friried applied
e sciences

Article

SATFuzz: A Stateful Network Protocol Fuzzing Framework
from a Novel Perspective

Zulie Pan 1209, Liqun Zhang 12, Zhihao Hu >*, Yang Li 12 and Yuanchao Chen 12

check for
updates

Citation: Pan, Z.; Zhang, L.; Hu, Z.;
Li, Y.; Chen, Y. SATFuzz: A Stateful
Network Protocol Fuzzing
Framework from a Novel Perspective.
Appl. Sci. 2022, 12, 7459. https://
doi.org/10.3390/app12157459

Academic Editors: Cheng Huang,
Weina Niu and Wang Yang

Received: 26 June 2022
Accepted: 22 July 2022
Published: 25 July 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

College of Electronic Engineering, National University of Defense Technology, Hefei 230037, China;
panzuliel7@nudt.edu.cn (Z.P.); zhanglg@nudt.edu.cn (L.Z.); liyanghf@nudt.edu.cn (Y.L.);
chenyuanchao@nudt.edu.cn (Y.C.)

Anhui Province Key Laboratory of Cyberspace Security Situation Awareness and Evaluation,

Hefei 230037, China

* Correspondence: huzhihao@nudt.edu.cn

Abstract: Stateful network protocol fuzzing is one of the essential means for ensuring network
communication security. However, the existing methods have problems, including frequent auxiliary
message interaction, no in-depth state-space exploration, and high shares of invalid interaction time.
To this end, we propose SATFuzz, a stateful network protocol fuzzing framework. SATFuzz first pri-
oritizes the states identified by the status codes in response messages, then randomly selects a state to
test among the high-priority states, and determines its corresponding optimal test sequence, which is
composed of the minimum pre-lead sequence, the test case, and the fittest post-end sequence. Finally,
SATFuzz uses a quasi-recurrent neural network (QRNN) to filter the test cases before performing
interaction, and only the optimal test sequence, including the valid test case, can be fed to the protocol
entity. To verify the proposed framework, we conduct extensive experiments with the state-of-the-art
fuzzer on two popular protocols. The results show that the vulnerability discovery efficiency of the
proposed approach increases by at least 1.48 times (at most by 3.06 times), making it superior to
the rival methods. This not only confirms the effectiveness of SATFuzz in terms of improving the
vulnerability discovery efficiency but also shows that SATFuzz has significant advantages.

Keywords: stateful network protocol fuzzing; status code; auxiliary message; quasi-recurrent neural
network (QRNN); deep learning; vulnerability discovery

1. Introduction

Network protocols are the foundations of networks, and security vulnerabilities trig-
gered by their incorrect implementations usually result in severe consequences. Therefore,
network protocol vulnerability discovery has become a research hotspot in the field of
network and information security in recent years. Currently, fuzzing is the most commonly
used and most effective network protocol vulnerability discovery method. Its main prin-
ciple is to construct test cases through generation or mutation, use them as the inputs of
the protocol entity, and monitor the protocol entity to find vulnerabilities in the examined
network protocol implementations [1].

Regarding the relationships between adjacent messages, network protocols can be
divided into stateless and stateful network protocols [2]. Stateless network protocols have
no context correlations between adjacent messages. For example, each request message of
the Internet Control Message Protocol (ICMP) is independent. Stateful network protocols
contain correlations between adjacent messages, and the protocol entity may transition
to a new state after processing messages. For example, complete communication in the
File Transfer Protocol (FTP) has a series of transitions in related states. Therefore, stateful
network protocol fuzzing is more complicated than stateless network protocol fuzzing
because the state space of the corresponding protocol entity is unknown and large [3].

Appl. Sci. 2022, 12, 7459. https:/ /doi.org/10.3390/app12157459

https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12157459
https://doi.org/10.3390/app12157459
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-5775-5824
https://doi.org/10.3390/app12157459
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12157459?type=check_update&version=2

Appl. Sci. 2022, 12, 7459

20f16

Traditional stateful network protocol fuzzing methods mainly include coverage-based
grey-box fuzzing [4,5] and stateful black-box fuzzing [6,7]. Coverage-based grey-box
fuzzing cannot effectively traverse the state space of the protocol entity due to a lack
of state information [8-10], and stateful black-box fuzzing cannot update a finite state
machine because it does not save valid test cases, and thus the efficiencies of both types of
methods are seriously affected. Stateful-coverage-based grey-box fuzzing appears to solve
the problems of traditional methods [11].

This method does not need to understand protocol specifications and instead con-
structs test cases through mutation and uses state feedback to guide the fuzzing process.
However, the existing methods have problems, such as frequent auxiliary message interac-
tion, no in-depth state-space exploration, and high shares of invalid interaction time. These
problems cause protocol entities to execute many invalid test cases, which waste fuzzing
time and make it difficult to find vulnerabilities quickly and effectively. To improve the
efficiency of network protocol vulnerability discovery, we propose SATFuzz to the above
problems.

The main contributions of this paper are summarized as follows.

(1) We propose a fuzzing process optimization method to efficiently and deeply explore
the state space of the protocol entity. According to the characteristics of status codes,
we prioritize states. High-priority states mean that exploring them leads to higher
state-space coverage and more potential bugs. Then, we randomly select a state to test
among the high-priority states and screen out the corresponding optimal test sequence.
The optimal test sequence is composed of the minimum pre-lead sequence, the test
case, and the fittest post-end sequence.

(2) We propose a test case filtration method to avoid invalid interactions. We use a
quasi-recurrent neural network (QRNN) to learn the internal relationships between
the mutation modes and validity levels to judge the validities of test cases before
performing interaction. Then, the filtration method quickly filters invalid test cases
that cannot be received by the protocol entity, i.e., those that do not meet the protocol
specification or match the state of the protocol entity.

(3) We propose a stateful network protocol fuzzing framework, named SATFuzz, and
conduct extensive experiments to evaluate its performance. The results show that
optimizing the fuzzing process in terms of state selection and test sequence selection
can improve the vulnerability discovery efficiency of SATFuzz. In addition, reducing
the invalid interaction time can further improve the efficiency.

In the next section, we review some representative related studies to outline the
motivation of our research. Section 3 introduces SATFuzz in detail, including the state
selector, test sequence selector, and test case filter. In Section 4, we systematically evaluate
SATFuzz. Finally, we summarize our work in Section 5.

