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Abstract: In a clinical context, there are increasing numbers of people with voiding dysfunction. To
date, the methods of monitoring the voiding status of patients have included voiding diary records
at home or urodynamic examinations at hospitals. The former is less objective and often contains
missing data, while the latter lacks frequent measurements and is an invasive procedure. In light
of these shortcomings, this study developed an innovative and contact-free technique that assists
in clinical voiding dysfunction monitoring and diagnosis. Vibration signals during urination were
first detected using an accelerometer and then converted into the mel-frequency cepstrum coefficient
(MFCC). Lastly, an artificial intelligence model combined with uniform manifold approximation
and projection (UMAP) dimensionality reduction was used to analyze and predict six common
patterns of uroflowmetry to assist in diagnosing voiding dysfunction. The model was applied to
the voiding database, which included data from 76 males aged 30 to 80 who required uroflowmetry
for voiding symptoms. The resulting system accuracy (precision, recall, and f1-score) was around
98% for both the weighted average and macro average. This low-cost system is suitable for at-home
urinary monitoring and facilitates the long-term uroflow monitoring of patients outside hospital
checkups. From a disease treatment and monitoring perspective, this article also reviews other studies
and applications of artificial intelligence-based methods for voiding dysfunction monitoring, thus
providing helpful diagnostic information for physicians.

Keywords: voiding dysfunction; urodynamics; artificial intelligence; mel-frequency cepstrum coefficient

1. Introduction

As a result of concurrent developments in healthcare and technology, artificial intelli-
gence technologies have made exceptional contributions to improving healthcare quality.
For instance, in medical imaging, deep learning models have been developed for predicting
bladder cancer [1] or other urinary tract tumors [2]. Relevant studies have demonstrated
that these models can lessen excessive diagnoses and treatment sessions, alleviate pain
in patients, and reduce unnecessary treatment costs. Regarding clinical studies on void-
ing dysfunction, according to the statistics compiled by Berry et al. [3], the prevalence of
voiding dysfunction increases with age. The incidence of storage and voiding male lower
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urinary tract symptoms report [4] about 51% and 26%, respectively. Interestingly, it is 18%
of men who reported the combination of storage and voiding symptoms. Typical symptoms
of voiding dysfunction include urinary frequency, urgency, urge incontinence, obstructive
sensation, and even urinary retention. These conditions could result in recurring urinary
tract infections and lead to kidney failure in severe cases if not managed appropriately. In
clinical practice, there are many people with voiding dysfunction, and current approaches
to monitoring the voiding status of patients include voiding diary records at home or
urodynamic examinations at hospitals [5]. The former is less objective and is prone to
missing data, while the latter is an invasive procedure that requires costly equipment, thus
reducing the frequency of measurements.

In the context of monitoring voiding dysfunction, medical professionals expect to
achieve their task goals through fully contact-free approaches [6]. Studies on the assis-
tive monitoring of voiding dysfunction, such as by Bright et al. [7], utilized ultrasound
to estimate the bladder weight of male patients and analyzed the association between
bladder weight and voiding dysfunction. Kuo et al. [8] used ultrasound to measure the
detrusor wall thickness of patients. They found a correlation between the detrusor wall
thickness of male patients and overactive bladder syndrome, while no such correlation
was found in females. These findings were consistent with those of Robinson et al. [9],
who investigated 128 female patients whose urodynamic examination findings were either
ambiguous or whose symptoms could not be explained by the examination findings alone.
After measuring the bladder wall thickness of patients through ultrasound, the authors
noted a marginal correlation between bladder wall thickness and voiding dysfunction
among female patients.

In the study by Choi et al. [10], only 7.2% of the 1415 female patients sought urologic
treatment for lower urinary tract symptoms. Among them, voiding symptoms were more
common than storage symptoms according to urodynamic examinations. The low visiting
rate of female patients might be due to the lack of a convenient and non-invasive diag-
nostic detection of voiding dysfunction. Similarly, because of data acquisition difficulties,
this study targeted men needing assistive monitoring of voiding dysfunction to serve as
participants. Jerry Blaivas et al. [11] attached a small-size vibration sensor that transforms
vibration signals into uroflow during urination to the dossal site of the penis. The device
assists in in-home monitoring of patients’ voiding status. It is a new technology for repeated
outpatient uroflow monitoring.

