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Abstract: Predictive process monitoring (PPM) has been discussed as a use case of process mining
for several years. PPM enables foreseeing the future of an ongoing business process by predicting,
for example, relevant information on the way in which running processes terminate or on related
process performance indicators. A large share of PPM approaches adopt Machine Learning (ML),
taking advantage of the accuracy and precision of ML models. Consequently, PPM inherits the
challenges of traditional ML approaches. One of these challenges concerns the need to gain user
trust in the generated predictions. This issue is addressed by explainable artificial intelligence (XAI).
However, in addition to ML characteristics, the choices made and the techniques applied in the
context of PPM influence the resulting explanations. This necessitates the availability of a study on
the effects of different choices made in the context of a PPM task on the explainability of the generated
predictions. In order to address this gap, we systemically investigate the effects of different PPM
settings on the data fed into an ML model and subsequently into the employed XAI method. We study
how differences between the resulting explanations indicate several issues in the underlying data.
Example of these issues include collinearity and high dimensionality of the input data. We construct
a framework for performing a series of experiments to examine different choices of PPM dimensions
(i.e., event logs, preprocessing configurations, and ML models), integrating XAI as a fundamental
component. In addition to agreements, the experiments highlight several inconsistencies between
data characteristics and important predictors used by the ML model on one hand, and explanations
of predictions of the investigated ML model on the other.

Keywords: predictive process monitoring; machine learning eXplainability; XAI; outcome prediction;
process mining; machine learning

1. Introduction
1.1. Problem Statement

Process mining is a scientific field at the intersection between Business Process Man-
agement (BPM) and data science. Process mining allows the ideal view of how the activities
of a process should be performed (i.e., the normative model of the business process), to
be contrasted with the way they are carried out (i.e., the descriptive model) [1]. Predictive
process monitoring (PPM) [2], as a fundamental use case of process mining, supports
stakeholders by making predictions about the future of a running business process instance.
A business process corresponds to a sequence of executed events affected by decision points
and involving a number of actors to achieve one or more goals of the business process [3].
Predictions related to running process instances enable stakeholders to make preventive
decisions in case of expected undesired outcomes, expected delays, or resource congestion.

As stakeholder engagement is at the center of process mining tasks, performance
and accuracy are not the only aspects that matter in the context of a PPM prediction
task. When depending on an ML model for predicting the future of running business
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process instances, it becomes necessary to persuade stakeholders about the validity of
the reasoning mechanisms applied by the predictive model. In particular, explaining
predictions to the various stakeholders fosters users’ trust, engagement, and advocacy in
PPM-employed mechanisms.

In order to provide explanations of predictions generated by an ML model, eXplain-
able Artificial Intelligence (XAI) [4] methods and mechanisms [5–11] can be put in place.
The explanations are obtained either in parallel to the prediction process or afterwards.
Moreover, they are expected to reflect how a predictive model is influenced by the differ-
ent choices made along the ML pipeline. The latter includes data analysis and cleaning,
data preprocessing, model selection, parameter configuration, and evaluation of model
predictions. Moreover, PPM tasks employ specific mechanisms for aligning process mining
artefacts to ML model requirements. Despite increased awareness of the importance of
explainability as a supportive mechanism for predictions in the context of PPM, to the
best of our knowledge, no study of the effects of different choices made in the context
of a PPM workflow has been carried out. Through such a study, it may be possible to
understand the consequences of each choice in terms of its outputs, these being inputs
in another step of the PPM pipeline. Through such a study, it might be possible to know
beforehand which patterns are expected to affect an ML model, and hence which should be
reflected in an explanation.

1.2. Contributions

This work attempts to study the connection between the characteristics of PPM inputs
and steps on one the hand, and explainability outcomes on the other. In detail, this
paper presents:

• A study of the effects that the underlying choices made in the context of a PPM task
have on the predicted outcomes of a running process instance. In particular, we inves-
tigate changes in preprocessed data as a result of applying different transformation
and preprocessing configurations.

• A study of how the explanations generated by two different global XAI methods
(i.e., two model-specific methods, in addition to permutation feature importance and
SHAP) can reflect inconsistencies and sensitivities in the executed predictive models.
We investigate how changes in data that result from the application of different
preprocessing configurations can expose the sensitivities of a predictive model and
how this exposure can be reflected through explanations. Global methods used in
the context of this research generate explanations for the outcomes of two predictive
models. The latter are executed over process instances from three real-life event logs
preprocessed with two different preprocessing configurations.

• An open-access framework of various XAI methods built upon different PPM work-
flow settings.