2. Related Work
2.1. Network Protocol Fuzzing

Fuzzing is a popular testing technique to detect bugs in software systems. Many
fuzzing approaches have been proposed to test the implementations of network protocols
in academia [7,12] and industry [6,13]. Sulley [12] provides users with a large number
of data formats to describe the protocol. Before fuzzing, users need to utilize these for-
mats to define all necessary blocks. Currently, Sulley has ceased maintenance, and the
BOOFUZz [7] project is the successor of Sulley.

Peach [6] generates test cases based on DataModel and performs fuzzing based on
StateModel. Peach can expand the Peach Pit file to support different network protocols
without modifying the source code. beSTORM [13] uses automated analysis technology
to obtain protocol knowledge, which is then converted into an automated test set. Most
fuzzers take a black-box fuzzing approach and a generation-based approach, which means
that new message sequences are generated from scratch based on manually constructed
protocol specifications.

Appl. Sci. 2022, 12, 7459

30f16

Manually constructing a model of the protocol is tedious and error-prone. A better
approach is to automatically reverse engineer the protocol either for or during fuzzing.
Some black-box approaches [14,15] learn the message structure from a given corpus of
messages. Ref. [14] presented TreeFuzz, a generic approach for generating structured data
without an a priori known model. The key idea is to exploit a given corpus of example data
to automatically infer probabilistic, generative models that create new data with properties
similar to the corpus.

Ref. [15] proposed a method to automatically generate test cases for the black-box
fuzzing of proprietary network protocols. The method uses neural-network-based machine-
learning techniques to learn a generative input model of proprietary network protocols
by processing their traffic and to generate new messages using the learned model. Some
white-box approaches [16,17] that actively explore the protocol implementation to un-
cover message structure. Polyglot [16] uses dynamic analysis techniques, such as tainting
and symbolic execution to extract the message format from the protocol implementation.
Ref. [17] presented Tupni, a tool that can reverse engineer an input format with a rich set of
information, including record sequences, record types, and input constraints.

In contrast to these above approaches, several recent approaches [11,18,19] perform
stateful protocol fuzzing. AFLNET [11] adopts a mutation-based method without under-
standing the protocol specifications and identifies the state of the given server based on its
status codes and uses state feedback to guide fuzzing. Ref. [18] proposed a practical tool
by extending TLS-Attacker to learn comprehensive state models of multiple DTLS imple-
mentations. By comparing these learned state models, the user can infer vulnerabilities
in DTLS implementations. Ref. [19] proposed a transition-guided fuzzing approach that
uses a new cover age metric named branch transition as program feedback to improve the
coverage of state transitions.

There are other works. Roberto Natella [20] presented a new benchmark ProFuzzBench
for stateful fuzzing of network protocols. The benchmark includes a suite of representative
open-source network servers for popular protocols and tools to automate experimentation.

2.2. Deficiencies in Existing Methods

Generally, the following three deficiencies are exhibited by existing stateful network
protocol fuzzing methods.

(1) Frequent auxiliary message interaction

In stateful network protocol fuzzing, messages consume time waiting and processing
at the node and transmission in the network, which is a problem that cannot be ignored.
Existing methods usually only focus on improving the validities of test cases without
considering the optimization of the fuzzing process. As a result, only a tiny portion of
the messages in the test sequence belong to the test cases, while others called auxiliary
messages belong to the pre-lead sequence and post-end sequence. These auxiliary messages
generate additional time overhead [21], which results in a reduction in the number of test
cases participating in fuzzing per unit time and then a reduction in the probability of raising
exceptions in the protocol entity, thereby, affecting the vulnerability discovery efficiency of
such approaches.

(2) No in-depth state space exploration

In stateful network protocol fuzzing, in addition to code coverage, state-space coverage
should also be considered. When the code coverage is roughly constant, the higher the
state-space coverage is, the deeper the state-space exploration, and the more comprehensive
the fuzzing process [22]. However, the existing methods can only explore a small part of
the state space of the protocol entity, which reduces the probability of raising exceptions in
the protocol entity and affects the efficiency of vulnerability discovery.

(3 A high share of invalid interaction time

Appl. Sci. 2022, 12, 7459

40f16

A test case raises exceptions in the protocol entity only if the protocol entity can receive
it [23]. The existing methods exhibit blindness; it is uncertain whether a test case can be
received by the protocol entity before fuzzing. Most test cases are directly discarded by
the protocol entity due to their invalidity; they do not meet the protocol specification or
match the state of the protocol entity. The above reason results in a high share of invalid
interaction time, which reduces the probability of raising exceptions in the protocol entity,
thus affecting the vulnerability discovery efficiency of these methods.

Based on the above analysis, this paper is dedicated to compensating for the above
shortcomings to improve the efficiency of vulnerability discovery.

3. Architecture

The structure of SATFuzz is shown in Figure 1 and mainly includes three parts: a state
selector, test sequence selector, and test case filter.

Optimal test sequence including valid testcase

6 Protocol Entity ﬁ

§oeqpad
1
]
|
I
I
|
]
I
|
]
I
|
I
I
|
]
I
|
]
]
|
]
I
|
]
]
I
|

7/

)
(4
@
-
(<]
8
@
(¢}

Al

F Test File i Filter ’> ______ $‘

Optimal test sequence Testcase
ﬁ Mutator A

Figure 1. The structure of SATFuzz.

First, the state selector randomly selects one state to test among the high-priority states.
Second, the test sequence selector selects the optimal test sequence that can reach the state
from the queue according to the test file. Then, the old test case in the optimal test sequence
is mutated by Mutator, while the minimum pre-lead sequence and the fittest post-end
sequence remain unchanged. Next, the test case filter determines the validity of the new
test case and only inputs the optimal test sequence, including the valid test case, to the
protocol entity. Finally, SATFuzz updates the test file with feedback and prepares for the
next testing step.

3.1. Simplified Finite-State Machine

We use a simplified finite state machine (SFSM) as a formal description model for
stateful network protocol interactions. The SFSM can be defined as a triple M = (5,1, T).
S = {so,s1,...,5x} is a finite set of state symbols, and sy represents the initial state of M.
At any time, M can only be in a specific state s;, and M begins to receive inputs from so;
I ={iy,ip,...,in} is a finite set of input symbols; T: S x [S is a state transition function,
which is a one-to-one mapping. When the SFSM is applied to the server, S represents the
set of status codes in the response messages, and I represents the set of request message
types that can be received and processed normally.