The remaining sections of this text are as follows: Section 2 concludes the related
works of machine learning technologies applied for voiding symptoms identification and
dysfunction diagnoses of clinical research, Section 3 describes the materials and method-
ology of the proposed system, Section 4 introduces the data analysis methods and model
development results and discussion, and Section 5 presents the conclusions and directions
for future research.

2. Related Works

Artificial intelligence (AI) has been widely used to study and treat various diseases.
The study of Zeeshan Hameed et al. [12] illustrated that AI diagnosis is feasible in urology,
regardless of disease severity—from benign prostatic hyperplasia to critical diseases such
as urothelial and prostate cancers. Therefore, using AI technology to detect, assess, and
treat urological diseases is superior to all the existing traditional methods. Eun et al. [13]
indicated the possibility of the modern application and development of AI in urological
research, especially in the diagnosis and treatment of urological diseases. Machine learning
algorithms will improve the accuracy of predictions for various bladder diseases, including
interstitial cystitis, bladder cancer, and reproductive urology. The application of AI leads to
a higher accuracy of disease diagnosis and prediction models to monitor accurate decision
making in medical treatment. Qureshi et al. [14] used general neural network (ANN) and
convolutional neural network (CNN) methods to effectively solve the problem of female
urinary incontinence diagnosis and management. Jin et al. [15] combined MFCC with a
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convolutional neural network (CNN) and developed a psychoacoustic model to measure
automotive transmission noise perceived by humans. Cuocolo et al. [16] used machine
learning (ML) to read prostate magnetic resonance imaging (MRI). This study compares the
ML method with traditional methods. Many clinical applications of MRI do not segment
glands, which limits their effectiveness in detecting, diagnosing, and locating cancer. In this
study, the particular novel ML model incorporating ML and deep learning (DL) is proposed
to highlight the differences between MRI applications in the prostate treatment pipeline.
However, the validation and reproducibility of clinical applicability must be improved.
Jin et al. [17] generally used non-invasive uroflowmetry to diagnose lower urinary tract
symptoms (LUTS) and the patient’s health status. This study established an AI system
that used acoustic features for LUTS assessment and was validated with a long short-term
memory (LSTM) deep learning algorithm. The results were similar to clinical urological
measurements. In the future, the system could be developed for home testing devices to
realize the functions of remote continuous monitoring and diagnosis.

In clinical research, Enshaeifar et al. [18] indicated that urinary tract infection (UTI)
is one of the top five reasons for hospital admissions of dementia patients (about 9% of
all admissions of dementia patients in the UK). Based on that, we worked with clinical
physicians on the machine learning algorithms designed to detect UTI and integrated
internet of things (IoT) technology, home sensory devices, and machine learning techniques
to monitor the health and well-being of people with dementia. This will allow us to
provide more effective and advanced care for the patients and reduce the number of
hospital admissions. Karmonik et al. [19] used four random forest machine learning
methods to study multiple sclerosis (MS) in 27 females with neurogenic lower urinary
tract dysfunction (NLUTD) and voiding dysfunction (VD). The relative importance of
brain regions with urination-initiated reduced functional connectivity (FC) was part of
the research. Micturating people and VD patients showed significantly different voiding
initiation networks, and machine learning was able to observe and identify differences in
brains. Lee et al. [20] developed a smartphone-based approach to acoustic uroflowmetry
to achieve accuracy and reliability and to compare with conventional uroflowmetry. A
prospective validation experiment with 128 subjects concluded that the use of acoustics
to analyze uroflowmetry is comparable to conventional analyses of uroflowmetry. This
allows patients to perform urine flow measurements in the clinic or at home and provides
a reliable and low-cost test. Dawidek et al. [21] used audio-based uroflowmetry as a novel
alternative method. The subjects in this experiment were 44 male patients. Urinary flow
can be confirmed by sound measurement. With a smartphone application, screening and
monitoring can be performed. This approach can be applied to urological disorders and can
be used outside the clinic. Helou et al. [22] proposed and evaluated a novel mobile acoustic
flow measurement (sonouroflowmetry, SUF) method to overcome the inconvenience of the
traditional non-invasive uroflowmetry (UF) clinical test. The proposed method estimated
urinary flow rate in the diagnosis of lower urinary tract dysfunction (lower urinary tract
dysfunction, LUTD) using mobile phone-recorded sound signals. In this method, by
linearly mapping the total sound energy to the total voided volume, the sound energy
curve was converted into a flow rate curve, which allows for an estimation of the flow
rate over time. Evaluation of this experiment on data from 44 healthy young men showed
a high degree of similarity between UF and SUF flow rates, with a mixed-effects model
correlation coefficient of 0.993 and a mean root mean square error of 2.37 mL/s.

