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Featured Application: The application of research results is mainly in the fields of rock fracture
seepage, geothermal development and utilization, etc.

Abstract: Fracture seepage is an important aspect of groundwater research, but due to the closure
of fractures and the randomness of wall surface roughness, it is a challenge to carry out relevant
research. Numerical simulation serves as a good way to solve this problem. As such, the water flow
in single fracture with different shapes and densities of roughness elements (various bulges/pits
on fracture wall surfaces) on wall surface was simulated by Fluent software. The results show that,
in wider rough fractures, the flow rate mainly depends on fracture aperture, while, in narrow and
close rough fracture medium, the surface roughness of fracture wall is the main factor of head loss
of seepage; there is a negative power exponential relation between the hydraulic gradient index
and the average fracture aperture, i.e., with increase of rough fracture aperture, both the relative
roughness of fracture and the influence of hydraulic gradient decrease; in symmetrical-uncoupled
rough fractures, there is a super-cubic relation between the discharge per unit width and average
aperture; the rough fracture permeability coefficient K is not a constant which is affected by the scale
effect and the density of roughness elements. Results found provide further understanding of rough
fracture seepage.

Keywords: seepage characteristics; single fracture; roughness; numerical simulation; fluent

1. Introduction

The bedrock fracture seepage characteristics are related to many research fields, such
as groundwater utilization, underground engineering, hydraulic engineering, geothermal
development, etc. [1–4]. Single fracture is the most basic component unit of fracture media,
so the flow characteristics of single fracture is the key point to study the seepage and solute
transport of fracture media [5].

The early research on bedrock fracture seepage mostly relied on Darcy’s law, which
characterized pore seepage, but the application of Darcy’s law had preconditions, including
media homogeneity and isotropy, temperature and pressure. Studies had shown that
Darcy’s law was only valid within a certain hydraulic gradient; if this range was not
reached or exceeded, the linear relation described by Darcy’s law no longer existed, and
Darcy’s law was no longer applicable [6,7].

Snow put forward the LCL (local cubic law) through simulation experiment of water
flow in smooth parallel plates and found that the discharge through fracture cross-section
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was proportional to third power of the fracture aperture [8]. LCL was based on a smooth
parallel plates model, and an important parameter, the roughness of fracture wall surface,
was not taken into consideration. There is no ideal smooth fracture in the nature, and the
existence of roughness elements on fracture wall surface will narrow down the passage of
water (Figure 1). Therefore, in practical applications, LCL often overestimated the seepage
capacity of rough fracture [9,10]. The real fracture surface is generally rough and uneven,
and the aperture also changes randomly at different positions in fracture, so the concepts of
hydraulic fracture aperture eh, average fracture aperture e, and mechanical fracture aperture
em were introduced. Hydraulic fracture aperture eh was also called equivalent hydraulic
fracture aperture, which was an inference value, i.e., the rough fracture was equivalent to a
smooth parallel plates fracture with aperture eh, and its value could be calculated according
to LCL after the flow of the rough fracture was measured; the average aperture e was the
average value of the fracture apertures along the fracture; the mechanical fracture aperture
em referred to the maximum closing deformation value of the two surfaces of fracture.
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b is the spacing between two adjacent roughness elements, and e is fracture aperture.

Other researchers had performed research work before and after the formal estab-
lishment of LCL theory, and proposed and developed the relation among discharge per
unit width q, fracture representative aperture ẽ (including hydraulic fracture aperture eh,
average aperture e, and mechanical aperture em), and fracture roughness (including rela-
tive roughness and absolute roughness), which modified and supplemented LCL theory
(see Section 2.1). Xu et al. found that, when the average fracture aperture e was used to
replace the hydraulic fracture eh, there was a super-cubic or sub-cubic relation between the
discharge per unit width q and average aperture e [11]. In short, the following challenges
still exist for the study of fracture seepage: how to quantify the effect of rough fracture wall
surface on seepage and the effect of relative roughness on seepage; how to evaluate the
applicability of LCL in rough fractures and its characterization equations.