The rest of this paper is organized as follows: Section 2 provides background informa-
tion on basic topics needed for understanding this work. In Section 3, we highlight the basic
research questions investigated in this study. In Sections 4 and 5, our experimental settings,
experimental results, and observations are discussed. Section 6 highlights the lessons
learned and answers the basic research questions. Related works are discussed in Section 7.
Finally, we conclude the paper in Section 8 with a summary and prospective outlook.

2. Background

This section deals with basic concepts and background needed for understanding
this work. Section 2.1 introduces predictive process monitoring, with a focus on outcome-
oriented predictions, as our study focuses on this prediction task. Section 2.2 summarizes
available XAI methods.
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2.1. Predictive Process Monitoring

A process instance is the execution of certain activities allowed in the context of a
given business process. Predictive Process Monitoring (PPM) is a process mining use case
that supports decision makers with predictions of the future course of a running process
instance. This goal is realised by building models to generate predictions such as the
next activity to be carried out, time-related information (e.g., the remaining time until
process completion), the outcome of the process instance, execution costs, and executing
resource [1]. The generation of a specific prediction is referred to as a PPM task .

A PPM task takes an event log as its central input; the event log documents the
execution history of the instances of a business process in terms of traces. In turn, each trace
represents the execution events of a single process instance.

For example, in an event log documenting a loan application process, each case, i.e., a
process instance, represents a specific application process. Table 1 provides an example of a
loan application process event log. Each case is composed of mandatory components and
optional ones. Note that we use the terms case and process instance interchangeably here
to refer to the same concept; however, we tend to use the term case where the data view of
a business process is our concern and the term process instance when we are concerned with
the conceptual view of a business process.

Table 1. Example loan application event log.

Trace, Event Log. Let ε be the set of all possible events that may take place during the
execution of a business process, i.e., the event universe. A trace σ =< e1, e2, e3, . . . , en >,
with n ∈ N being the total number of events that occurred during the execution of a process
instance. A trace contains at least one event. Let D be the universe of data attributes
associated with each event; then, dij ∈ D, where i is the event number and j ∈ M is the
number of data attributes associated with the event.

A case corresponds to< (e1, (d11, d12, . . . , d1m)), (e2, (d21, d22, . . . , d2m)), (e3, (d31, d32, . . . ,
d3m)), . . . , (en, (dn1, dn2, . . . , dnm)) >. An event with its associated attributes must not take
place more than once in a case, i.e., no redundancy is allowed when storing events associated
with the same case. An event log (L) corresponds to a set of cases, in which each event appears
at most once in the entire event log [1].

As mandatory attributes, a case should contain [1]:

• Case ID: represents a unique identifier of the case in the whole event log.
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• Event class: represents a step carried out in fulfilling the process instance. This step is
the activity name. Receive application, check documents, assess risks, and notify customer
are all examples of events carried out in a loan application process instance.

According to [12], the timestamp attribute is considered a mandatory piece of in-
formation associated with each event. It documents the time when an event took place.
When events are associated with their timestamps, the ordering of events (and hence
the entire event log) can be based on these timestamps [1].

A case may contain optional data items representing information about a single
event. These items are called the data attributes or data payload. Sometimes they are
denoted as dynamic attributes, as they have different values for each event of a particular
case. Examples of data items include the name of the person responsible for checking the
customer’s legitimacy, i.e., resource, and the documents associated with the form-filling
event. When considering Table 1, it can be observed that a single case may be represented
by several records, each representing a single event along with its data payload.

In addition to dynamic attributes, there are static ones associated with each case. Static
attributes have constant values for all events of a given case. They represent data about
the case itself, and their values are not changed during case execution. The applicant ID is
an example of a static attribute. Note that certain attributes have numerical values, while
others are categorical. This distinction has an effect on the choice of how to process the
data values represented by this attribute. Furthermore, in the exemplary event log from
Table 1 we do not define the datatype for the timestamp attribute. In most PPM tasks, this
attribute is used to compute sub-attributes, e.g., week, day, and hour.

2.1.1. PPM Workflow

According to the survey results reported in [2], every PPM task follows a workflow
that comprises four steps, which are in turn organised along two stages, i.e., an offline and
an online stage (cf. Figure 1). Each PPM task starts with an event log that is (pre-)processed
offline. By offline (pre-)processing, we mean transforming the historical cases of a business
process captured in an event log into a form suitable for training a predictive model.
The outcome of this preprocessing is passed to the online stage, in which an incomplete
process instance is processed online, i.e., at runtime, and supported by online predictions.
The complete PPM workflow is shown in Figure 1.

