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Abstract: With the rising number of Internet of Things (IoT) devices joining the communication
network, data exchange is increased tremendously resulting in network congestion. This paper
deals with the optimal transmission of IoT devices to maximize the chances of success in random
access procedures. With every machine trying to use the network for the transfer of data, IoT devices
pose serious challenges to the already deployed infrastructure network. With a huge number of
IoT devices and fixed limited resources, the existing handshaking-based random access process is
not effective. To address this research gap, we propose a grant-free procedure while considering
orthogonal transmission and devise a strategy to minimize collisions and idle events and maximize
success. We use deep neural networks (DNN) that take channel conditions as an input to predict the
device’s transmission for a successful maximization. In order to evaluate the performance of our
proposed algorithm, we calculated the average delay with respect to channel coefficient and arrival
rate in addition to the number of successes against the channel coefficient. Simulation results show
that the proposed algorithm performs well and conforms with the claim of a successful maximization.

Keywords: IoT; random access channel; grant-free transmission; machine learning; deep neural
network

1. Introduction

The Internet of things (IoT) is shaping a world in which not only humans but also
machines use the network to exchange data. In every field of life, the devices with which
humans interact are becoming smarter [1,2]. Being a smarter device means that based
on the available data, the device is able to perform the tasks independently and smartly.
For example, in smart grids, using data, the loads are operated in such a way that they
get energy from renewable resources, and the batteries are charged such that the peak
hours are avoided [3,4]. In a smart e-health system, based on the input of the patient and
available data, the device decides whether to advise the patient locally or to refer him/her
to a physician [5,6]. The autonomous car decides to take the route with minimum traffic
based on the available data. In short, in every aspect of life, it is inevitable to interact with
smart devices using data to make decisions, which makes life easier and hassle-free [7,8].
Similarly the IoT finds applications in agriculture to combat plants’ health issues and
improving yield [9,10]. The smart devices exchange data with other peer devices or with
the servers on the network to make their decisions.

The IoT devices that are using data are increasing at a rapid pace. According to [11],
the expected number of connected IoT devices is approximately 13.8 billion units in 2021;
however, it is projected to jump to 30.9 billion in 2025. After 2010, IoT devices have
increased exponentially whereas the number of non-IoT devices has been almost constant.
The comparison of IoT vs. non-IoT connections over the years is represented in Figure 1
where dark blue color represents non-IoT devices and light blue color represents IoT devices.
It can be seen that the sharp rise in IoT devices is in the last decade, which incidentally
is also the rise of the long-term evolution/long-term-evolution-advanced (LTE/LTE-A)
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standards. IoT devices require a network that can be used to transfer data between the
devices or between devices and a server. Before the advent of LTE/LTE-A technology,
the data services of the infrastructure networks were not adequate because of a lesser
data rate. With LTE/LTE-A technology, the data pipe has also widened and the data rate
has also increased [12,13]. This allows IoT devices to use infrastructure networks such as
LTE/LTE-A networks to exchange data.

Figure 1. IoT and non-IoT connections worldwide.

Prior to fourth generation (4G) networks, i.e., LTE/LTE-A, the infrastructure network
(2G/3G) was human-centered such that both voice and data traffic were assumed to be
human-centric. With the rise of the data rate in 4G networks, both humans and machines
were considered for the traffic. With the popularity of the IoT and the devices outnumbering
humans, the tendency has shifted to machine-centric traffic. This can be seen in the
recommendations by International Telecommunication Union (ITU) for 5G [14,15]. We can
see that the requirements for connection density, mobility, data rate, etc., have increased and
the latency has decreased. The connection density and the latency of IoT devices specifically
have values of 106/km2 and 1 ms (end-to-end), respectively. Grant-free transmission in
the random access process of 5G technology and beyond is a process in which the devices
transmit without the handshaking process described in the next section. This grant-free
transmission reduces access delay for the devices.