Appl. Sci. 2022, 12, 7459

50f16

Taking the SFSM of the FTP as an example [24], the specific values corresponding to its
state symbols and input symbols are shown in Table 1. M, shown in Figure 2, only contains
part of the state transition relationships, where the transition from sy to s; indicates that,
when the server is in state 220 (abstracted by sp), if a request message of the USER type
(abstracted by i;) is received and processed normally, then the server transitions to state
331 (abstracted by s1).

Table 1. Specific values corresponding to different state symbols and input symbols.

State Symbol Status Code Input Symbol Reque;t Message

ype

50 220 ih USER
51 331 i PASS
% 230 i3 PWD
s3 257 i TYPE
54 200 is STOR
% 150 i MKD
%6 250 iz RETR
57 221 ig RMD
ig CWD

i DELE

in CDUP

i1 QUIT

. 111
1y

iy i i3 ‘f\ is '/\ is /\ i

v,

\ 4

€

\ 4

iy

Figure 2. The SFSM of the FTP.

3.2. State Selector

Existing methods treat states equally and use polling to select states for testing. Dif-
ferent states have different capabilities for exploring the state space of the protocol entity,
and this directly affects the efficiency of vulnerability discovery. A state in this paper is
identified by xyz, which is a three-digit number, where each number has a specific mean-
ing [25]. The first digit defines the type of the state, which is 1yz (the initial state), 2yz (the
complete state), 3yz (the intermediate state), 4yz (the temporary rejection state), or 5yz (the
permanent rejection state); the second digit defines the meaning of the state, which is x0z
(syntax), x1z (request), x2z (connection), x3z (authentication), or x5z (file); and the third
digit gives the state a richer meaning. Therefore, we rank states in order of importance by
referring to the meaning of the first two digits, and the classification results are shown in
Table 2.

Appl. Sci. 2022, 12, 7459

6 of 16

Table 2. State classification results.

xly 0 1 2 3 5
1 high * high high high high
2 high high high high high
3 high high low * low high
4 high high low low high
5 high high low low high

* high-priority states. # low-priority states.

One contains low-priority states, including 32z, 33z, 42z, 43z, 52z, and 53z. A protocol
entity in these states remains unchanged with a high probability after processing test cases.
In contrast, the remaining cases belong to high-priority states. A protocol entity in these
states transitions to the new state with a high probability after processing test cases.

In the beginning, the state selector randomly selects states to test among the high-
priority states for certain cycles. Then, it chooses the states that achieved outstanding
performance in contributing to increased code or state-space coverage when previously se-
lected. Now, we illustrate how the selected states affect state-space exploration. Suppose
we perform fuzzing on LightFTP, a server that implements the FTP and one of the subjects
in our evaluation, with the test case (“MKD test”) and the post-end sequence (“CWD
test+STOR test .txt+LIST+QUIT”).

As shown in Figure 3a, the number of covered unique state transitions is 6 when one
of the high-priority states (230) is tested. In contrast, as shown in Figure 3b, the number
of covered unique state transitions is only 2 when one of the low-priority states (530) is
tested, and the state-space coverage rate is reduced by 66.7%. For the FTP, 230 means that
the user logs in successfully, and subsequent request messages can play their original role
only under this condition. Otherwise, all these requests are not allowed, resulting in a loop
in the single state.

USER admin PASS admin MKD tesssst CWD test STOR test.txt QuIT
(@))) o)) ()

LIST

(a)
USER admin PASS guest QuIT
[530
MKD tesssst
CWD test
STOR test.txt
LIST

Figure 3. State transition diagrams produced when different states are selected for testing. (a) 230 as
a state to be tested. (b) 530 as a state to be tested.

3.3. Test Sequence Selector

The existing stateful network protocol fuzzing methods mainly include three
steps [26-28]. First, the protocol entity is guided to a specific state to be tested through
the interaction of normal messages. The sequence formed by these messages is called the
pre-lead sequence. A test case composed of one or more mutated messages is then fed into
the protocol entity.

If the protocol entity crashes or does not respond for a long time after processing
the test case, it is necessary to save errors for further analysis. Finally, if no abnormality
is found, the communication needs to be terminated through the interaction of normal
messages, and the next testing step is prepared. The sequence formed by these messages
is called the post-end sequence. The test sequence is composed of the pre-lead sequence,

Appl. Sci. 2022, 12, 7459

7 of 16

test case, and post-end sequence, and the messages composing the pre-lead sequence and
post-end sequence are called auxiliary messages.

Once the state to be tested is selected, the existing methods select any test sequence
that can reach this state from the queue, and no further screening is performed. The main
components of the test sequence are auxiliary messages, which cause additional time
overhead during waiting, processing, and transmission, thereby, affecting the efficiency of
vulnerability discovery. Simply reducing the lengths of auxiliary messages can save time;
however, this approach influences the post-end sequence when exploring the state space,
which also affects the efficiency of vulnerability discovery.

Therefore, by reasonably optimizing the auxiliary messages, we screen out the optimal
test sequence (including the minimum pre-lead sequence), which is responsible for quickly
leading the protocol entity to the state to be tested, and the fittest post-end sequence,
which is responsible for exploring the state space in depth after no abnormalities are
detected. The above information is recorded in the test file for the test sequence selector
to read. The test file is written in XML, including eight different elements, as shown in
Table 3. Among them, GuidingMesNum controls the minimum pre-lead sequence, which,
as the name implies, is the pre-lead sequence with the least number of request messages.
BackMesNum and HiPriMesPro jointly control the fittest post-end sequence to ensure that
the proportion of request messages that can trigger high-priority states within a certain
length remains maximized.

In addition to ending the communication process, another function of the fittest post-
end sequence is to explore the state space in depth, which requires more request messages
that can be received and processed normally by the protocol entity. The request messages
that meet this condition correspond to high-priority states. When a certain state to be
tested simultaneously meets the minimum pre-lead sequence and fittest post-end sequence,
the corresponding test sequence is recorded in OptimSeqName for the test sequence selector
to select from the queue.

