased steadily in modern society. The rapid changes
and advancements in big data analysis over the past decade have received considerable
attention from researchers. Accordingly, more benefits in artificial intelligence and deep
learning technology, which contribute to developing industries, cannot be obtained without
data management and processing technologies. The shape and information of data have
become more diverse and complex, and the demand for data applications has increased
simultaneously. This demand has increased the interest of researchers in graph mining
technology, which can help analyze relationships and interactions of data. Graph mining
is one of the fundamental problems in social network analysis, which has numerous
applications [1]. Furthermore, the development of deep learning technology for graph data
analysis has recently garnered the attention of researchers and industries [2].

Graph modeling provides a useful way to represent and analyze unstructured and
complex data. Practical graph mining requires the understanding of data characteristics and
appropriate application problems. The first step for successful graph mining is to model a
given dataset of interest as a graph or convert a given graph dataset to a transformed graph
that can be easily utilized. That is, each data element can be represented as a node, and the
interactions or relationships between nodes are represented as links. The characteristics
of nodes or links can be modeled as attributes. After that, graph representations can be
used to solve machine learning problems through supervised learning or unsupervised
learning. In particular, community detection (or graph clustering) is a technique for finding
the community structure, with dense links joining nodes of the same community and
comparatively sparse links joining nodes of different communities [3]. Thus, communities
are regarded as groups of nodes that likely share common properties or play similar roles
within the graph.
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In this paper, we propose a new community detection algorithm for undirected graphs
by removing unimportant connections with low values of some link attributes. We present
three link attributes for the link removal process, which are appropriate for measuring
the strength of local connections in social networks: (i) Jaccard’s index (which we call
Jaccard), (ii) the number of common triangles (which we call CommonTriangles), and
(iii) the Forman–Ricci curvature (which we call Forman–Ricci). These three link attributes
consider substructures surrounding two adjacent nodes, and a denser substructure implies
a higher link attribute. Using the link attributes, we propose a new framework called link
pruning that eliminates links with low values of attributes to identify an enhanced com-
munity structure on the resulting pruned graph with low mixing. After link pruning, the
transformed graph could be sparse, but the local communities are easier to detect. We call
them enhanced communities. We theoretically prove that link pruning effectively detects
enhanced communities using the stochastic block models. In addition, we empirically
show that clustering with link pruning achieves better performance than clustering with a
traditional graph sparsification.

Extensive experiments were conducted using both synthetic and real-world networks.
Before identifying the community structure, we confirmed that link attributes differ de-
pending on whether the links in the graph are connected between nodes within the same
community or different communities. Finally, we verified that a sparse graph with an
enhanced community structure was obtained when the link pruning rate was increased
based on attribute values through experiments. To evaluate the clustering accuracy, we
used the Normalized Mutual Information (NMI) [4,5] for synthetic networks with the
ground-truth community structure and the modularity [6,7] for real-world networks.

Overall, the contributions of this paper are summarized as follows.

• We notice a different pattern between the attributes of links within a cluster (i.e.,
internal links) and those of links belonging to different clusters (i.e., external links).

• We develop a new community detection algorithm that removes less important links
according to the different patterns of link attributes.

• We theoretically prove that link pruning effectively detects enhanced communities
using a random graph model with planted clusters.

• We empirically show that the proposed algorithm achieves higher accuracy than the
existing algorithms, especially when the pruning rate increases.

2. Related Work
2.1. Link Attributes

Graph representation learning is a state-of-the-art technique that successfully adopts
representation learning to graphs [8]. Among related techniques, graph neural networks,
which train both the graph structure and node attributes, have been recently developed
as the most effective technique for graph data analysis [9]. Because the nodes in a graph
refer to elements of a network system, the attributes of each node can be defined easily.
However, the link attributes are relatively difficult to define because they might include
various meanings representing node relationships. The link attributes are defined based on
the purpose of a target problem to be solved as an initial stage for constructing a graph,
and the performance of the method can be increased via this process [10]. A representative
method for calculating link attributes is to measure the similarity or distance between nodes
belonging to a link [11]. This method evaluates the neighborhood level between nodes by
calculating the similarity between a node and its neighbor node or utilizing a path in a
graph or substructure. A recent study [12,13] reported that the curvature which is defined in
a graph can be effectively used to analyze internal graph structures and detect communities.
The proposed algorithm in this paper calculates the link attributes based on the similarity
between nodes and the curvature of a graph to train and apply the relationship between
the link attributes and community structure.
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2.2. Community Detection