Apart from the increase in data rate, machine/deep learning has been of massive help
in smart decision-making IoT devices. As already mentioned, the devices exchange data,
and based on the available data they make decisions, but with the help of techniques such
as a machine or deep learning. Deep learning has been widely used in IoT applications
in recent years [16–19]. IoT systems require different analytic approaches compared to
traditional machine learning techniques, which should be in line with the hierarchical
structure of data generation and management [20]. The IoT and deep learning for big data
go hand in hand because the IoT is the source of data generation, and deep learning uses
the data to improve the performance of the IoT [21–23]. With grant-free transmission and
deep learning, a random access process can be developed which gives lesser access delay,
and we deal with this problem in this work.

The contributions of our work are as follows:

• A grant-free transmission model is considered, which reduces access delay compared
to conventional random access process.

• A naive Bayesian technique is used to train DNN model to predict idle, success, or
collision event.

• The prediction is used to select the preamble/channel such that the probability of
success is maximum, thus increasing the throughput of the system.

The rest of the paper is organized as follows: Related works is given in Section 2. The
system model and the algorithm are explained in Sections 3 and 4, while the discussion on the
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optimal T (threshold) is given in Section 5. The use of deep learning is explained in Section 6,
the simulation results are given in Section 7, and then the paper is concluded in Section 8.

2. Related Work

As mentioned in the previous section, IoT devices can be large in numbers, which
creates a serious challenge for managing the service with limited resources. After the
registration of the device to the network, the provision of resources to the device is the
responsibility of the eNodeB. The eNodeB schedules the transmission of the device such
that the transmission is guaranteed albeit with some delay [24]. However, before the
association with the network, getting connected to the network is a random process. So the
access of a device is of two types, random and scheduled. Generally, more resources are
allocated for the scheduled access than the random access. When the number of devices
is large, the resources for random access may prove insufficient, resulting in congestion.
The delay in random access becomes important since it affects the overall efficiency of the
network. Moreover, if a device cannot complete the random access process successfully, it
cannot have service from the network. Hence with IoT devices, the random access process
becomes extremely important, and it is imperative that the devices experience less delay in
this process [25,26].

In LTE/LTE-A networks, random access is a four-step handshake process between
the device and eNodeB [27,28]. In the first step, the device chooses a preamble that was
broadcast by eNodeB and transmits it to eNodeB. In the second step, the eNodeB responds
with the random access response (RAR) message. In the third step, the device sends a
connection request message to the eNodeB, and in the fourth and last step, the eNodeB
sends a contention resolution to the eNodeB. The details of the random access process in
LTE/LTE-A networks can be found in [29,30]. For a device to have a successful random
access process, this four-step handshake process needs to be completed successfully. The
problem occurs when more than one of the devices select the same preamble, which leads to
the collision and the failure of the random access process of the devices involved. Therefore,
controlling congestion in the random access process means minimizing the number of
collisions and increasing the successful transmission. There has been a lot of work in the
literature on how to control the congestion in the random access process. The techniques
are discussed in [31], and in pictorial form, they are given in Figure 2.

Of all the techniques mentioned in Figure 2, access class barring (ACB) [32,33] and
extended access barring (EAB) [34] have been accepted by the third-generation partnership
project (3GPP) as potential solutions to overcome congestion [35]. In EAB, each device is
assigned a class number ranging from zero to nine. Only one class is allowed to transmit
while the other classes are barred from the transmission. The eNodeB broadcasts a bitmap
consisting of 10 bits with all bits zero except the one which is allowed to transmit and it
has a value of one. Each device is also assigned a paging frame (PF) and paging occasion
(PO). Each device wakes up at its PO within its PF and checks whether its class is allowed
to transmit or not. If allowed, it transmits, otherwise it waits for the next PF and PO. The
chances of collision in EAB are less but the delay is larger due to a large idle time. The
devices have to wait for longer periods of time for successful transmission. In ACB, the
eNodeB broadcasts an ACB factor (a transmission probability). Each device generates a
random number and if this random number is less than the ACB factor, the device transmits,
otherwise it is barred from the transmission and it waits for the next chance. In ACB, the
idle time is less, but the collisions are more, and the delay in ACB is less than that of EAB.
In ACB, the ACB factor is of prime importance and needs to be optimal to have a maximum
success probability. In [29], it was derived that the optimal transmission probability can be
written as:

popt = min
(

1,
M
n

)
, (1)

where M is the number of preambles (or channels), and n is the number of devices.
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Figure 2. Techniques to improve random access process.