This study was based on a smart healthcare recommendation system for human void-
ing dysfunction, as shown in Figure 1a, with the target population being men with voiding
dysfunction. Unlike past methods of using microphones for urinary flow sound captur-
ing, we directly use the attached vibration sensor, which can avoid receiving background
sound noise from the environment. The accelerometer was installed on the side of the
funnel-shaped urine bucket in the clinic, as shown in Figure 1b. When the bucket is used,
the instrument will simultaneously detect the urine flow and the vibration signal. Our
goal is to develop a smart, contact-free monitoring system for voiding dysfunction to shed



Appl. Sci. 2022, 12, 7216 4 of 17

preliminary light on patients’ existing symptoms. The combination of urodynamics and the
principles of artificial intelligence facilitates data collection and patient status monitoring,
thus providing diagnostic information that enables both physicians and patients to achieve
favorable outcomes.
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Figure 1. (a) The study flowchart and framework. (b) The experimental vibration accelerometer
attached to the urinal bucket.
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3. Method Descriptions
3.1. System Architecture

The architecture of the proposed system is shown in Figure 2. The system consists of
three major components: (1) a vibration signal and deep learning-based voiding pattern
classifier; (2) an accelerometer and signal extractor that performs real-time vibration signal
collection and testing; and (3) a graphical user interface that displays the output. The first
step developed a vibration signal dataset and trained and tested the model through deep
learning, followed by data storage and deployment of the offline model. The final step
performed real-time testing and displayed the results. The components of the system are
described in the following sections.
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Figure 2. The components and architecture of the prototype system.

3.2. System Hardware

A prototype system was developed to test the deep learning model in real-time. The
system’s hardware components include a urinary flow meter, a Kistler triaxial accelerometer
(8688A50), a signal extractor (NI 9234), and a mobile user device that displays real-time
feedback information. The system usage procedure is described as follows: When a
patient urinates, the impacting urine creates vibrations on the accelerometer, which are
first converted into vibration signals registered by the accelerometer and then into digital
signals by the signal extractor. The signals are transmitted wirelessly to the mobile device,
and the results are tabulated and displayed.
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3.3. Data Sets

The real-time monitoring system for voiding dysfunction classification was developed
by training and testing the deep learning model using the collected datasets, named Ten
Chen Medical Group (TCMG) voiding database. The following subsections describe the
dataset details, signal preprocessing, and model training and testing.

The TCMG datasets used for deep learning model training and testing [23,24] were
collected using measures and standards approved by the institutional review board (IRB)
of the cooperating hospital. The hospital used the developed system to acquire patients’
uroflowmetry data. The TCMG voiding database included data from 76 males aged 30
to 80 who required uroflowmetry [25] for voiding symptoms. The exclusion criteria were
small bladder capacity (<50 mL), external genital malformations, and inability to complete
uroflowmetry. For each participant, at least one or two uroflow measurements were
performed, and each was recorded for no longer than 30 s. An average of approximately
24.67 seconds of signal length was collected per patient. The total signal length in the
database was 31.25 min. Each patient’s data was annotated with his diagnosis through
a uroflowmetry test [25] for voiding dysfunction diagnosis. The uroflowmetry is a key
diagnostic information for voiding dysfunction. The physicians labeled all the voiding
patterns and clinical impressions. There were six typical voiding patterns labeled from
0 to 5 (0 indicates normal voiding while the others indicate abnormal patterns). A total
of 38 patients were diagnosed with decrease, 4 patients with flattened, 5 patients with
intermittent, 9 patients with saw-tooth, 2 patients with tall and peak, and 18 patients
with normal.