Community detection is to find subgraphs inside a graph, and in many cases, it aims
to find a set of nodes or links inducing a subgraph with high density [3,14,15]. It is one of
the most fundamental problems in graph data analysis, and various techniques have been
developed to solve this problem [3]. We evaluated the strength of the community structure
by evaluating modularity and NMI. Modularity and NMI are widely used to measure
the quality of community detection. Modularity is a measure of the community structure
of a graph, measuring the density of connections within a community. NMI provides an
information–theoretic measure for comparing the predicted community structure and the
ground-truth structure. It compares the different partitioning results and produces a value
between zero (disagreement) and one (agreement). Therefore, high modularity values
(when the ground truth is unknown) and high NMI values (when the ground truth is
known) indicate high quality communities.

2.3. Graph Sparsification

Graph sparsification is a technique that reduces the size of a graph by maintaining the
structural information of the graph primarily based on link pruning [16]. This technique can
reduce the size of network data represented as a graph and increase the efficiency related
to the use of computer resources and operation time. A recent python library for graph
sampling called ‘Little Ball of Fur’ [17] provides representative link sampling methods,
such as [18,19]. The two usual link sampling methods introduced in [18] are the Random
Edge (RE) sampling method and the Random Node-Edge (RNE) sampling methods. The
RE sampling method samples links independently and uniformly at random, and the
RNE sampling method selects nodes and a link that belongs to the chosen node. The link
sampling methods introduced in [19] select nodes and a link using an additional induction
step. The induction step adds all links that exist between the sampled nodes, and this
step is adequate to preserve the original graph structure. For graph clustering with link
pruning, there have been several attempts to sparsify graphs [20–22]. Graph sparsification
methods are used for designing a scalable clustering algorithm [20] and a distributed
clustering algorithm [21]. In [22], LinkBlackHole* adopted a link sampling method for
graph sparsification, where each node samples links with probability that is linear to the
log of the degree. This method guarantees that the difference between a sampled graph and
an original graph is bounded based on Chernoff bound [23]. Recent studies have developed
methods that perform sparsification by maintaining the attributes of a graph, such as a
clustering coefficient, connectivity, and the shortest path [16,24]. We conducted a process of
link attribute calculation to remove less significant links. Through this process, rather than
maintaining the structural information of the graph, we achieve the goal of performing
graph sparsity to efficiently and accurately identify communities.

3. Our Proposed Framework
3.1. Calculation of Link Attributes

Given a graph G = (V, E), a set of neighbors for a node u is N(u) = {v ∈ V|{u, v} ∈ E}.
This section describes (i) Jaccard’s index, (ii) the number of common triangles, and (iii) the
Forman–Ricci curvature, which are usual methods for calculating link attributes succes-
sively. Because these methods define attributes based on a neighboring relationship between
two nodes forming a link, they can calculate link attributes when a neighboring relationship
between each node is solely identified.

3.1.1. Jaccard’s Index

Jaccard’s index or the Jaccard similarity coefficient is used to calculate the similarity
between two different sets [25]. This can be applied to a graph to calculate the similarity
between two nodes in the graph. It ranges from zero to one, and a higher value represents a
higher ratio of common neighbors. When a set of extended neighbors for node u is defined
as Γ(u) = {u} ∪ N(u), the Jaccard’s index is calculated as follows.
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Jaccard(u, v) =
|Γ(u) ∩ Γ(v)|
|Γ(u) ∪ Γ(v)|

3.1.2. Number of Common Triangles

The Common Neighbor (CN) index or the number of common neighbors between
two nodes is a popular metric for link prediction in graphs [26]. The number of common
triangles including two nodes is equivalent to the CN index when the two nodes are
adjacent. To calculate the number of common triangles, the number of triangles to which
both nodes u and v belong is counted for an attribute of {u, v} ∈ E. A triangle is a structure
in which three nodes are interconnected in a graph, which is regarded as the basic structure
for a community. It has an integer value of zero or higher, and its value increases as
the number of common neighbors increases. The number of common triangles for two
interconnected nodes u and v is calculated as follows.