Figure 1. PPM Workflow.

1. PPM offline stage. The input in this stage is an event log. Usually, the latter meets
process mining requirements, i.e., it is organised in the form of cases. Each case has a
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number of mandatory and optional attributes. Preprocessing steps are performed on
the event log to transform its cases into a format compatible with the constraints and
requirements of the prediction generation process.

(a) Prefix log construction. As stated by [2], the input of most PPM approaches
relying on ML is a prefix log constructed from the input event log. Note that a
predictive model is expected to predict information related to an incomplete
process instance (i.e., a partial case). Consequently, the predictive model has
to be trained on partial cases of historical process instances captured in the
event log. Note that the prefixes generated from an event log may increase
to the extent of slowing down the overall prediction process [2]. Therefore,
prefixes can be generated by truncating a process instance up to a predefined
number of events. As proposed by [13], truncating a process instance can be
carried out up to the first k events of its case, or up to k events with a gap
step (g) separating each two events, where k and g are user-defined. The latter
prefixing approach is called gap-based prefixing.
Prefix case, prefix log. Consider a case < e1, (d11, . . . , d1m), e2,
(d21, . . . , en, (dn1, . . . , dnm) >, where n ∈ N is the number of events and m
∈M is the number of event attributes. A prefix Pk is generated from σ, where
P1 =< e1 >, g is the gap or step size between an event and the following one
in Pk, 1 ≤ k ≤ N, and 1 ≤ g ≤ N − 1. A prefix log is the set of all prefixes
generated from all cases (or a defined set of cases) in the event log during pre-
processing. A prefix log may include events with or without their associated
data attributes.
After obtaining a prefix log from the given event log, the prefixes need to be
further preprocessed in order to serve as appropriate inputs for the predictive
model. Prefix preprocessing steps include bucketing and encoding. Available
preprocessing configurations are limited in the literature, as reported by [2,12].
Figure 2 shows an overview of these techniques, which are introduced briefly
through our illustration of the bucketing and encoding preprocessing steps.

Figure 2. Preprocessing configurations (adopted from [2,12]).

(b) Bucketing. During prefix bucketing, the prefixes are grouped according to
certain criteria (e.g., the number of events or the state reached during process
execution). Prefixes in the same bucket are treated as a unit in the encoding
and training steps of the offline stage. Moreover, in the online stage, these
prefixes form a unit when examining an incomplete process instance in order
to find its respective bucket, i.e., similar group of instances. Bucketing can be
based on the commonly reached state of the grouped prefixes, on applying
clustering techniques to group prefixes, on using domain knowledge or prefix
length to bucket several prefixes, or simply on grouping all prefixes into one
bucket, which is called the single bucketing technique.
In single bucketing, all prefixes generated from the cases of an event log are
treated as a single bucket, whereas in prefix length-based bucketing, prefixes of
the same length are bucketed together. Finally, for each bucket, a separate
predictive model is created. Therefore, the choice of bucketing technique affects
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the number of prefixes belonging to the same bucket as well as the number of
predictive models to be built.

(c) Encoding. While bucketing techniques deal with how to group prefixes to-
gether, encoding techniques are concerned with how to format a single prefix
in order to align it with the prediction process requirements. During prefix
encoding, a prefix is transformed into a feature vector that serves as an input
of the predictive model, either for training purposes or for making predic-
tions. A predictive model can only receive numerical values. Therefore, all
categorical attributes of a training event log or a training process instance need
to first be transformed into a numerical form. The same applies to process
instances with prefixes that serve as input for a predictive model. In the con-
text of PPM-related encoding, a slight change to the regular ML encoding step
is needed.
As reviewed in [2,12], there are four techniques used to encode prefixes. Static
encoding is used to encode static attributes of a prefix event log, where numeri-
cal static features are used as-is and one-hot encoding is applied to categorical
static attributes. In contrast, aggregation, index-based and last state encoding are
examples of techniques used to encode dynamic attributes of prefix event logs.
In last-state encoding, the last m states of a process instance are converted into
a numerical form. This encoding technique is thus considered to be a lossy
technique, as it leaves out important information about events that are executed
before the selected last m states.
Aggregation encoding aggregates values of numerical dynamic attributes by
using selected aggregation functions such as the sum, mean, or standard devi-
ation of the values of the attribute for a single process instance. Furthermore,
for categorical attributes all of the occurrences of the values of an attribute
associated with a single process instance are either aggregated according to
frequency-based or boolean-based counting (i.e., the attribute has a value or
it does not). In index-based encoding, a process instance is represented by a
single row, in which each value of each categorical attribute is the header of
a column. Numerical values can thus be propagated as-is when using this
encoding technique.
To illustrate both techniques, we refer back to Table 1 and take the process
instance with Case ID = A150. Tables 2 and 3 provide two forms of this process
instance, encoded using either aggregation or index-based encoding techniques,
respectively. Note that we do not consider the Timestamp column in these ex-
amples, as this column is usually used to derive latent columns, e.g., hour, year,
or day. However, the same encoding rules are applied to the latent columns
according to the data type of these columns. Different encoding techniques
yield different sizes of encoded prefixes with different types of included infor-
mation. In turn, this diversity has been proven to affect both the accuracy of
the predictions and the efficiency of the prediction process expressed in terms
of execution times and needed resources [2].