Table 3. Basic elements of the test file.

Elements Meaning

Main element of the test file, representing all the information needed

Pr tim o .
ocOpti to optimize the stateful network protocol fuzzing process

Child element of ProcOptim, representing the total number of states

TotalStates that have been explored
Child element of ProcOptim, representing the information of the
StateSeqInfo : . .
optimal test sequence corresponding to a certain state
StatusCode Child element of StateSeqInfo, representing the state identified by the
status code
GuidingMesNum Child element of StateSeqInfo, representing the number of request
messages in the pre-lead sequence
BackMesNum Child elerr}ent of StateSeqInfo, representing the number of request
messages in the post-end sequence
Child element of StateSeqInfo, representing the proportion of request
HiPriMesPro messages that can trigger high-priority states in the post-end
sequence
OptimSeqName Child element of StateSeqInfo, representing the name of the optimal

test sequence

3.4. Test Case Filter

The existing methods directly input test cases from Mutator into the protocol entity,
without knowing whether the protocol entity can receive them, and most test cases are
discarded due to invalidity—namely, not meeting the protocol specification or matching the

Appl. Sci. 2022, 12, 7459

8 of 16

state of the protocol entity; this affects the efficiency of vulnerability discovery. Therefore,
we use deep learning to filter the test cases, determine the validity of test cases before
interaction, and avoid invalid interactions.

A test case is similar to long time-series data, which means that the beginning data in
a long sequence can affect the ending data; therefore, we mainly consider two aspects when
designing the test case filter. One is how to improve the data processing capabilities of the
filter; the other is how to improve its parallel computing capabilities. By comparing and
analyzing common deep learning models, we finally choose a QRNN [29] to implement
the test case filter. In order to eliminate the differences between different stateful network
protocols, we design a general input representation method, and its algorithm is shown
in Algorithm 1. We divide the old test case M in the optimal test sequence by bytes to
form a byte stream vector X = (x; +1,x, +1,...,x, + 1), where x; is the i-th byte in M,
x; € {0,1,...,255}, and m is the total number of bytes in M.

We also divide the new test case M’ mutated by M in the same way and form a
byte stream vector X' = (x] +1,x5+1,...,x;, + 1), where x/ is the i-th byte in M’, x| €
{0,1,...,255}, and n is the total number of bytes in M’. We perform tail zeroization on
the byte stream vector with a smaller length (X or X’) to make both lengths consistent and
take the byte stream vector P = X @ X' = (p1, p2, ..., px) generated by the XOR operation
between the two as the input of the QRNN, where p; is the i-th byte in P, p; € {0,1},
and k=max{m,n} is the total number of bytes in P. At the same time, 1 is used as the output
value of a valid test case, and 0 is used as the output value of an invalid test case.

Algorithm 1 General representation of the QRNN input.

Input: old test case M and new test case M’
Output: byte stream vector P
1: Extract the old test case M from the optimal test sequence and divide M by bytes to
form a byte stream vector X.
2: Divide the new test case M’ mutated by M in the same way to form a byte stream vector
X'.
3: Compare the lengths of X and X’, add zero to the tail of the shorter vector, and XOR
the two vectors to form a byte stream vector P.
4: Return P.

Most test cases constructed by the existing methods via mutation are invalid cases that
cannot be received by the protocol entity, resulting in a proportional imbalance between
the invalid samples and valid samples in the original training set [30], which seriously
affects the classification performance of the test case filter. Therefore, we use a custom
semirandom undersampling method to preprocess the original training set. By setting
the proportions of invalid samples and valid samples in advance and taking the negative
impact of the sample byte length on the implementation speed into account, we retain valid
samples and randomly select invalid samples to form a class-balanced training set in terms
of the distribution ratio of invalid samples with different byte lengths.

Then, the test case filter is implemented after training the QRNN for a certain number
of epochs with the class-balanced training set. After the test case filter enters a valid test
case into the protocol entity for execution, the resulting feedback is used to update the test
file. At the same time, the next testing phase starts.

4. Experimental Analysis
4.1. Experimental Setup

The FTP is one of the most commonly used stateful network protocols and is widely
used for file transfer. The design concept of the TCP/IP protocol family has led to the
malicious use of the vulnerability of the FTP. Therefore, the security of the FTP has become
a research focus in the field of vulnerability discovery.

Appl. Sci. 2022, 12, 7459

9o0f 16

According to statistics, nearly 4 million video surveillance equipment packages world-
wide support a stateful network protocol, the Real Time Streaming Protocol (RTSP). How-
ever, the RTSP has been proven to have many medium- and high-risk buffer overflow
vulnerabilities in its implementation. Hence, research on the security of the RTSP has
theoretical significance and application value [31].

This paper selected LightFTP [32], a lightweight server that supports the FTP, and
Live555 [33], a streaming media server that supports the RTSP, as the test objects; their
versions are 5980eal and ceeb4f4, respectively. The hardware configuration includes an
Intel(R) Xeon(R) Gold 6139 CPU @ 2.30 GHz, 376 of GB RAM, and the Ubuntu 18.04 server.

For the above test objects, we compare SATFuzz with a baseline approach called
AFLNET, a stateful-coverage-based fuzzer, and use the number of triggered crashes within
the same time period as an indicator to evaluate the vulnerability discovery efficiency of
each method. The higher the number of triggered crashes is, the higher the vulnerability
discovery efficiency of the corresponding approach.

We recorded message sequences for the most common usage scenarios of LightFTP
and Live555, such as uploading a file and starting to stream a media source. These message
sequences serve as the initial seed corpus for SATFuzz to use. The same is true for AFLNET
and AFLNWE in the experiment. However, BOOFUZZ started with a detailed model of the
protocol, including the message templates and the state machine.

4.2. State Selection

In Section 3.2, we split the states into two according to their importance. One type
includes high-priority states, and the other includes low-priority states. In each cycle,
the state selector only focuses on high-priority states and ignores low-priority states. To ver-
ify the effectiveness of this method, we conducted a comparative experiment with three
state selection criteria. To reduce the impact of randomness, we ran 10 isolated instances of
each group for each subject. We set the test time to 12 h, and the experimental results of the
three groups are shown in Figure 4.