CommonTriangles(u, v) = |N(u) ∩ N(v)| − 2

3.1.3. Forman–Ricci Curvature

The Forman–Ricci curvature is a numerical degree of curvature based on a local
connection condition that reflects geometric features [12], which is recently being performed
as a complex system network analysis methodology. This value increases because the local
connection density is high. When the local connection density is low, the value decreases to
a negative value. In other words, this value increases for a link in a densely connected area.
When Nv(u) = N(u)− {v}, the first Forman–Ricci curvature is calculated as follows.

Forman–Ricci(u, v) = |Nv(u) ∩ Nu(v)| − |Nv(u) ∪ Nu(v)|+ 2

3.2. Algorithm for Clustering Using Link Pruning
3.2.1. Proposed Algorithm

Regarding the three types of link attributes introduced in Section 3.1, it is expected that
attributes of links connected in a community will be higher than those connected between
different communities. A similarity between nodes or curvature-based links defines these
link attributes, and their values increase when the neighborhood substructures of the two
nodes are similar. We design and analyze an efficient algorithm for community detection
using the characteristic of link attributes.

Algorithm 1 shows the procedure of the proposed community detection algorithm
based on link pruning. In Step 1, the proposed algorithm calculates the link attributes
in a given graph G = (V, E). In Step 2, it sorts link attributes according to their values.
In Step 3, it prunes links with low link attributes values. The pruning rate is the fraction
of connections in the graph that are pruned. The degree of sparsification of the resulting
graph is determined by the pruning rate α. The pruning rate makes a trade-off between the
memory efficiency and the accuracy throughout the algorithm. In Section 4, we verify the
performance of the proposed algorithm in a wide range of pruning rates. This process is
performed to successfully remove links, which are likely to have less importance to detect
community. In Step 4, the community detection algorithm A is applied to the converted
sparsified graph G∗. The proposed algorithm exhibits better performance for identifying a
community C when applied to the converted sparsified graph than applied to the origin
graph G. Because the origin G and converted graph G∗ have the same set of nodes, the
proposed algorithm is not required to convert a community for the set of nodes in G∗ to
identify a community for the set of nodes in G.
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Algorithm 1: Clustering with Link Pruning.
input : (i) a graph G = (V, E);

(ii) a link attribute attribute;
(iii) a pruning rate α;
(iv) a clustering algorithm A;

output :a set of clusters C of V;
1 /* Step 1: Calculate the link attributes */
2 for {u, v} ∈ E do
3 Calculate attribute(u, v);
4 /* Step 2: Sort the link attributes */
5 Sort (attribute(u, v)){u,v}∈E;
6 /* Step 3: Prune low-value links */
7 G∗ ← remove the smallest 100α% links from G;
8 /* Step 4: Detect communities in the transformed graph */
9 C ← apply A to G∗;

10 return C;

3.2.2. Theoretical Analysis

The stochastic block models (SBMs) are graph generation models that reflect com-
munity structure [27,28]. This model creates a block that comprises N nodes based on the
numbers of N/K nodes and K blocks (communities). Subsequently, it generates a link of
nodes in the same block based on the probability of pin and that of nodes in different blocks
based on the probability of pout. Mixing is utilized to evaluate the degree of strength of the
community structure. The mixing process is defined by a rate of nodes connected in the
same community among the entire links. A simple linear system can adjust the values of
pin and pout to enable the generated graph to contain the average number 〈k〉 of connec-
tions and mixing µ. The result of the theoretical analysis is presented as follows. When
pin = MPout, the average value of |N(u) ∩ N(v)| is K

N p2
out(M2 + K− 1) for links connected

in the same community and K
N p2

out(2M + K− 2) for links connecting different communities.
Therefore, the former value is higher by approximately M

2 times the latter value. Because
mixing is low, M increases. Basically, a difference in the number of common triangles will
increase as the strength of the community structure increases. The same conclusion can be
deduced for other link attributes in the same way.

4. Experiments

In this section, we examine the performance of our proposed link pruning method. We
extensively tested our algorithm on both synthetic and real-world networks. We evaluated
the performance of the proposed algorithm for efficient community detection algorithm
with link pruning. Specifically, we compared the result of performing community detection
via link pruning based on the application of the proposed algorithm with that of performing
community detection based on random link sampling. In addition, we evaluated the hybrid
method using the three link attributes simultaneously. We performed our experiments
using python 3.7, networkx and igraph on Intel(R) Core(TM) i9-10900 CPU @ 2.80 GHz and
RAM of 128 G.