The experimental method can be used to study the above problems, but in practice,
due to the temporal and spatial variability of fracture media, the closure of fractures and
the randomness of wall surface roughness and groundwater movement in fractures being
quite complex, the experimental method is generally not viable. In recent years, with the
development of technology and the application of new technologies, some scholars began to
apply numerical simulation methods to the research of hydraulic engineering, groundwater
and fracture seepage [12–16]. The advantage of numerical simulation method is that it is
easy to set parameters of fracture and seepage, such as the fracture aperture, the shapes and
densities of roughness elements on fracture wall surface, and a variety of seepage conditions
can be simulated without the high cost associated with the experimental method [17,18]. In
this paper, Fluent numerical simulation software [10] was used to simulate the following
seepage characteristics in rough single fracture under the conditions of different shapes,
distribution densities, and fracture apertures: (1) the influence of fracture wall roughness
on fracture seepage; (2) the effect of fracture relative roughness on seepage; (3) super-cubic
and sub-cubic relations of seepage in rough fractures; and (4) the scale effect of permeability
coefficient K in rough fracture.
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2. Materials and Methods
2.1. Theoretical Background

The current research on fracture seepage is mainly based on the LCL:

q =
ge3

12µ
J (1)

where: q is discharge per unit width, mm2/s; g is gravitational acceleration, m/s2; e is
fracture aperture, mm; µ is the kinematic viscosity coefficient of water, mm2/s; J is the
hydraulic gradient, dimensionless. Hydraulic gradient refers to the ratio of head loss along
the seepage path to the length of the seepage path; it can be understood as the mechanical
energy lost by the water flow to overcome the friction resistance through the infiltration
path of unit length; or the driving force that makes water flow at a certain velocity to
overcome friction; or is the head drop per unit distance along the flow direction in the
aquifer (the ratio of the water level difference at any two points to the distance between the
two points).

For the establishment, development, and improvement of LCL, many researchers had
introduced absolute roughness ∆ and relative roughness δ, and established the relations
among discharge per unit width q, fracture aperture e and fracture roughness, so that LCL
could be applied to study the seepage in rough fractures.

Lomize [19]:

Flow of laminar : q =
g(e)3

12µ
J

1

1 + 6(∆
e )

1.5 (2)

Flow of turbulent : q = e
√

gJe[2.6 + 5.1 log10 (
2∆
e
)
−1

] (3)

Louis [20]:

Flow of laminar : q =
g(e)3

12µ
J

1

1 + 8.8( ∆
2e )

1.5 (4)

Flow of turbulent : q = 4e
√

gJe log10[1.9(
∆
2e

)
−1

] (5)

Amadei and Illangasekare [21]:

q =
g(e)3

12µ
J

1

1 + 0.6( σe
e )

1.2 (6)

Su et al. [22]:

q =
g(e)3

12µ
Jm 1

1 + 1.2(∆
e )

−0.75 (7)

The above formulas can be generalized as [11,23]:

q = C
g

12µ
(ẽ)n Jm 1

1 + εδη (8)

In the above equations: q is discharge per unit width, mm2/s; e is average fracture
aperture, mm; ẽ is the representative fracture aperture, mm; g is gravitational accelera-
tion, m/s2; µ is kinematic viscosity coefficient of water, mm2/s; J is hydraulic gradient,
dimensionless; C is the unit conversion parameter to ensure that the dimensions on both
sides of the equation are consistent; σe is mean square deviation of fracture aperture, mm2;
∆ is absolute roughness of fracture, i.e., the height of roughness element a in Figure 1,
mm; δ is relative roughness, δ = ∆/em, i.e., ratio of roughness element height ∆ to fracture
aperture em, dimensionless; n, m, η are indices of fracture aperture e, hydraulic gradient J
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and relative roughness ∆, respectively, and their values obtained by different researchers
are quite different; ε is a coefficient of δ.

2.2. Numerical Simulation Model

Figure 1 illustrates the effect of fracture wall roughness elements on seepage. It can be
seen that the streamline (blue streamline) near the rough surface is significantly affected
by the roughness elements (rough surface). The blue streamline is curved, and vortexes
occur in front and behind the roughness elements. The streamline (yellow streamline)
further away from the rough surface will also be affected by the roughness elements (rough
surface), but the degree of influence has been weakened. The streamline (green streamline)
furthest from the rough surface and near the smooth surface is hardly affected by the
roughness elements (rough surface), and the flow line is almost smooth [10].