As shown in Figure 1, the six typical voiding patterns are labeled classified as: 0
(normal flow, which is the bell-shaped pattern with an adequate peak flow rate); 1 (Tall
and peak flow, i.e., the urine flow rate reaches a high flow peak quickly and decline soon);
2 (decreased flow, i.e., a prolonged urine flow time with a low peak flow rate presented);
3 (saw-tooth flow, i.e., the urine flow rate fluctuates greatly but does not drop to zero);
4 (intermittent flow, i.e., the urine flow rate drops to zero and rise again later); and 5
(flattened flow, i.e., the urine flow rate is gradual and constant until the end). In this
study, the physicians visually compared the voiding patterns based on the raw vibration
signal data. For example, for Patient 39, the physician labeled the raw data as “decreased
flow”, i.e., a prolonged urine flow time with a low peak flow rate was presented, which is
consistent with the observed raw data. Thus, there is a correlation between the datasets
and the patients’ urinary features.

3.4. Data Preprocessing

The root mean square (RMS) [26] of a sensor-generated vibration signal was used to
assess the vibration level in the data preprocessing. As shown in Figure 3, the raw signals
underwent pre-emphasis filtering through a Butterworth filter, were converted into the
frequency domain via a fast Fourier transform (FFT) [27], and their features were extracted
through the mel scale. The final step generated the spectrogram of the signals.

3.4.1. RMS Processing

The RMS value is a reference for assessing the magnitude of vibrations. It is the mean
vibrational energy within a given period, calculated as follows:

RMS =

√√√√ 1
T

T

∑
n=0

X(n)2 (1)

where T is the period, and X is the accelerometer vibration signal. This equation yields
the RMS of a raw signal, and this value is used for comparisons with the uroflowmetry
chart used initially for diagnosis. The patterns in both charts should be consistent with
each other.
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3.4.2. MFCC Processing

This project converts the subject’s periodic breathing audio data into a characteristic
spectrum sequence using mel-frequency cepstrum [28]. This method is based on a linear
transformation of the logarithmic energy spectrum of the mel frequency scale, which
approximates the human auditory system.

The raw input signals were windowed such that each segmented window had a length
of 2048. The input signals were subjected to pre-emphasis filtering the unwanted high
frequency components through a Butterworth low-pass filter [29]. When the pre-emphasis
filtering of the signals was complete, they were converted from the time domain to the
frequency domain via an FFT, and the frequencies were further converted to units of
mels [30,31]. The mel scale is a non-linear scale unit based on the pitches perceived by the
human ear. The formula equation for converting between the mel scale and frequency is
as follows:

y(k) = log10

(
10000

∑
k=0
|x(k)|2Bm(k)

)
(2)

where k is the frequency grid point, x(k) is the frequency spectrum of auditory signal in
time domain, and y(k) is the mel spectrum after applying the function of Bm(k) as the mask
function of the mel-frequency cepstrum, which corresponds to mel frequency scale fm(k) as

fm(k) = 2595 log10

(
1 +

k
700

)
(3)

Then, the principle of mel triangular filtering is based on the use of a certain number
(m) of triangular filters, and the interval between each f(m) changes with the value of m;
the interval decreases when m decreases, and vice versa. The frequency response of a
triangular filter [32] is defined in the following equation:

Bm(k) =


0, k < fm(k− 1) and k > fm(k)

k− fm(k−1)
fm(k)− fm(k−1) , fm(k− 1) ≤ k ≤ fm(k)
−k+ fm(k+1)
− fm(k)+ fm(k+1) , fm(k) ≤ k ≤ fm(k + 1)

(4)
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Using the inverse discrete cosine transform to obtain the MFCC parameter value by,

ym f cc(n) =
1

kN

kN

∑
k=1
|y(k)|2 cos

(
πn(k− 0.5)

kN

)
(5)

A mel triangular filter smooths the frequencies and reduces the harmonic effects while
highlighting the raw signal features as ymfcc(n), where n is set to 32 in this case. Additionally,
the derived spectrogram ymfcc(n) improves the learning speed of a CNN by reducing the
amount of data to be processed.