The focus is now shifting to the grant-free transmission, i.e., when popt = 1. With
popt < 1, there can be some devices that are barred from the transmission and hence
experience delay. If popt = 1, all the devices transmit, reducing the delay. The four-step
handshake process also induces a delay. With the grant-free procedure, each device can
transmit at any time of its choice. It does not need to take permission from the eNodeB
for transmission. However, with the grant-free transmission, there comes a challenge.
If all the devices transmit simultaneously, collisions can take place. If the number of
resources is larger than the number of devices, the grant-free process outperforms the
conventional handshake-based random access process. However, if number of devices
is larger than the number of resources, which is generally the case, collisions can take
place and the performance will be worse than the conventional random access process.
Therefore, in order to make the grant-free process work, a sophisticated technique or
algorithm is required such that the collisions are minimized and success is maximized.
In [36], the authors studied grant-free transmission, where the resource pool was increased
virtually, such as in pattern division multiple access (PDMA) [37]. In [38], the authors
used multiple antennas to increase the success probability of the preambles; however, the
model used in our work is simpler as it only considers a single antenna. In [39], the authors
used collision reduction to solve the problem of congestion in grant-free random access
process in a massive MIMO scenario. Again, the receiver complexity was the issue, which
is nonexistent in our scenario. The authors in [40] used sparsity and then used signal
processing techniques at the receiver to decode which transmitter had transmitted on the
channel; however, it increased the receiver complexity, while the algorithm in our work
requires a simple receiver. In this way, there are enough resources for the devices to choose
separate channels and hence collisions can be reduced.

So far, we have discussed grant-based random access, grant-free random access,
and the techniques that are used to implement the grant-free transmission. Most of the
techniques used signal processing techniques or nonorthogonal transmission to resolve
the problem of collision. We did not find any work where grant-free transmission was
obtained without complex signal processing at the receiver and orthogonal transmission.
In this paper, we take this challenge and propose an algorithm for grant-free transmission
without receiver complexity and orthogonal transmission with the objective to minimize
collisions. We use deep learning techniques to realize our algorithm. In the first step, our
deep learning model is trained based on the scenarios of idle, success, and collisions. Then,
the deep learning model is used to predict the run time and which device needs to transmit
such that there is a maximum chance of success and a minimum chance of collision.
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3. System Model

As already mentioned above, for the system model, we consider a grant-free trans-
mission. Let us denote by M the total number of preambles or channels, and D the total
number of IoT devices trying to transmit to the network. Unlike in [36], in which the
resource pool was increased to incorporate a large number of IoT devices, we take a slightly
different approach by introducing stations N. The IoT devices, instead of transmitting
directly to the eNodeB, transmit to any of the N stations randomly. If there is no queue
in the station, the device directly transmits to the eNodeB, otherwise, it waits until the
queue ends. Each station has an infinite queue to incorporate a large number of IoT devices.
The IoT device emulates a unit buffer queue or a node, and it has one packet. Any real
time IoT device can be considered, especially the devices that send data on a consistent
basis. The devices may have the following properties: a unit buffered queue, small size of
the transmitted data, and a Poisson based distribution. The devices can be considered as
operating from batteries because of the small size of the packet and sporadic transmission.
The device leaves the system as soon as it achieves success and competes for the channel
again after obtaining a packet. The pictorial representation of the system model is given in
Figure 3.

Figure 3. System model: Queues of devices in stations.