The purpose of this study is to research the effect of rough wall surface of fracture on
seepage flow, and to explore the seepage characteristics in symmetrical (but uncoupled)
rough fractures [11]. The model with symmetrical-uncoupled rough wall surfaces was
devised for this study (Figure 2). In order to simplify the calculation, the axisymmetric
centerline was the symmetrical boundary, and there is no exchange of mass and heat on
the symmetrical boundary.
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Figure 2. The symmetrical (uncoupled) rough fracture model. The dotted line is the symmetri-
cal boundary.

Fluent numerical simulation software was applied to simulate the seepage in rough
fracture. The main variables included the distribution density and shape of roughness
elements, and the fracture aperture. The length of the 2D fracture model (seepage path)
was 100 mm, and the height (fracture aperture) was 3, 4, 5, 6, and 7 mm. Regardless of
the width in the Z direction, it was 1000 mm by default. The dimension a was the height
of roughness elements and a = 1 mm, b was the spacing between two adjacent roughness
elements, and the distribution density of roughness elements was defined as A = b/a. The
value of a was a fixed value of 1 mm, and the value of b (roughness elements spacing) was
set to 4 mm, 5 mm, and 6 mm, respectively, so the value of A was 4, 5, and 6, respectively.
Different shapes roughness elements (triangular, rectangular, and sinusoidal) were selected
to simulate the influence of rough fracture wall roughness on the change of flow field [10].

Grid scale is a problem that should be paid attention to in the research. It is not
appropriate to be too large or too small. When the grid size is too big, it will cause loss
of simulation accuracy. The minimum fracture aperture is 3 mm, the roughness element
height is 1 mm, and the minimum roughness element spacing is 4 mm, so the grid size
should be much less than 1 mm. However, if the grid size is too small, calculation time
would increase dramatically. Thus, in this study, the grid size selected 0.2 × 0.2 mm. The
grid size was much smaller than 1 mm (roughness element height), so the influence of grid
size on the flow field could be ignored. The model and grid division structure are shown in
Figures 3–5 [10].
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2.3. Parameters of Numerical Simulation

The numerical simulation parameters assigned to computer software Fluent are listed
in Table 1.

Table 1. Numerical simulation parameter setting [10] *.

Parameter Type Set-Up ** Option or Remarks

solver precision single-precision two-dimensional
solver (2d)

two-dimensional single precision (2d),
two-dimensional double precision (2ddp),
three-dimensional single precision (3d),
three-dimensional double precision (3ddp)

sile-read-case sodel import

grid-check Check the information
about the Fluent window

Make sure that there are no negative
values in the grid volume or related
warnings

grid-scale Select “mm” units

solver type Segregated Solver segregated solver, coupled solver-implicit,
coupled solver-explicit

time option Steady
space option 2D Two-dimensional
speed constituting
option Absolute velocity

gradient acquisition
option Cell-based

Calculation of absolute velocity of
two-dimensional steady flow based on
cell

define-model-
viscous Realizablek-εmodel Select enhanced wall treatment in the

near-wall treatment column

define-material water-liquid

temperature 20 ◦C, density 998.2
kg/m3,
dynamic viscosity coefficient
1.003 × 10−3 pa·s,
other parameters are default values

define-boundary
condition

in-velocity magnitude
out
symmetry and wall

Enter values of velocity
Enter 0
Default settings

solve-control-
solution

discretization options:
momentum,
turbulent kinetic energy k,
dissipation rate ε

Select second order upwind all

* All parameters are the same as the simulation parameters in reference [10]. Reprinted/adapted with permission
from Ref. [Simulation on the water flow affected by the shape and density of roughness elements in a single
rough fracture]. Copyright year 2019, copyright owners’ name Qing Zhang & Jiazhong Qian. ** All italics indicate
variables whose parameter values can be set. Non italicized words are explanatory notes.
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3. Results and Discussion
3.1. Fracture Roughness, Discharge per Unit Width, and Hydraulic Gradient

In this paper, 2D model was used to simulate the seepage in rough single fracture.
The simulation roughness elements’ shapes analyzed were triangular, rectangular and
sinusoidal. The height of roughness elements, i.e., absolute roughness, was 1 mm, the
density of roughness elements A (A = b/a, where a = 1 mm, b = 4, 5, 6 mm) was 4, 5, and 6
respectively, and the fracture aperture was 3, 4, 5, 6, and 7 mm, respectively. The simulation
results of rough fracture seepage under three roughness element densities, three roughness
element shapes, and five fracture apertures are shown in Figures 6–8.
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Equation (8) shows that there is a power exponential function relation between dis-
charge per unit width q and hydraulic gradient J as follows:

q = Kc Jm (9)

where Kc is coefficient of hydraulic gradient; m is termed hydraulic gradient index (Table S1).
According to the simulation results under the above different conditions, the fitting

parameters Kc and m were obtained, as shown in Table 2.