3.4.3. Data Analysis

This study transformed the original physiological vibration signal through the MFCC
spectrums to display the energy distribution of the physiological vibration signal in the
time–frequency domain. This conversion allows the characteristics of various physiological
vibration signals to become more prominent and easier to be directly observed by the
human eye. Among them, red is the color response when the energy of the time–frequency
diagram is higher, and blue is the lower energy. The y-axis of the time spectrum is normal-
ized and displayed, and the frequency interval is divided into 1 Hz to 150 Hz. The example
analysis diagram (as comparatively shown in the normal flow in Figure 4a and the tall and
peak flow in Figure 4b) shows that the normalized resonance frequency of the measuring
cup is around the 50 Hz to 100 Hz. In normal urination, the energy area of the spectrum is
continuous and concentrated; on the contrary, in abnormal conditions, as in the case of the
tall and peak flow, it indicates that the patient’s voiding velocity rises quickly and declines
later. Furthermore, no significant resonance in frequency was observed in the decreased,
saw-tooth, intermittent, and flattened flow cases as shown in Figure 4c–f, in which multiple
impulses can be seen on the time axis according to the RMS signals. However, it is evident
based on the time axis that the intervals between and patterns of urination differ among
all cases.

On the other hand, as shown in Figure 4c,e, the patient’s initial RMS value is marked
by Qmax, and there are small signal impulses. In reality, the saw-tooth (Figure 4d) and
intermittent flows (Figure 4e) are presented as multiple and instantaneous occurrences of
strained urination, which is a symptom of compensated abdomen forcing due to outlet
obstruction or detrusor muscle weakness. However, in comparison with Figure 4d, the
intermittent flow in Figure 4e shows more multiple and instantaneous occurrences of
strained urination. Therefore, even though both types of flow have similar features, the
peak frequency in the same time interval differs throughout the urination process. The
flattened flow in Figure 4f suggests that insufficient energy was applied during urination.
The resonance energy generated by the measuring cup is low, and the energy sustained
is minimal compared to the other cases. Due to the insufficient energy applied for urina-
tion, the length of urination is comparatively longer, which reflects the characteristic of
this vibration.

3.5. Deep Convolutional Neural Network

The model developed in this study as shown in Figure 5 was based on a CNN ar-
chitecture [33,34] consisting of convolutional layers with batch normalization layers [35]
and pooling layers, a rectified linear unit (ReLU) as activation function layers [36], fully
connected layers, and then finally with a Softmax function for classification purposes [37].
The difference between a CNN and a traditional artificial neural network [38] is that the
former combines a convolutional layer and a pooling layer to perform down-sampling,
thus increasing the feature extraction process and subsequently reducing the time required
to train the neural network. Each hidden layer is expressed as the following sections:
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Figure 5. The architecture of purposed convolutional neural network.

3.5.1. Convolutional Layer

There are two types of convolutional operations: one-dimensional (1-D) and two-
dimensional (2-D). This study adopted the second approach because 2-D spectrograms
were input into the neural network model. In image feature extraction using convolutional
layers, multiple convolutional kernels, or filters [39] slide and convolve over the input
image in a defined order. After completing the operation, a feature map is generated,
serving as the next layer’s input data. The advantage of a convolutional layer is that it
retains the original order information of an image, and the neurons in a convolutional layer
can only connect with some of the neurons in the preceding layer. The neurons in the same
convolutional layer share parameters, significantly reducing the number of parameters
required for training.

Y(i, j) = ∑
m

∑
n

w(m, n)X(i + m− θ, j + n− θ) (6)

where X represents the input data, Y represents the output results, θ is the stride, w is the
convolution kernel, and n and m are the one-time convolution kernel sliding lengths, respectively.