We see that in Figure 3, the rows represent different stations and the columns in each
row represent the devices. The number of stations is limited while the number of devices
that transmits via stations is infinite. DN1_1 represents the first device in station N1 and
DN3_2 represents the second device in station 3, etc. The devices arrive in the system based
on a Poisson arrival process, with λ being the arrival rate. Each device has only one packet,
and as soon as it gets successful, it leaves the system and tries again when it has a packet. So,
in our scenario, devices and packets are the same things and may be used interchangeably
throughout the text.

When the device arrives at the station, it checks whether there is a queue ahead of it or
not. If there is no queue, which means there is only one device in that station, the device
immediately transmits, otherwise, it enters the queue. If there are multiple devices in a
queue, the device with maximum waiting time transmits, i.e., it follows the first-in-first-out
(FIFO) rule.

At the start of each time slot, the station which has the device transmits the packet to
the eNodeB. If only one station transmits and others remain idle, the event is a success,
whereas if more than one of the stations have a packet and they transmit, it results in
a collision. If queues of all the stations are empty, the event is idle. This is depicted in
Figure 4.

Since the handshake process and ACB are not used in grant-free transmission, it needs
a sophisticated algorithm to keep the number of collisions to a minimum and the number
of successes to a maximum. The proposed algorithm is able to predict which station should
transmit to have a minimum number of collisions and maximum number of successes. The
algorithm is explained in the next section.
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Figure 4. System model: Multiple devices transmission on single channel.

4. The Algorithm

As already mentioned, the algorithm tells which station needs to transmit. To achieve
this feat, we divide our task into two parts. In the first part, we use our proposed algorithm,
Algorithm 1, to train the DNN model. In the second part, the trained DNN is used to
predict the transmission of the desired station. Here, we first explain the algorithm, and
then later, the DNN model is also explained. The main parameter on which the algorithm
depends is the channel coefficient represented by CC ∈ (0, 1). The other secondary but
equally important parameters are the channel outcome represented by CO and the previous
three transmissions, represented by PT. CO is the outcome of the channel such as idle,
success, and collision, represented by 0, 1, and 2, respectively. PT is the previous three
transmissions of each station, whether the previous three transmissions have collided or
not. Let us denote by T, the threshold used to make decisions based on CC.

For each device, the CC is checked to see whether it is above the threshold T or not.
CC is the representation of the channel between the station and the eNodeB. A higher value
of CC represents a good channel whereas a bad channel has a smaller value of CC. If no
device has CC > T, this means that no device in any station is eligible for the transmission,
and the outcome of the channel is considered to be idle. This condition happens in lightly
loaded traffic, where the arrival of the devices at stations is very sporadic. If only one
device meets the condition CC > T, then it is a success, because it is the only device that
is eligible for transmission. The other devices simply refrain from transmitting as they
are not eligible. However, if more than one device fulfills the condition CC > T, then
success cannot be guaranteed, and other conditions also need to be checked. At this point,
the other parameter with the condition PT 6= 3 is checked. If only one device fulfills this
condition, then it is a success. The other devices that fulfill the CC > T condition but could
not fulfill the PT 6= 3 condition are prevented from transmitting, resulting in success. It
is possible that more than one device fulfills both the above-mentioned conditions, and
then comes the third condition CO = 1. Similarly, if only one device has CO = 1 then
it is a success, otherwise, it is a collision. So, by incorporating multiple conditions, the
probability of success is increased. It becomes extremely useful especially in lightly loaded
conditions where the arrival of devices is not in bursts. Therefore, we see that the algorithm
largely depends on T and associated conditions. A careful choice of T may result in a better
performance of the system which is discussed in the next section.
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Algorithm 1 Algorithm to train the DNN
1: Initialize N, M, CO = 0, PT = 0