4.1. Datasets
4.1.1. Synthetic Networks

To demonstrate the effect of our proposed algorithm, we investigated the results on
synthetic networks generated by the stochastic block models. We analyzed the networks
that have 1000 nodes with the average degree fixed to 20, the number of communities are 4,
and varying mixing parameters from 0.1 to 0.7.
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4.1.2. Real-World Networks

We conducted extensive experiments on real-world networks. Table 1 lists the real-
world networks used in our experiments. These network datasets include (a) Karate:
club network, (b) Football: football league network at universities in the United States,
(c) Twitter: social network of politicians from Ireland, (d) DBLP: co-authorship network,
(e) Amazon: product purchase network, and (f) YouTube: online platform network. Since
the clustering coefficients of the graphs are 0.571, 0.403, 0.475, 0.632, 0.397 and 0.081,
respectively, we consider that their community structures are significant. We downloaded
these networks from the KONECT [29] project (KONECT: The Koblenz Network Collection.
http://konect.cc/networks/, accessed on 1 May 2022).

Table 1. Real-world network datasets.

Dataset # of Nodes # of Links Clustering Coefficient

Karate 34 78 0.571

Football 115 613 0.403

Twitter 348 4831 0.475

DBLP 317,080 1,049,866 0.632

Amazon 334,863 925,872 0.397

YouTube 1,134,890 2,987,624 0.081

4.2. Link Attribute Distribution
4.2.1. Synthetic Networks

In Figure 1, the graph generated by the stochastic block models presents a change in
the link attributes according to mixing. We calculated the link attributes of each network
and analyzed the distribution of these attributes. The average intra-community (i.e., inward-
going) link attributes and the average inter-community (i.e., outward-going) link attributes
are present as blue and red lines, respectively. The experimental results were consistent
with the results of theoretical analysis, such that low mixing increases the difference in
link attributes. The results were also consistent with the results [30] that both values were
similar to each other under the high mixing condition and that the form of generated
graphs followed that of random graphs without a structure when mixing was generated as
1− 1

K = 0.75 in the stochastic block model.
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Figure 1. Distribution of link attributes in synthetic networks: (a) Jaccard; (b) CommonTriangles; and
(c) Forman–Ricci.

4.2.2. Real-World Networks

As in Section 4.2.1, we calculated the link attributes of each network and analyzed
the distribution of these attributes in real-world networks. In Table 2, links connecting
nodes in the same community are classified as intra-community, while the links connecting
nodes in different communities are classified as inter-community. Intra-community and
inter-community are marked in blue and red, respectively, in a histogram. Accordingly, the

http://konect.cc/networks/
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values of the mean and standard deviation are indicated in Table 2. As shown in Table 2, the
mean value of the intra-community was higher than that of the inter-community in 14 out
of the entire 18 cases. Regarding the Football and Twitter networks, the values of intra-
community were higher than those of inter-community in the entire case. For the Amazon
network, the mean number of nodes that belonged to the corresponding community was
only 4.46, despite low mixing. Consequently, the values of the intra-community were
unlikely to be distinguished from those of the inter-community.

Table 2. Distribution of link attributes in real-world networks.

Dataset Link Type Jaccard CommonTriangles Forman–Ricci

Karate
intra 0.34± 0.13 3.90 ± 1.63 −5.63 ± 5.25

inter 0.46 ± 0.15 2.73± 1.05 −10.7± 5.64

Football
intra 0.47 ± 0.11 7.52 ± 1.28 −1.06 ± 3.56

inter 0.17± 0.11 3.16± 1.60 −13.7± 5.11

Twitter
intra 0.26 ± 0.11 21.1 ± 13.0 −39.4 ± 28.8

inter 0.16± 0.07 16.5± 10.3 −67.3± 25.2

DBLP
intra 0.36± 0.31 6.95 ± 13.53 −21.96 ± 40.0

inter 0.43 ± 0.30 0.36± 0.31 0.36± 0.31

Amazon
intra 0.31 ± 0.20 2.22 ± 2.30 −12.49± 25.70

inter 0.29± 0.20 1.66± 1.81 −12.32 ± 25.22

YouTube
intra 0.06± 0.09 9.49 ± 21.07 −472.96 ± 691.84

inter 0.09 ± 0.15 2.78± 12.14 −998.67± 3324.71

We conducted case studies on the Football network with three link attributes. We com-
pared the patterns of intra-community links with inter-community links. Figure 2 presents
the distribution of link attributes in the Football network. As shown in the histograms
of the three link attributes, the distribution of intra-community links was separated from
that of inter-community links. Figure 3 presents the results of graph sparsification of the
Football network according to the pruning rate from 0 to 0.4 using Jaccard’s index. Here,
the graph with pruning rate 0 represents the original graph. As shown in Figure 3, we
confirm enhanced community structure with link pruning.
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Figure 2. Distribution of link attributes in Football: (a) Jaccard; (b) CommonTriangles; and
(c) Forman–Ricci.
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Original graph