3.5.2. MaxPooling Layer

A MaxPooling layer primarily reduces the complexity of a feature map and uses a
kernel-based approach to pick the largest value of the feature map. A pooling layer differs
from a convolutional layer because it does not require learning parameters and is simpler
to operate. The equation of applying MaxPool can be represented as

Y = MaxPool(id, jd) = max{X(i + ∆, j + ∆} (7)

More detailed features can be extracted through a pooling layer while also effectively
reducing the number of parameters needed for subsequent training as well as preventing
overfitting [40,41]. Common pooling layer approaches include max pooling and average
pooling. The latter effectively preserves background noise but is prone to feature blur-
ring. The former extracts the maximum values from a feature map and effectively filters
background noise, making it more suitable for processing spectrograms. Hence, the max
pooling layer processing method was used in this study to highlight voiding dysfunction
spectrum features.

3.5.3. Fully Connection Layer

When the MaxPooling layer extracts the largest characteristics from the convolution
results, the Full Connection layer is then used for compiling the features extracted to form
the final output. If the two-dimensional convolution results are substituted into the Full
Connection layer, the two-dimensional matrix generated after the convolution must be
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converted into a one-dimensional vector, expressed as, yn = reshape[MaxPoollast(i, j)],
n = 1, 2, 3, . . . , N and N is the vector length after conversion. Then, the full connection
layer can be expressed as

Ym = RELU

(
∑
m

wmXm + bm

)
(8)

where weighting w and bias b are the updating parameters of the Full Connection layer,
and the ReLU is the activation function as RELU(∅) = max(0,∅). For the classification of
six classes, the Softmax function, as Yclass = exp

[
zj
]
/ ∑

i
exp[zi], which maps the multiple

classification results of the model’s final prediction output to the elements in each vector
is located within (0, 1), and the sub-intervals represent the probability distribution of
each classification.

For supervised learning, this study used a set of MFCC spectra and their corresponding
voiding patterns labels to define the classification purpose of the convolutional neural
network. To train the proposed model, the Adam (adaptive moment estimation) [42]
iterative search algorithm was used to search for the neural network coefficient to minimize
the error of the model predictions and ground truth (clinically case label).

4. Results and Discussion
4.1. Model Evaluation

We used statistical indicators to assess the prediction model and further described it
using binary classification. P represents positive dataset values, and N represents negative
dataset values. True positive (TP) and true negative (TN) indicate that the predicted
values are consistent with actual values, while false positive (FP) and false negative (FN)
indicate that the predicted values differed from actual values [43,44]. In this study, the four
following indicators were used for assessment:

Accuracy: The ratio of datasets correctly predicted by the classifier to the total number
of datasets.

Accuracy =
TP + FN

TP + TN + FP + FN
(9)

Precision: The ratio of correctly predicted positives to the total number of predicted
positives in the sample.

Precision =
TP

TP + FP
(10)

Recall: The ratio of correctly predicted positives to the total number of positives in
the sample.

Recall =
TP

TP + FN
(11)

F1-score: A measure of the precision of an algorithm by simultaneously including
precision and recall.

F1-score =
2× Precision× Recall

Precision + Recall
(12)

Based on the preceding descriptions, accuracy is an indicator that directly measures the
overall identification results but cannot reflect the actual status of each category. However,
in the training process, most of the datasets in the major categories (Labels 0 and 1) could
learn more information and features than the minor categories (Labels 2 to 5). This issue
may reduce the identification capacity of the minor categories despite the high overall
accuracy in the model evaluation. Since some classes of data have significant quantitative
imbalances, we used random oversampling, which involves randomly selecting examples
from the minority class, with replacement, and adding them to the training dataset but
not for the testing dataset (unseen dataset). In this study, naive random oversampling was



Appl. Sci. 2022, 12, 7216 12 of 17

used for balancing and augmenting data. To avoid overfitting, naive random oversampling
was used to generate new samples for balancing and augmenting data from the minority
classes (2, 3 and 5), which is underrepresented.