Table 2. The fitting values of parameters Kc and m.

A *
Triangular Rectangular Sinusoidal

e (mm) ** Kc m e (mm) ** Kc m e (mm) ** Kc m

6

2.33 4.64 0.714 1.73 6.15 0.892 1.82 5.66 0.787
3.21 8.68 0.652 2.48 152.76 0.779 2.68 100.35 0.691
4.09 139.63 0.627 3.22 214.68 0.690 3.53 165.89 0.657
4.96 185.24 0.612 3.97 255.05 0.626 4.39 206.83 0.624
5.84 239.21 0.598 4.72 305.13 0.586 5.24 270.23 0.617

5

2.24 4.70 0.726 1.57 6.20 0.910 1.65 5.48 0.795
3.10 8.88 0.661 2.29 160.04 0.799 2.48 107.87 0.709
3.97 138.72 0.633 3.00 240.27 0.723 3.32 163.41 0.660
4.83 182.05 0.607 3.71 285.63 0.657 4.15 211.22 0.634
5.69 234.72 0.593 4.43 402.73 0.641 4.98 277.11 0.616

4

2.06 4.51 0.739 1.33 6.40 0.934 1.38 5.22 0.815
2.89 8.86 0.674 2.00 219.19 0.848 2.18 9.60 0.708
3.72 133.68 0.637 2.67 339.72 0.759 2.98 150.47 0.670
4.55 179.24 0.613 3.33 423.07 0.691 3.78 201.23 0.639
5.37 234.95 0.600 4.00 528.74 0.658 4.58 260.81 0.623

* A is density of roughness elements, i.e., ratio of roughness elements spacing b to height a. ** e is average fracture
aperture, which is obtained by statistics of rough fracture apertures.

It can be seen from the simulation results (Figures 6–8) that the discharge per unit
width q is mainly affected by the fracture aperture: a larger fracture aperture results in
larger seepage flow. At the same time, the flow is also affected by the roughness element
density and relative roughness. Table 2 shows that the variation range of m value is
0.586~0.934, all less than 1. When the shape and density of the roughness elements remain
unchanged, a decrease in fracture aperture will cause an increase of m value, and it means
that, in narrower fractures, the influence of hydraulic gradient is more obvious. When the
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shape, height of the roughness elements, and fracture aperture remain unchanged, a higher
density of the roughness elements will also cause an increase of m value, which means that,
in rougher fracture, the influence of hydraulic gradient is also more obvious. The above
results indicate that in wider fractures the flow rate mainly depends on fracture aperture,
while in narrow and close fracture medium (fracture aperture is very small), the surface
roughness of the fracture wall becomes the main factor of head loss of seepage.

3.2. Fracture Aperture and Hydraulic Gradient

The average fracture aperture and the corresponding hydraulic gradient index m are
plotted as shown in Figure 9.
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The results show that there is a negative power exponential relation between the
hydraulic gradient index m and the average fracture aperture, i.e., as the fracture aperture
increases, the influence of hydraulic gradient decreases. The simulation values under
different fracture conditions, whether the shape or the density of the roughness elements
changes, would have a similar behavior: with an increase fracture aperture, the relative
roughness of fracture decreases, and the m value also decreases. A decrease of fracture
relative roughness occurs, since the height of roughness elements remains unchanged
while the fracture aperture increases, which means the height (relative roughness) is
decreasing relatively.
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3.3. Super-Cubic Phenomenon of Seepage in Rough Fractures

According to Equation (8), there is a power function relation between the ratio of
discharge per unit width to hydraulic gradient q/Jm and the average fracture aperture e,
which can be expressed as:

q
Jm = Ke(e)

n (10)

where Ke is the parameter; n is fracture aperture index.
The relations between q/Jm and average fracture aperture e were drawn according to

the simulation results, as shown in Figure 10.
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The equations of fitted q/Jm and average fracture aperture e are shown in Table 3.

Table 3. The fitting equations between q/Jm and the average aperture e.