(a)

Pruning rate 0.2

(b)

Pruning rate 0.4

(c)

Figure 3. Graph sparsification after link pruning with Jaccard’s index: (a) pruning rate 0 (original
graph); (b) pruning rate 0.2; and (c) pruning rate 0.4.

4.3. Community Detection

We evaluated the enhancement of community detection performance by adjusting
the link pruning rate α of Algorithm 1 in each network. In our experiments, the Louvain
method [31] was chosen as Algorithm A, and any other clustering algorithm can be used.
Then, we discuss efficiency according to community detection algorithms. Based on the
experimental results, we analyzed change modularity and according to the pruning of links
with low values of link attribute.

4.4. Synthetic Networks

To evaluate the quality of graph clustering of synthetic networks, we used the Normal-
ized Mutual Information (NMI) [4,5]. The NMI has been most widely used to measure the
quality of clusters when the ground truth is known. We calculated the NMI by adjusting α of
Algorithm 1 based on the three-link attribute calculation methods introduced in Section 3.1,
in the link pruning process. It also calculated the NMI by randomly adjusting α in the
link pruning process. Figure 4 presents the results of NMI, which compare the clusters
obtained by the proposed algorithm with the ground-truth clusters. The experimental
results indicated that the NMI values were higher when link pruning was performed based
on the link attribute calculation methods indicated above than when link pruning was
randomly performed. The NMI values tended to decrease as α increased in most cases. As
shown in Figure 4, we confirm that the NMI values with random removing drop rapidly
under 0.8 of NMI in mixing 0.1 to 0.5. Stochastic block models with mixing 0.6 induce a
weak community structure, and the NMI values are small. However, as shown in Figure 4,
our proposed algorithm performs well for a wide range of mixing.
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Figure 4. Cont.
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Figure 4. NMI values when varying α: (a) mixing 0.1; (b) mixing 0.2; (c) mixing 0.3; (d) mixing 0.4;
(e) mixing 0.5; and (f) mixing 0.6.

4.5. Real-World Networks

To evaluate the performance of graph clustering of real-world networks, we used
the modularity [6,7]. The modularity calculates the normalized quantity of the difference
between the intra-community links and the inter-community links. We measured the
modularity values by adjusting the value of α of Algorithm 1 based on Jaccard’s index
(denoted byF), the number of common triangles (denoted by �) and the Forman–Ricci
curvature (denoted byN), which are the three link attribute calculation methods introduced
in Section 3.1, in the link pruning process. It also calculated the modularity by randomly
adjusting α (denoted by ) in the link pruning process. Figure 5 presents the results obtained
from comparing the modularity values obtained by the methods discussed earlier. The
experimental results indicated that the modularity values were higher when link pruning
was performed based on the link attribute calculation methods indicated above than when
link pruning was randomly performed. Regarding the Karate network that exhibited sparse
internal connections than other network datasets, an increase in α led to a decrease in the
modularity values in some cases.
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Figure 5. Modularity values when varying α: (a) karate; (b) football; (c) twitter; (d) DBLP; (e) Amazon;
and (f) YouTube.
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4.6. Hybrid Method

We present a hybrid approach of the proposed algorithm that utilizes the three link
attributes for link pruning. The detailed steps for the hybrid method are as follows. In Step
1, we calculate the three link attributes for every link. In Step 2, we calculate the Z-score
of each link attribute for normalizing the values for fair comparisons. In Step 3, we sum
the Z-scores of the link three attributes for each link. In Step 4, we sort the sum of the
Z-scores. In Step 5, we prune links with the smallest 100α% link attributes. Figure 5 presents
the results of modularity values of communities obtained by removing links randomly
(denoted by ) with removing links by the hybrid method (denoted by H). The figure
shows that clustering with random link pruning is sometimes better than that with link
pruning using a single link attribute. The hybrid method is not the best sometimes, but it is
consistently better than random link pruning. In this context, the hybrid method is useful
in some applications.