2: For each device check the channel coefficient CC > T

3: if no device has CC > T then

4: the event is idle

5: else if one device has CC > T then

6: the event is a success

7: else if more than one device has CC > T then

8: check for a value of PT 6= 3

9: if one device has PT 6= 3 then

10: the event is a success

11: else if then

12: check for the value of CO = 1

13: if one device has CO = 1 then

14: the event is a success

15: else if then

16: the event is collision

17: end if

18: end if

19: end if

20: Update CO and PT

5. Optimal T

The threshold T plays an important role in enhancing the performance of the system
by affecting performance metrics such as the delay and success rate. T should not be
constant across all arrival rates as it may badly affect the performance of the system on
some arrival rates. If the arrival rate is low and T is also low, it means that the traffic is
sparse and may not qualify for transmission due to the low value of T. The result is more
idle traffic. On the other hand, if the arrival rate is high and T is also high, the large number
of devices may qualify for transmission, and hence collisions will take place. Therefore,
the value of T should vary with the arrival rates and should be optimal such that the idle
traffic and collisions are minimized and success is maximized. Hence, we face another
subproblem of constrained optimization.

max
T,PT,CO

Success (2)

To find out the optimal T, the number of successes is calculated for a value of the arrival
rate with changing values of T, PT, and CO. Then, the value of T and other parameters are
chosen that give a maximum value to the number of successes. Then, the optimal value of
T is used afterwards.

6. The Use of Deep Learning

To solve our problem, we considered a four-layer feed-forward neural network. Unlike
ML, where the optimal solution can be found by using one or two layers of data transfor-
mation to learn the output representation, deep learning provides a multilayer approach to
learning the data representations typically performed with a multilayer neural network.
There are different ways to model in deep learning and the most common and simplest of
them is a feed-forward neural network also known as multilevel perceptron. The pictorial
representation of the feed-forward neural network is shown in Figure 5.
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Figure 5. Layered DNN structure.

As we can see from Figure 5, there are four entities in neural networks, namely, the
input layers, hidden layers, output layers, and weights. Normally, a classifier maps an
input x to the output y via a y = f (x∗) function, whereas, in deep learning, the feed-
forward network defines a new mapping y = f (x; θ) and then learns the value of the
parameter θ that can make the best approximation of the function. The models are called
feed-forward because the information is evaluated using x through the function f while
using the computations in the intermediate layers, and based on these values, the output
y is calculated. There are no feedback connections among the layers as opposed to the
backpropagation model where we can also go in the backward direction.

Normally, the output of a neuron is 0 or 1, but in this model, since weighted sums
are involved, the output of a neuron is no longer 0 or 1 but a real number. This calls for a
decision methodology based on some threshold, which is called the activation function.

We used a sigmoid as an activation function where the output is +1 or 0 for the inputs
above or below the threshold, respectively, if the selected threshold is taken to be 0.5. The
sigmoid function, which has a mathematical representation of F = 1

1+e−x , is represented as
in Figure 6:

Figure 6. Sigmoid function.
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7. Simulation Results

Before discussing the simulation results, let us explain the feature extraction and
training process of the DNN. Figure 7 shows a screenshot of the features extracted. We see
that there are 10 rows with each row representing a station and within each station, there is
an infinite number of devices that are represented by columns. For each device, six features
are extracted and stored. The first six columns of the first row represent the features of the
first device in the first station. The columns from 7 to 12 in the first row represent features
of the second devices of the first station and so on. The features extracted are as follows:

• The channel coefficient;
• The transmitting device;
• The successful device;
• The devices that have coefficients greater than the threshold;
• The last outcome of the channel;
• An indicator whether the previous three transmissions of the device are collisions.

Figure 7. Extracted features to train the DNN.