—&— GlvsG2
057 e G3vsG2 = GlvsG2
04 -, Y 104 o G3vsG2
. g —@-
o— ¢) . °
° 0.34 L A4 ©
E 0.2 E 0.5
5 01+ 5
§ 00 §
5 -014 5 004 e ° . P
E 02 £ T : ‘
3 oy
5 03 <
£ 041 = 057
o .]
-1 A . S
-0.6 e \///‘\ \./ - T —g 10
-1.04 . — % — % — % —8—8—8—=
-07 T T T T T T T T T T
0 2 4 6 8 10 0 2 4 6 8 10
Instance Number Instance Number
(a) (b)

Figure 4. Comparative experimental results obtained with different state selection crite-
ria. (a) LightFTP. (b) Live555.

The state selection criterion for group one (G1 for short) includes low-priority states
only. Group two (G2 for short) chooses round-robin scheduling, which is the same tech-
nique as that used in AFLNET. Group three (G3 for short) realizes our method. It can be
seen from Figure 4a that, for LightFTP, in terms of vulnerability discovery efficiency, G1
decreases by 57.51% on average compared to G2, while G3 increases by 34.27% on average
compared to G2. Figure 4b shows that, for Live555, in terms of vulnerability discovery
efficiency, G1 is zero, while G3 and G2 have the same value.

Appl. Sci. 2022, 12, 7459

10 of 16

By analyzing the experimental results, we find that high-priority states performed
much better in exploring the state space than low-priority states, which verifies the effec-
tiveness of our state selection method. In addition, the performance of our method on
Live555 was worse than that on LightFTP because, when the SFSM is applied to Live555,
the status code set does not contain low-priority states, a condition for which G3 and G2
have the same state selection criterion; in contrast, the state selection criterion of G1 fails to
take effect.

4.3. Test Sequence Selection

In Section 3.3, defines the optimal test sequence as including the minimum pre-lead
sequence and the fittest post-end sequence, which is determined for a certain state to be
tested by the test sequence selector. To make the best use of the post-end sequence in
state-space exploration, we increased the proportion of request messages that can trigger
high-priority states under the premise of a certain length.

To verify the effectiveness of this method, we conducted comparative experiments
in terms of three test sequence selection criteria. To reduce the impact of randomness,
we ran 10 isolated instances of each group for each subject. We set the test time to 12 h,
and the experimental results of the three groups are shown in Figure 5. The common point
regarding the test sequence selection criteria of the three groups is that they all include the
minimum pre-lead sequence. When selecting the post-end sequence, group one (G1 for
short) prefers the sequence with the highest proportion of request messages that can trigger
low-priority states within a certain length.

Group two (G2 for short) chooses randomness, which is the same choice as that of
AFLNET, and group three (G3 for short) realizes our method. It can be seen from Figure 5a
that, for LightFTP, in terms of the vulnerability discovery efficiency, G1 decreased by 72.15%
on average compared with G2, while G3 increased by 20.11% on average compared with
G2. Figure 5b shows that, for Live555, in terms of the vulnerability discovery efficiency, G1,
G2, and G3 are almost the same.

—=—GlvsG2
—e—G3vsG2
0.3 0.5 —=— GlvsG2|
e P o—
024 . - - o o . ° 04 o G3vsG2|
o 014 @ 03
© ko]
@ 004 T 5]
8 01] o
g § 01
>3 -0.2 >
o < B—e— o _§ 8 .
S & 0.0 [; ~o o E—m—
£ 03 £ bl e o m
-0.1 4
S 5 "02
2 -05+)
W o6 W -034
-0.7 | Sy - -0.4
L3 ~m S A ""l»—»,',//l'———n,,,,‘
'08 T T T T T '05 T T T T T
0 2 4 6 8 10 0 2 4 6 8 10
Instance Number Instance Number
(a) (b)

Figure 5. Comparative experimental results obtained with different test sequence selection criteria.
(a) LightFTP. (b) Liveb555.

By analyzing the experimental results, we found that it was easier to request messages
that can trigger high-priority states in the post-end sequence to be received and processed
normally by the protocol entity, which remains normal after processing the test case,
indicating its stronger ability to explore the state space deeply. In addition, our method had
no advantage on Live555 because, when the SFSM was applied to Live555, the status code
set only contained high-priority states, a condition for which the test sequence selection
criteria of the three groups are exactly the same.

Appl. Sci. 2022, 12, 7459

11 of 16

4.4. Test Case Filtration

In Section 3.4, we generalized the input and output of the test case filter, and the pa-
rameter names and their corresponding values are shown in Table 4. Each byte component
of P has only two values, 0 and 1; thus, the input size was set to 2. The classification process
has only two results, valid and invalid; thus, the output size was set to 2. The default values
of the number of hidden layers, bidirectional flag, dropout rate, and learning rate were 2,
True, 0.4, and 0.001, respectively. Moreover, the cross-entropy loss function was used to
improve the classification performance of the test case filter.

Table 4. The parameter settings of the test case filter.

Parameter Name Parameter Value
Input Size 2
Output Size 2
Hidden Layer Size 42(5;%15555?
Hidden Layer Number 2
Bidirectional Flag True
Epoch 500
Dropout 0.4
Learning Rate 0.001
Optimization Algorithm Adam
Loss Function Cross-Entropy

By fixing the other parameters, we compared the influences of different hidden layer
sizes on the classification performance of our approach. The experimental results are
shown in Table 5. As classification performance requires specific evaluation indicators and
a single precision rate or recall rate cannot meet the actual evaluation needs, we took the
weight-equivalent harmonic mean of the two, the F1 value, as the measurement standard,
and its definition is given as follows:

_ Precision x Recall _ 2TP

Fl=2 Precision + Recall =~ 2TP + FP + FN M)

In the formula: Precision denotes the precision rate; Recall denotes the recall rate; P
denotes invalid test cases; N denotes valid test cases; TP denotes true-positive cases; FP
denotes false-positive cases; and FN denotes false-negative cases.

Table 5. Classification performance of the test case filter under different hidden layer sizes.