A *
Triangular Rectangular Sinusoidal

Fitting Equation R2 ** Fitting Equation R2 ** Fitting Equation R2 **

6 q/Jm = 0.060(e)4.764 0.950 q/Jm = 0.868(e)4.090 0.919 q/Jm = 1.342(e)3.409 0.919
5 q/Jm = 0.061(e)4.827 0.963 q/Jm = 1.218(e)4.177 0.936 q/Jm = 1.972(e)3.299 0.843
4 q/Jm = 0.124(e)4.554 0.954 q/Jm = 2.552(e)4.214 0.931 q/Jm = 1.138(e)3.608 0.940

* A is ratio of roughness elements spacing to height; ** R2 is coefficient of determination in fitting.
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In the three types of rough fractures, the variation range of coefficient Ke is within the
same order of magnitude, and its maximum value is within three times of the minimum
value. The curves of different A values (roughness element density) in Figure 10 are
very close to one another or even coincide. Therefore, only the fracture aperture index n is
discussed here. The ratio of discharge per unit width to hydraulic gradient q/Jm and average
fracture aperture e obtained based on the simulation results were fitted through regression
analysis. Coefficient of determination and fracture aperture index n corresponding to
different shapes and densities of roughness elements are shown in Table 3.

In the fracture of triangular roughness elements, the fracture aperture index n values
are 4.554–4.764; in the fracture of rectangular roughness elements, they are 4.090–4.214,
and, in the fracture of sinusoidal roughness elements, they are 3.299–3.608. All are greater
than 3, i.e., there is a super-cubic relation in symmetrical-uncoupled fractures between the
discharge per unit width q and average aperture e. The simulation results also verify Xu’s
research conclusion [11].

When studying the fracture aperture index n, the change of average fracture aperture
e affects the value of relative roughness (negative correlation, the increase/decrease of the
former will cause the decrease/increase of the latter), and the change of roughness density
A essentially causes the change of relative roughness (positive correlation, the former
and the latter increase and decrease at the same time), so it is impossible to qualitatively
describe the effect of the change of roughness density A on the fracture aperture index n by
controlling variables. This is also verified by the relation between the ratio q/Jm of discharge
per unit width to hydraulic gradient and average fracture aperture e in Figure 10: although
they increase together on the whole, the increasing trend is difficult to quantify.

3.4. Effect of Rough Element Shape and Density on Permeability Coefficient

In the study of groundwater dynamics, especially in the solution of flow equation, it is
generally considered that the permeability coefficient K is a constant. However, when eval-
uating the scale effect of dispersion, it was found that the permeability coefficient K varied
with the scale of interest, i.e., K affected by scale effect. The ideal smooth parallel plates
fracture can be considered as uniform medium, and the fracture permeability coefficient
has no scale effect. However, the surface of the actual fracture is rough and uneven. Due to
the existence of wall roughness elements, the roughness and bending degree of the fracture
surface are difficult to predict. The flow movement in the real single fracture has strong
heterogeneity, so the scale effect of permeability coefficient K is also reasonable.

According to the theory of hydrodynamics, in the fully developed turbulent flow, the
relation between the average velocity and the hydraulic gradient is as follows:

V2 = KJ (11)

where V is average velocity, K is permeability coefficient of fracture media, and J is hydraulic
gradient.

Hydraulic gradient J can be expressed as:

J =
H2 − H1

L
(12)

where H1 and H2 are the corresponding piezometric head values at points 1 and 2, respec-
tively, and L is the horizontal distance between points 1 and 2.

Then, the expression of permeability coefficient K can be obtained from
Equations (11) and (12):

K =
V2

H1 − H2
L (13)

Assuming that the seepage flow is one-dimensional, Equation (13) can be used to
obtain the permeability coefficient K. This assumption is reasonable in the ideal smooth
parallel plates fracture, but considering the influence of the roughness of the fracture wall on



Appl. Sci. 2022, 12, 7328 13 of 16

the flow, many small vortices will occur in the flow after bypassing the roughness elements,
and they will hinder the seepage movement. Therefore, the two-dimensional method
should be used to study the seepage movement in rough fractures. Although Equation (13)
may no longer be suitable for studying the scale effect of permeability coefficient K in rough
fractures, it can still be used to study the correlation between permeability coefficient K
and the horizontal distance L from its corresponding point to the inlet, so as to indirectly
study the scale effect of permeability coefficient K. In this paper, the simulation was carried
out under the condition that the inlet velocity was set to 0.1 m/s in the fractures with
triangular, rectangular, and sinusoidal roughness element shapes and density of 4, 5, and 6,
respectively, and the observation points on the symmetrical center line were selected. Under
the conditions of different roughness element densities, the relation in each observation
point calculated by Equation (13) between K and L was determined. The results are shown
in Table 4.