A channel coefficient is a random number between zero and one drawn from a normal
distribution. The second feature tells us whether the device transmits or remains idle. If
its value is one, it means that the device has transmitted whereas zero represents an idle
scenario. The third feature tells us which device among all is successful. Since there is
only one channel, only one device can be successful, in which case this feature’s value
is one, otherwise, it is zero. The fourth feature is a flag that has a value of one when the
device has a channel coefficient greater than the threshold. If the value of the channel
coefficient is less than the threshold, its value is zero. The last outcome of the channel
means whether the previous outcome of the channel was a success, a collision, or an idle
event. It is an important parameter as it tells us whether there is a large number of devices
attempting transmissions or not. The last feature is related to the outcome of individual
devices, whether successful, idle or a collision. This feature is different from the previous
one, as in the previous feature the outcome of the channel was discussed while in this
feature, the outcome of the individual device is considered.

With all the features in hand, we needed to accumulate success scenarios such that
the features vividly point to the successful device. Once it was done, then the data were
fed to the DNN, which extracted the features depending on the success scenario. Then, the
fully trained DNN was able to tell us in real-time which device needed to transmit to get
maximum success and minimum collisions.

Let us discuss the simulation results after we apply Algorithm 1 to our system model.
The number of stations for the simulation was taken to be four and an infinite number of
devices were allowed to arrive and access the channel. In case of collision or idle event
for a device, which can result from the channel being busy, the devices could queue up
at the stations. The stations randomly accessed the channel based on a slotted ALOHA
protocol; however, the transmission was governed by Algorithm 1. The arrival distribution
was assumed to be Poisson with the arrival rate changing for each set of simulations. The
output parameters considered were the average access delay, the number of successes, and
the number of collisions. The idle, success, and collision events were recorded to form
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a dataset that served as input for training the DNN. The DNN was eventually used in
real-time to predict which device needed to transmit to maximize success and minimize
access delay.

In Figure 8, we plotted the average access delay versus the channel coefficient while
the arrival rate was kept constant. The access delays were plotted for two values of arrival
rates, i.e., λ = 0.1, 0.2. It is obvious that the lower arrival rate exhibits a lesser access delay
as shown in the figure. With an increasing value of channel coefficient, the average access
delay decreases because larger values of the channel coefficient represent good channel
conditions and vice versa.

Figure 8. Delay vs. channel coefficient.

In Figure 9, we plotted the average access delay versus the arrival rate when the arrival
rate varied from 0.1 to 0.3. The devices transmitted according to the scenario mentioned in
Algorithm 1. We see that the access delay is small when the arrival rate is small and keeps
on increasing with the increase of the arrival rate. This is understandable as more and more
devices try to transmit to the channel when the arrival rate is large and hence, they need to
wait more in the queues, which results in an increased access delay.

Figure 9. Delay vs. arrival rate.
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The plots in Figure 9 are shown for the scenarios where the thresholds on the channel
coefficient are 0.3, 0.5, and the optimal T are represented in back, red, and blue colors,
respectively. We see that when the threshold on the channel coefficient for transmission
is 0.3 or 0.5, the average delay is large. This is because when the threshold is 0.3 and 0.5,
too many devices transmit and this results in collisions, which increase the access delay.
Similarly, when the threshold is optimal, a relatively fewer number of devices transmit,
resulting in successful events. Moreover, it also reduces the number of idle events, and we
see that when it is optimal, the delay is less as compared to 0.3 and 0.5.

In Figure 10, we plotted the number of successes versus the channel coefficient thresh-
old for the arrival rate of 0.2. We see that the number of successes is small when the
threshold is low. It is because a large number of devices qualify for the transmission and it
results in collisions.

Figure 10. Number of successes vs. channel coefficient.

As the threshold increases, a smaller number of devices transmit, thus increasing
the chance of success. At the thresholds of zero and one, there is no success because the
channel coefficients are generated in (0, 1), so no device qualifies for transmission, hence
zero success. Moreover, we also plotted the number of successes in a scenario where the
transmitting device was predicted through the DNN. The graph in blue color represents the
actual number of successes whereas the estimated one in red color closely follows the actual
ones. This shows that our algorithm works fine and that the DNN predicts the transmitting
device such that success is maximized.