The classification model for voiding dysfunction patterns was developed by dividing
the TCMG database into training and testing datasets. K-Fold cross-validation resulted in
statistically significant results. In K-Fold cross-validation, the original sample is randomly
divided into k equal-sized subsamples. Among the k subsamples, one subsample is
reserved as validation data for testing the model, and the remaining k− 1 subsamples are
used as training data. The cross-validation process is then repeated k times, and each of the
k subsamples is used only once as validation data. The k results can then be averaged to
produce a single estimate. In this study, we used 10 observations for k = 2. After the data
were shuffled, a total of 5 models were trained and tested. Then, the validation results were
averaged over the rounds to estimate the model’s predictive performance.

Estimating the performance of the model can be resolved using the three indicators
(precision, recall, and F1 score), thus highlighting their importance. One of the represen-
tative CNN results is shown in Table 1. On this basis, all indicators were used for model
assessment, with the results shown in Table 1. The testing results revealed that the model
recall accuracy was 98.19% for the weighted average and 98.09% for the macro average.
The precision, recall, and F1 score of Labels 3 and 5 exceeded 99%, suggesting a higher
classifying ability than the other labels. The result of the K-Fold cross-validation is pro-
vided in Table 2. As shown, the average accuracy of three indicators as assessed through
K-Fold cross-validation was between 97.98% and 98.25%, indicating that the CNN model’s
predictive performance is significant.

Table 1. The performance of urination patterns in data sets and evaluation indicators.

Label Category Number of
Person Precision Recall F1-Score

Support Data
(Length in
Seconds)

0 Normal 18 0.9647 0.9932 0.9787 86.17 s
1 Decrease 38 0.9937 0.9876 0.9906 183.45 s
2 Flattened 4 0.9979 0.9844 0.9911 16.07 s
3 Intermittent 5 0.9228 0.9977 0.9588 29.15 s
4 Saw-tooth 9 0.9989 0.9248 0.9604 47.65 s
5 Tall and peak 2 1.0000 0.9974 0.9987 13.05 s

Macro-average accuracy 0.9797 0.9809 0.9797
375.54 sWeighted-average accuracy 0.9826 0.9819 0.9819

Table 2. Result of K-Fold cross-validation for the CNN model.

K-Fold
Macro-Average Accuracy Weighted-Average Accuracy

Precision Recall F1-Score Precision Recall F1-Score

1 0.9797 0.9809 0.9797 0.9826 0.9819 0.9819
2 0.9760 0.9798 0.9772 0.9805 0.9797 0.9797
3 0.9783 0.9823 0.9797 0.9831 0.9822 0.9822
4 0.9866 0.9711 0.9787 0.9806 0.9805 0.9805
5 0.9897 0.9849 0.9872 0.9881 0.9880 0.9879

Average 0.9821 0.9798 0.9805 0.9830 0.9825 0.9824

Table 3 shows comparisons between the performance of three different types of neural
networks, using the same data settings as Table 1, in which CNN and recurrent neural
network (RNN) with LSTM architecture had more than 0.9 accuracy, while the simple three-
layer hidden layer had a precision of more than 0.9. In this study, the vibration spectrum
was used as the input. For a general ANN, due to the lack of convolutional layers, we first
flattened each spectral signal into one dimension and input it to a pure full connection
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layer with 512 neurons; then we added an output full connection layer with a Softmax
activation function for classification. As a result, the ANN model achieved a precision
of 0.6873. In the case of multi-dimensional approaches, the LSTM and ANN models are
difficult to detect effectively the features displayed by the frequency because there is no
convolution method to extract the important features of the MFCC spectrum. However,
LSTM has a good comparison of before and after information detection for time series, so
the accuracy still has a certain feasible level. However, compared to ANN’s approach of
only having a purely full connection layer, its accuracy is much lower.

Table 3. The performance of different neural network learning methods with evaluation indicators.

Method Precision Recall F1-Score Remark

RNN 0.9026 0.9010 0.9018 Inspired by LSTM [17]
ANN 0.6873 0.6626 0.6658 Inspired by [14]
CNN 0.9826 0.9819 0.9819 Proposed

Noted: Weighted-average accuracy.