4.7. Verification of Efficiency

We applied various algorithms to the community detection algorithm A to verify
the efficiency of the proposed algorithm. The computational complexity of the proposed
algorithm depends on the numbers of nodes V and the number of links |E| in a given graph
G = (V, E). An approximation algorithm can be performed to reduce the computational
complexity in calculating link attributes in a large-scale graph. For example, it is known
that locality sensitive hashing (LSH) can be applied to Jaccard’s index to approximately
calculate link attributes or link weights in a graph [32]. The computational complexity is
linear to the number of hash functions under this condition, and approximate calculations
can be performed to reduce the calculation time.

The results obtained from analyzing the efficiency of the proposed algorithm according
to the five popular community detection algorithms are presented as follows. Community
detection algorithms used for the comparison include the Louvain method, the label
propagation algorithm (LPA) [33], Infomap [34], Fastgreedy [6] and Walktrap [35]. We note
that the computational complexities are O(|V| log |V|), O(|E|), O(|E|), O(|V| log2 |V|) and
O(|V|2 log |V|) based on the Louvain method, LPA. Infomap, Fastgreedy and Walktrap,
respectively [36].

In addition, we measured the amount of time required for the operation of Algorithm 1
by increasing α from 0 to 0.3, and pruning links when the Amazon network was used and
Jaccard’s index was performed as link attributes. Table 3 presents the results obtained
from measuring the total operation time of Algorithm 1. Table 4 illustrates the modularity
values in the same set of experiments. The LPA frequently combined the entire graphs as a
single community due to its unstable performance in identifying communities based on
randomness when label information was not provided prior to the algorithm. Infomap
and Walktrap required a longer operation time than other algorithms and showed low
modularity values. Regarding the Louvain method and Fastgreedy, the Louvain method
required a shorter operation time and performed high modularity. As a result, in our
algorithm, it was verified that the Louvain method showed the best performance with the
highest efficiency.

Table 3. Running times of clustering algorithms with various link pruning rates.

Pruning Rate (α) Louvain LPA Infomap Fastgreedy Walktrap

0 4.94 28.31 1681.35 308.87 1495.25

0.1 4.59 22.49 1332.08 137.12 1398.27

0.2 4.42 14.81 903.47 32.16 1392.60

0.3 4.32 12.19 10504.02 63.47 1199.82
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Table 4. Modularity values of clustering algorithms with various link pruning rates.

Pruning Rate (α) Louvain LPA Infomap Fastgreedy Walktrap

0 0.926 0.786 0.825 0.867 0.849

0.1 0.911 0.760 0.803 0.889 0.811

0.2 0.892 0.741 0.782 0.886 0.793

0.3 0.873 0.725 0.767 0.868 0.783

The experimental results based on a change in the link pruning rate are presented
as follows. As presented in Table 3, Infomap and Fastgreedy implied a rapidly increasing
operation time where the link pruning rate changed from 0.2 to 0.3. Except for these
cases, community detection algorithms tended to require a shorter operation time as the
pruning rate increased. In addition, as shown in Table 4, the entire community detection
algorithms show low modularity values as the pruning rate increases. We use another
community detection evaluation which is conductance. Well-separated communities lower
the conductance. As shown in Table 5, the entire community detection algorithms always
show low conductance values regardless of the pruning rate. Based on this result, it was
verified that our proposed algorithm performed excellent performance, regardless of the
choice of the community detection algorithm A.

Table 5. Conductance values of clustering algorithms with various link pruning rates.

Pruning Rate (α) Louvain LPA Infomap Fastgreedy Walktrap

0 0.0012 0.0033 0.0029 0.0015 0.0028

0.1 0.0011 0.0033 0.0029 0.0011 0.0029

0.2 0.0012 0.0033 0.0031 0.0012 0.0031

0.3 0.0028 0.0033 0.0031 0.0028 0.0028

5. Conclusions

In this paper, we have proposed an efficient community detection algorithm based on
link pruning. We also analyzed the three types of link attributes, which varied depending on
internal or external links, and theoretically proved that the proposed algorithm is effective
using the stochastic block models. We have conducted extensive experiments using various
synthetic and real-world social networks. Our proposed algorithm shows that the pruning
of more links with low values of link attributes increased graph sparsification and the
strength of the community structure. Overall, we believe that our work is a step toward
developing an efficient community detection algorithm for social network analysis.
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