In Figure 11, we plotted the backlog of each station in actual and DNN-applied
scenarios. The backlog at each station is the number of IoT devices waiting for transmission.
In the actual scenario, the devices transmitted based on the Algorithm defined above
for learning purposes. In the applied DNN scenario, the devices transmitted based on
the prediction by the DNN. Please note that the DNN predicted which device needed to
transmit to have maximum chances of success. We see that the backlogs of both scenarios
are close to each other. Moreover, the backlog in the applied DNN scenario follows the
actual backlog, which determines that the prediction is quite good and the actual scenario
coincides with the applied DNN scenario.
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Figure 11. Backlog vs. time.

Along the same lines as Figure 11, Figure 12 represents how the DNN erroneously
selected a different device other than the actual one. In this figure, we present whether the
DNN successfully predicts the transmitting device not. Since in each time slot, only one
device transmits, the graph is either one or zero with one representing the transmission of
a device and zero representing the idle scenario. We see that our DNN model performs
correctly as we advance in time because we do not have a match in only some instances.
We also observe that the DNN estimated graph closely follows the actual one which states
that the DNN is performing well.

Figure 12. Number of successes vs. channel coefficient.
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8. Conclusions and Future Works

The conventional LTE-A random access procedure uses an access-barring scheme to
control congestion that arises due to a large number of IoT devices. This induces extra delay
during the transmission, and the overall efficiency of the system is affected. This paper dealt
with the grant-free transmission of IoT devices and coping with the collision problem which
is associated with it. The paper proposed an efficient algorithm that took channel conditions
into account and managed the transmission such that the successes were maximum and the
collisions were minimum. The algorithm was used to train a DNN model using an optimal
threshold and then the DNN model was used to predict which device needed to transmit
to have maximum chances of success. We see that by using the proposed algorithm in
grant-free transmission, the delay can be reduced and the overall system efficiency can
be increased. As machine/deep learning can be used to maximize the success rate, it can
also be used in other issues in random access networks. One such example is choosing
eNodeB in dense deployments such that the probability of success is maximum. Since the
eNodeBs can be large in number in dense deployments and the available traffic of devices
may not be uniform, it is possible that some eNodeBs face sever congestion while others
may not have any traffic. If the devices do not select the eNodeB intelligently, they may
end up facing long queuing delays and consequently have less throughput. We observe
that the devised algorithm selected the eNodeB such that the probability of success was
maximum and hence it improved the overall efficiency of the system. So this algorithm can
help alleviate congestion issues in dense deployment scenarios.

There can be different directions in which the work related to this topic can be done
in the future. One research direction can be to prioritize the access of devices based on
their importance using machine/deep learning. Currently, ACB is widely used as an
access-barring technique and the devices compete for the transmission. However, there are
certain devices which have time-critical data such as banks, hospitals, etc. A large delay
can hinder their performance. Therefore, an algorithm can be devised to set the priorities
of the devices and transmissions can be made based on the proposed algorithm such that
the throughput is maximum, and the access delay of time-critical devices is minimum.
Machine/deep learning can be used to predict the traffic of certain prioritized classes and
the traffic can be routed to more lightly loaded eNodeBs in case of congestion. Different
machine/deep learning techniques can also be used to select the best among them.

Another research direction can be to increase the throughput in grant-free random
access, and again, machine/deep learning can help to solve the problem. Currently the
transmission in random access is orthogonal, i.e., only one device can transmit on one
channel in a given time and frequency resource. If more than one of the devices transmit
on the same channel, it results in a collision, i.e., the receiver is unable to decode the
transmission of each of the transmitting devices. Nonorthogonal transmission can be a
solution to the problem where instead of taking it as a loss, it can be thought of as an
advantage, and deliberately, more than one of the devices transmit on a single channel. At
the receiving end, the receiver decodes the transmission of each of the transmitting devices
using machine/deep learning. Based on the available parameters, machine/deep learning
can help the receivers in decoding the received signals.
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