Table 4. Correlation between permeability coefficient K and horizontal distance L from the sampling
point to inlet.

Roughness
Elements Shape

Density
A

Average Fracture
Aperture (mm)

Linear Regression
Equation

Correlation
Coefficient

Number of
Sampling Points

triangular
6 2.33 K = 8.95 L − 0.207 0.417 10
5 2.24 K = 11.14 L − 0.249 0.577 10
4 2.06 K = 13.02 L − 0.319 0.404 10

rectangular
6 1.73 K = 7.77 L − 0.155 0.542 10
5 1.57 K = 14.94 L − 0.337 0.562 10
4 1.33 K = 22.05 L − 0.521 0.458 10

sinusoidal
6 1.82 K = 9.67 L − 0.204 0.623 9
5 1.65 K = 6.86 L − 0.137 0.790 9
4 1.38 K = 5.99 L − 0.126 0.708 9

As shown in Table 4, the relationship between the permeability coefficient K and the
corresponding horizontal distance L can be expressed as a linear function of K = α + βL.
Here, α represents the intercept value, and its variation range is −0.521–−0.126; β represents
the slope of L, which varies from 5.99–20.05. Parameters α and β are related to fracture
aperture, fracture roughness, and hydraulic gradient. In order to illustrate the influence of
roughness element density on the scale effect of permeability coefficient K, the simulation
results are presented in Figure 11.

As shown in Figure 11, the K-L relation diagrams under the conditions of different
densities and shapes of roughness elements are drawn respectively. It can be seen that
the farther away from the inlet, the greater the permeability coefficient, which indirectly
proves that the permeability coefficient K has a scale effect. The closer to the outlet, the
faster the K value increases. The roughness elements with different shapes have similar
variation trends. In the same shape of roughness element fracture medium, with the
increase of roughness element density, the influence of roughness element density on the
permeability coefficient K becomes greater. It can also be seen from Table 4 that, in the data
corresponding to the triangle roughness element fracture, when the density value A is 6,
the correlation coefficient is 0.417, when A is 5, the coefficient increases to 0.577, and when
A is 4, the coefficient decreases to 0.404; in the rectangular roughness element, when A is 6,
the correlation coefficient is 0.542, and when A is 5 and 4, the corresponding correlation
coefficients are 0.562 and 0.458, respectively. In the sinusoidal roughness element fracture,
the correlation coefficient corresponding to A of 6 is 0.623, and the correlation coefficients
corresponding to A of 5 and 4 are 0.790 and 0.708, respectively.
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With the increase of roughness elements distribution density A, the correlation coef-
ficient between permeability coefficient K and corresponding horizontal distance L first
increases and then decreases, which may be due to the coupling influence of fracture aper-
ture, fracture roughness element height, and roughness element distribution density on
the scale effect of permeability coefficient K. Under the condition that the fracture aperture
and roughness element height remain unchanged, the influence of roughness element
distribution density A on the correlation between K and L also increases first and then
decreases. This is because the fracture wall tends to be smooth when the distribution of
rough elements is very dense or sparse, while the influence of the distribution of roughness
elements on the flow in the real case is between the two.

4. Conclusions

Based on the Fluent numerical simulation software and a 2D numerical model, this
paper studies the rough fracture seepage characteristics under the conditions of different
shapes, densities, and fracture apertures of roughness elements. The main conclusions are
as follows:

1. In wider rough fractures, the flow rate mainly depends on fracture aperture, while
in narrow and close rough fracture medium, the surface roughness of fracture wall
becomes the main factor of head loss of seepage.
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2. In rough fracture, there is a negative power exponential relation between the hydraulic
gradient index m and the average fracture aperture e, i.e., with the increase of fracture
aperture e, the relative roughness of fracture and the influence of hydraulic gradient
both decrease.

3. In symmetrical-uncoupled rough fractures, there is a super-cubic relation between the
discharge per unit width q and average aperture e.

4. The value of rough fracture permeability coefficient K is not a constant, and it is
affected by the scale effect (the horizontal distance from the measuring point to the
fracture inlet) and the density of the roughness elements.
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