Hidden Test
Layer Size Object TN FN TP FP F1 Value
’ LightFTP 73 1604 7026 319 87.96%
Live555 37 833 6710 707 89.71%
4 LightFTP 49 921 6861 403 91.20%
Live555 62 1207 6095 532 87.52%
8 LightFTP 67 1511 7316 358 88.67%
Liveb55 92 1839 7067 370 86.74%

The experimental results show that the corresponding relationship between the clas-
sification performance and hidden layer size varies slightly for different test objects.
For LightFTP, when the hidden layer size is 4, the F1 score reaches its highest value,
and the test case filter has the best classification performance. In contrast, for Live555,
the F1 score reaches its highest value, and the test case filter has the best classification per-
formance when the hidden layer size is 2. Figure 6 visually shows the difference between
the experimental results of the two test case filters.

Appl. Sci. 2022, 12, 7459

12 of 16

LightFTP

1.004
Live555

0.98

0.96

2 4
Hidden Layer Size

Figure 6. Comparative experimental results produced by the two test case filters.

4.5. Comparasion with AFLNET

We evaluate the effectiveness of SATFuzz in comparison with a stateful grey-box fuzzer
called AFLNET. Specifically, we compare the average invalid interaction rates and numbers
of crashes exposed in a 12-h fuzzing campaign on LightFTP and Live555. To reduce the
impact of randomness, we ran 10 isolated instances of AFLNET and SATFuzz for each
subject. The results are shown in Figure 7.

10 5 10 5
& & & & & & g & 2 i;i.l'* — 'l'l — 5
—=— AFLNET
09+ |—®— SATFuzz 0.94
®— SATFuzz vs AFLNET r4 m |—=— AFLNET La m
Q = |—e— SATFuzz =
< R o ® A— SATFuzz vs AFLNET| Q.
X 08 " A~ Q O 08 Q
5 [} L} - -3 ‘g 6 3 Q
L] = .
g - " 3 ‘Q 3
o 0.7 S 074 B
= g c g
B 28 5 A L2 8
b § A
?g 06 S T o6 R A, N g
= § £ R A . §
A A
05- 1® 5] ®—e oo o o o o —* 1o
o 0O o o O 0, o
0.4 T T T T T 0 04 T T T T T 0
0 2 4 6 8 10 0 2 4 6 8 10
Instance Number Instance Number
(a) (b)

Figure 7. Comparison of the experimental results produced by AFLNET and SATFuzz. (a) LightFTP.
(b) Live555.

Figure 7a shows that, for LightFTP, the invalid interaction rate of AFLNET was 98.84%
on average, while the invalid interaction rate of SATFuzz was only 44.95% on average,
showing that the proposed approach avoided more than half of the invalid interactions.
Figure 7b shows that, for Live555, the invalid interaction rate of AFLNET was 97.99%
on average, while the invalid interaction rate of SATFuzz was only 50.68% on average,
showing that the proposed approach avoided nearly half of the invalid interactions.

The interaction processes of the FTP and RTSP include connection establishment.
Only after the client establishes a stable and reliable connection with the server can the
subsequent reasonable client requests be received and processed normally by the server.
In contrast, establishing an FTP connection requires additional authentication, and the inter-
action process is slightly more complicated. The test cases constructed by mutation usually
have difficulty satisfying the interactive conditions. Therefore, the invalid interaction rates
of AFLNET for LightFTP and Live555 were close to 100%, and the invalid interaction rate
obtained on LightFTP was slightly higher than that obtained on Live555.

Appl. Sci. 2022, 12, 7459

13 of 16

Moreover, the classification performance of the test case filter was better for LightFTP
as the average request message length of the FTP was less than that of the RTSP, which
means that the context correlation of the test case was closer, making it easier for the
QRNN to learn. Figure 7a,b show that, for LightFTP and Live555, the vulnerability dis-
covery efficiency levels of SATFuzz were 3.05-times and 1.45-times higher than those of
AFLNET, respectively. The experimental results show that, compared with competitors of
the same type, the method in this paper had clear advantages in improving the efficiency
of vulnerability discovery and achieved the expected results.

4.6. Vulnerability Discovery

In order to verify whether our proposed method can effectively improve the efficiency
of vulnerability discovery and can be applied in reality, we compared SATFuzz with
BOOFuUzz, AFLNWE, and AFLNET. BOOFUZZ is a stateful blackbox fuzzer, AFLNWE is a
stateless coverage-guided fuzzer, and AFLNET is a stateful-coverage-based fuzzer. They
are all open source and widely used in practice. For all fuzzers, we counted the numbers
of vulnerability found and measured the time they took to expose these vulnerabilities.
To reduce the impact of randomness, we ran 10 isolated instances of each group for each
subject. We set the test time to 12 h, and the experimental results are shown in Table 6.

CVE-2018-4013 vulnerability exists in the HTTP packet-parsing functionality of the
LIVE555 RTSP server library, which can cause a stack-based buffer overflow, resulting
in code execution. CVE-2019-7733 vulnerability is a buffer overflow in Live555 because
handleRequestBytes has an unrestricted memmove. According to the experimental results,
it can be seen that SATFuzz outperformed both fuzzers on all vulnerabilities. Specifically,
SATFuzz found two vulnerabilities and improved the time efficiency. Compared to the
state-of-the-art fuzzer AFLNET, SATFuzz found vulnerabilities in a shorter time. In the
discovery of the vulnerability CVE-2019-7733, SATFuzz took less than two thirds of the
time used by AFLNET.

Table 6. The vulnerabilities found and average time to error comparison.

Time to Error
BooFuzz AFLNWE AFLNET SATFuzz

CVE-2018-4013 super critical >12h 1h21m37s 1h18m10s 1h10m25s
CVE-2019-7733 high critical >12h 2h29m36s 1h45m42s 1h2mb53s

CVE-ID LEVEL

5. Discussion
5.1. Theoretical and Practical Implications

In contrast to generation-based fuzzers, SATFuzz takes a mutational approach and uses
state-feedback to guide the fuzzing process. SATFuzz is seeded with a corpus of recorded
message exchanges between the server and an actual client. No protocol specification or
message grammars are required.

In contrast to existing stateful network protocol fuzzing methods, we made improve-
ments from three perspectives. To explore the state space in depth, we prioritized states
according to their characteristics and the state selector randomly selected states to test
among the high-priority states. To reduce the extra time overhead, we considered the
minimum pre-lead sequence and the fittest post-end sequence together, and the Test Se-
quence Selector screened out corresponding optimal test sequences for the states to be
tested. To avoid invalid interactions, we chose a QRNN to implement a test case filter that
can determine the validity of the test cases before interaction.