To validate the classifiable nature of the collected data, the AI model developed in this
study was also subjected to data clustering through uniform manifold approximation and
projection (UMAP) data visualization [45]. The testing results provided in Tables 1 and 2
and the results of the UMAP data visualization analysis show that this measure indeed
enhances data classification. The vibration signals in the study were converted into MFCC
spectrum features. The UMAP approach was used to convert these spectrum features onto
an N-to-2D plane (where N was selected to be two in this case), and the data labels were
expressed in colors to visualize the data so that the model’s performance could be easily
observed, as shown in Figure 6a,b. As a result, as shown in Figure 6a, each class feature is
rough and overlapping before training. After training, each label of data can be distinctly
categorized as shown in Figure 6b; it is observed that different clusters can be segmented,
thus confirming the classifiable nature of the datasets.
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4.2. Real-Time Implementation

Based on the real-time urine flow monitoring, this study introduced the model to
identify real-time voiding situations, and the experiment will identify and diagnose several
cases based on time series. As shown in Figure 7, the red labels represent actual values
in the bottom figure, while the blue curve represents model-predicted values. Sections in
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which the colors overlap indicate that the model had accurately predicted the classification.
Because most of the lines overlapped, we can conclude that the model has excellent
predictive power.
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Figure 7. Expanded samples and labels in time series to verify the accuracy of the model applied to
real-time detection.

Although the RMSs of the vibration signals sometimes are similar, the predictions
were different compared to the ground truth labels in the time series. For the physician-
diagnosed symptoms, a voiding pattern is usually classified as a primary or a secondary
diagnosis in a clinical diagnosis. However, most patients had composite symptoms because
of the lack of one-type clinical data. There are slight identification errors that occurred in
each category. For example, the model determined the primary diagnosis and secondary
diagnosis for patients with their primary diagnosis being bladder outlet obstruction (BOO)
as decrease and intermittent flow cases, respectively. The average prediction was consistent
with the physician’s diagnostic label for minor prediction abnormalities. However, the
application of time series is very likely to be an application example of home health care.

5. Conclusions and Future Work

This study has proposed an innovative assistive diagnostic system that uses existing
testing and system development methods to generate contact-free vibration signals from
men with voiding dysfunction. Based on the high accuracy rate, there are some possible
clinical applications. The at-home and continuous monitoring of voiding conditions can
provide clinicians with important information on voiding drug effects or pre- and post-
prostate surgery voiding conditions, e.g., alpha-blockers for prostate enlargement disease or
transurethral resection of prostate surgery. Otherwise, the AI model with a time recording
system makes the voiding diary more convenient and delicate.

Nonetheless, this study has certain limitations. One limitation is the lack of female
data due to the difficulties with female voiding recording. We may collect female voiding
data during the urodynamic examination. In addition, the AI model needs to be calibrated
when collecting signals in different media, e.g., the uroflowmetry plastic bottle or a toilet
bowl. We may be able to develop a correction coefficient database based on the vibration
signals of different media analyses. Composite diagnostic criteria can easily lead to model
identification errors in clinical diagnoses. The relevant datasets must be broadened to
classify the primary symptoms more accurately. We can use the UMAP method to visualize
and understand how well clustered each category is. The results of the visualization
analysis show that the CNN enhanced the performance of the classification of different
voiding symptoms. These results need to be taken with caution, as they were obtained on a
rather small and unbalanced database.

The proposed monitoring system is low-cost, small-sized, and provides real-time
results, making it suitable for patients undergoing at-home care. It also achieves real-time
remote and continuous symptom monitoring. In the future, the data collected by the
system will assist in the diagnosis of voiding dysfunction-related diseases and facilitate the
integration of large databases and multiple sources of information, producing algorithms
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that improve voiding dysfunction diagnoses. These algorithms can help physicians to more
effectively gain access to diagnostic information, reduce the probabilities of diagnostic
errors, and compensate for existing shortcomings in clinical diagnosis.
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