We summarize three problems in existing network protocol fuzzing methods: frequent
auxiliary message interaction, no in-depth state-space exploration, and high shares of
invalid interaction time. To this, we proposed SATFuzz to improve these three aspects.
Compared with other methods, we found that SATFuzz triggered more crashes in the
same time, which can effectively improve the efficiency of network protocol vulnerability

Appl. Sci. 2022, 12, 7459

14 of 16

discovery. In addition, SATFuzz can be applied in practice to find high-risk vulnerabilities
of real software in a shorter time.

5.2. Limitations and Future Works

SATFuzz can be strengthened in certain aspects.

First is the effective test case classification false positive rate problem. The disad-
vantage of the method in this paper is the high false positive rate of effective test case
classification. In the future, we will study how to optimize the structure of the test case
filtering model to improve its ability to correctly classify effective test cases and further
improve the efficiency of network protocol fuzzing.

Second is state prioritization issues. This article prioritizes the states with reference
to the meaning of the first two digits of the status code and does not fully consider the
inherent meaning of the status code. In the future, the state prioritization will be refined to
further improve the efficiency of stateful protocol fuzzing.

Third is no status code issues. This paper requires that the stateful protocol entity must
meet the condition that the response message contains the status code; thus, for the stateful
protocol entity that does not contain the status code in the response message, the method
in this paper is no longer applicable. In the future, we will study how to fuzz test stateful
protocol entities whose response messages do not contain status codes to expand the scope
of application of this method.

6. Conclusions

In this paper, we proposed a stateful network protocol fuzzing framework called SAT-
Fuzz. The key idea is to improve the vulnerability discovery efficiency from three perspec-
tives: reducing the extra time overhead, exploring the state space in depth, and avoiding
invalid interactions. Specifically, we prioritized states according to their characteristics,
screened out corresponding optimal test sequences for the states to be tested (i.e., high-
priority states), and directly filtered invalid test cases that were destined to be unable to
successfully participate in the fuzzing process.

To systematically evaluate SATFuzz, we selected stateful network protocols with
hidden security risks as the research object and conducted comparative experiments with
the most representative method. The experimental results show that the vulnerability
discovery efficiency of the proposed approach increased by at least 1.48 times (at most by
3.06 times). The experimental results verified that the vulnerability discovery efficiency
of SATFuzz was far superior to that of its competitors of the same type. We proved that
SATFuzz can effectively compensate for some shortcomings of the existing methods and
achieved significantly improved vulnerability discovery efficiency.

Author Contributions: Conceptualization, Z.P. and L.Z.; methodology, Z.P. and Z.H.; software,
L.Z. and Z.H,; validation, Z.P,, L.Z. and Z.H.; investigation, Y.L. and Y.C.; resources, Y.L. and Y.C.;
writing—original draft preparation, Z.P.; writing—review and editing, Z.P., L.Z., ZH., Y.L. and Y.C,;
supervision, Z.P.; project administration, Z.P. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the National Key R&D Program “Cyberspace Security” grant
number 2017YFB0802900.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: We built a QRNN template used for processing long time-series data.
We uploaded it to a GitHub project to support related research on test case filtering in stateful network
protocol fuzzing; the template can be downloaded from https://github.com/Whoolocked /QRNN-
For-LTSData (accessed on 20 July 2022).

https://github.com/Whoolocked/QRNN-For-LTSData
https://github.com/Whoolocked/QRNN-For-LTSData

Appl. Sci. 2022, 12, 7459 150f 16

Acknowledgments: We are very thankful to Bingyang Guo and Zhijie Xie for their help with the
preparation of the experiment and reviewing the paper. We thank the anonymous reviewers for their
detailed comments, which helped to improve the quality of the paper.

Conflicts of Interest: The authors declare that they have no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

QRNN Quasi-recurrent neural network
SIP Session Initiation Protocol

1P Internet Protocol

SFSM Simplified Finite State Machine

References

1. Li, Z.]J.; Zhang,].X,; Liao, X.K.; Ma, J. Survey of Software Vulnerability Detection Techniques. Chin. J. Comput. 2015, 38, 717-732.

2. Zhang, B.F; Zhang, C.B.; Xu, Y. Network Protocol Vulnerability Discovery Based on Fuzzy Testing. J. Tsinghua Univ. (Sci. Technol.)
2009, 2, 2113-2118.

3. Munea, T.L; Lim, H,; Shon, T. Network protocol fuzz testing for information systems and applications: A survey and taxonomy.
Multimed. Tools Appl. 2015, 75, 14745-14757. [CrossRef]

4. Technical “Whitepaper” for afl-fuzz. Available online: https://lcamtuf.coredump.cx/afl/technical_details.txt (accessed on 14
July 2022).

5. libFuzzer—A Library for Coverage-Guided Fuzz Testing. Available online: https:/ /llvm.org/docs/LibFuzzerhtml (accessed on
14 July 2022).

6. Peach Fuzzer Platform. Available online: http:/ /www.peachfuzzer.com/products/peach-platform (accessed on 14 July 2022).

7. A Fork and Successor of the Sulley Fuzzing Framework. Available online: https://github.com/jtpereyda/boofuzz (accessed on
14 July 2022).

8. Bohme, M.; Pham, V. T.; Roychoudhury, A. Coverage-Based Greybox Fuzzing as Markov Chain. IEEE Trans. Softw. Eng. 2017, 45,
489-506. [CrossRef]

9. Bohme, M.; Pham, V.T.; Nguyen, M.D.; Roychoudhury, A. Directed Greybox Fuzzing. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, Dallas, TX, USA, 30 October-3 November 2017.

10. Pham, V.T.; Bohme, M.; Santosa, A.E.; Cdciulescu, A.R.; Roychoudhury, A. Smart Greybox Fuzzing. IEEE Trans. Softw. Eng. 2019,
47,1980-1997. [CrossRef]

11. Pham, V.T.; Bohme, M.; Roychoudhury, A. AFLNET: A Greybox Fuzzer for Network Protocols. In Proceedings of the 2020 IEEE
13th International Conference on Software Testing, Validation and Verification (ICST), Porto, Portugal, 24-28 October 2020; pp.
460-465.

12. A Pure-Python Fully Automated and Unattended Fuzzing Framework. Available online: https://github.com/OpenRCE/sulley
(accessed on 14 July 2022).

13. Dynamic Application Security Testing. Available online: https://beyondsecurity.com/solutions/bestorm.html (accessed on 14
July 2022).

14. Patra, J.; Michael, P. Learning to Fuzz: Application-Independent Fuzz Testing with Probabilistic, Generative Models of Input Data; Tech.
Rep. TUD-CS-2016-14664 TU Darmstadt, Department of Computer Science: Darmstadt, Germany, 2016.

15. Fan, R.; Chang, Y. Machine learning for black-box fuzzing of network protocols. In International Conference on Information and
Communications Security; Springer: Cham, Switzerland, 2017.

16. Caballero,].;Yin, H.; Liang, Z.; Song, D. Polyglot: Automatic extraction of protocol message format using dynamic binary analysis.
In Proceedings of the 14th ACM conference on Computer and Communications Security, CCS ‘07, Alexandria, VA, USA, 28-31
October 2007 .

17. Cui, W,; Peinado, M.; Chen, K.; Wang, H.J.; Irun-Briz, L. Tupni: Automatic reverse engineering of input formats. In Proceedings
of the 15th ACM Conference on Computer and Communications Security, Alexandria, VA, USA, 27-31 October 2008.

18. Fiterau-Brostean, P; Jonsson, B.; Merget, R.; De Ruiter,].; Sagonas, K.; Somorovsky, J. Analysis of DTLS implementations using
protocol state fuzzing. In Proceedings of the 29th USENIX Security Symposium (USENIX Security 20), Boston, MA, USA, 12-14
August 2020.

19. Zou, YH,; Bai, J.].; Zhou, J.; Tan, J.; Qin, C.; Hu, S.M. TCP-Fuzz: Detecting Memory and Semantic Bugs in TCP Stacks with
Fuzzing. In Proceedings of the 2021 USENIX Annual Technical Conference (USENIX ATC 21), Virtual, 14-16 July 2021.

20. Natella, R.; Pham, V.T. Profuzzbench: A benchmark for stateful protocol fuzzing. In Proceedings of the 30th ACM SIGSOFT
International Symposium on Software Testing and Analysis, Virtual, 11-17 July 2021.

21. Sutton, M.; Greene, A. Fuzzing: Brute Force Vulnerability Discovery; Chinese Machine Press: Beijing, China, 2009.

22. Su,P;Ying, L.; Yang, Y. Software Security Analysis and Application; Tsinghua University Press: Beijing, China, 2017.

http://doi.org/10.1007/s11042-015-2763-6
https://lcamtuf.coredump.cx/afl/technical_details.txt
https://llvm.org/docs/LibFuzzer.html
http://www.peachfuzzer.com/products/peach-platform
https://github.com/jtpereyda/boofuzz
http://dx.doi.org/10.1109/TSE.2017.2785841
http://dx.doi.org/10.1109/TSE.2019.2941681
https://github.com/OpenRCE/sulley
https://beyondsecurity.com/solutions/bestorm.html

Appl. Sci. 2022, 12, 7459 16 of 16

23.

24.

25.

26.

27.

28.

29.
30.

31.

32.
33.

Wang, J.; Chen, B.; Wei, L; Liu, Y. Skyfire: Data-Driven Seed Generation for Fuzzing. In Proceedings of the 2017 IEEE Symposium
on Security and Privacy (SP), San Jose, CA, USA, 22-26 May.

Gascon, H.; Wressnegger, C.; Yamaguchi, F; Arp, D.; Rieck, K. Pulsar: Stateful Black-Box Fuzzing of Proprietary Network
Protocols. In International Conference on Security and Privacy in Communication Systems; Springer: Cham, Switzerland, 2015.

REC Editor. Available online: https://www.rfc-editor.org/info/rfc959 (accessed on 14 July 2022).

Zhao, J.; Chen, S,; Liang, S.; Cui, B.; Song, X. RESM-Fuzzing a Smart Fuzzing Algorithm Based on Regression FSM. In Proceedings
of the 2013 Eighth International Conference on P2P, Parallel, Grid, Cloud and Internet Computing, Compiegne, France, 28-30
October 2013; pp. 380-386.

Cui, B,; Liang, S.; Chen, S.; Zhao, B.; Liang, X. A Novel Fuzzing Method for Zigbee Based on Finite State Machine. Int. J. Distrib.
Sens. Netw. 2014, 10, 762891. [CrossRef]

Kang, H.; Wu, L.; Hong, Z.; Zhuang, H.; Zhang, Y. Fuzzing method for BGP-4 protocol based on FSM. Comput. Eng. Appl. 2017,
53,111-117.

Bradbury, J.; Merity, S.; Xiong, C.; Socher, R. Quasi-Recurrent Neural Networks. arXiv 2016, arXiv:1611.01576.

Zhou, Y. Research on Network Protocol Vulnerability Mining Method Based on Deep Learning. Master’s Dissertation, University
of Electronic Science and Technology of China, Chengdu, China.

Li, J.L.; Chen, Y.L.; Li, Z. Mining RTSP Protocol Vulnerabilities Based on Traversal of Protocol State Graph. Comput. Sci. 2018, 45,
178-183.

Small x86-32/x64 FTP Server. Available online: https://github.com/hfirefOx/LightFTP (accessed on 14 July 2022).

The LIVE555™ Media Server. Available online: http:/ /www.live555.com/mediaServer (accessed on 14 July 2022).

https://www.rfc-editor.org/info/rfc959
http://dx.doi.org/10.1155/2014/762891
https://github.com/hfiref0x/LightFTP
http://www.live555.com/mediaServer

	Introduction
	Related Work
	Network Protocol Fuzzing
	Deficiencies in Existing Methods

	Architecture
	Simplified Finite-State Machine
	State Selector
	Test Sequence Selector
	Test Case Filter

	Experimental Analysis
	Experimental Setup
	State Selection
	Test Sequence Selection
	Test Case Filtration
	Comparasion with AFLnet
	Vulnerability Discovery

	Discussion
	Theoretical and Practical Implications
	Limitations and Future Works

	Conclusions
	References