Table 2. Feature vector created for case with id = A150 from the log in Table 1 using
aggregated encoding.

Case_Id Applicant Id Act_Create_app Act_valid_app Act_decide_app Act_close_app Res_John Res_Benn Res_Jill Sum_monthly_cost Requested_amount Granted_amount

A150 C1820 1 0 0 0 1 0 0 1281 38,000 30,000

A150 C1820 1 1 0 0 1 1 0 1512 38,000 30,000

A150 C1820 1 1 1 0 1 1 1 1854 38,000 30,000

A150 C1820 1 1 1 1 2 1 1 3067 38,000 30,000
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Table 3. Feature vector created for case with id = A150 from the log in Table 1 using
index-based encoding.

Case_Id Applicant
Id Act_1 Act_2 Act_3 Act_4 Res_1 Res_2 Res_3 Monthly

_cost_1
Monthly
_cost_2

Monthly
_cost_3

Monthly
_cost_4

Requested
_amount Granted_amount

A150 C1820 Create_app valid_app decide_app close_app John Benn Jill 1281 231 342 1213 38,000 30,000

Note that the difference between the two examples is represented by the
differences in how dynamic attributes are encoded. All encoding techniques
applied to dynamic attributes are accompanied by static encoding used for
encoding static attributes.

(d) Predictive model construction and operation. Depending on the PPM task,
the respective predictive model is chosen. In this context, the prediction task
type is not the only factor guiding the process of selecting the predictive
model. Other relevant factors include the scalability of the predictive model
when facing larger event logs, its simplicity, and the interpretability of the
results. According to [2], Decision Trees (DT) are most often selected in current
PPM research thanks to their simplicity. XGBoost represents another type of
high-performing predictive model used in the context of PPM tasks [2].
The assignment of parameter values follows the model selection step. The val-
ues of model parameters are learned by the model during the training phase,
whereas the values of hyperparameters are set prior to training the model.
In the next step, the predictive model is trained based on encoded prefixes that
represent completed process instances. Note that for each bucket, a dedicated
predictive model needs to be trained, i.e., the number of predictive models
depends on the chosen bucketing technique. After generating predictions
for the training event log, the performance of a predictive model needs to be
evaluated. Generally, the choice of the evaluation technique depends on the
prediction task, e.g., classification tasks have different evaluation metrics than
regression tasks.

2. PPM online stage. This stage starts with an incomplete process instance, i.e., a
running process instance. Buckets formed in the offline stage are recalled to determine
the suitable bucket for the running process instance. Finding the relevant bucket is
based on the similarity between the running process instance and the prefixes in a
bucket according to the criteria defined by the bucketing method.
For example, in the case of state bucketing, a running process instance is assigned to
a bucket in which all process instances have the same state as the running process
instance. Afterwards, the running process instance is encoded according to the
encoding method chosen for the PPM task. The encoded form of the running process
instance then qualifies as an input to the most relevant predictive model from those
created in the offline stage. Finally, this stage is completed by the predictive model,
which generates a prediction for the running process instance according to the pre-
specified goal of the PPM task.

2.2. eXplainable Artificial Intelligence

Explainability, interpretability, and transparency are common terms with more or
less the same meaning, referring to the problem of understanding and trusting the un-
derlying mechanisms as well as the predictions of an ML model [14]. According to [15],
an explanation is “a human-interpretable description of the process by which a decision maker took
a particular set of inputs and reached a particular conclusion”. In the context of our research,
the decision maker is an ML-based predictive model. Moreover, in this context explanation
has a broader meaning, including both the reasoning process behind the generation of
predictions and the factors that contribute to reaching a given prediction. For example,
it is crucial to know which data characteristics influence a prediction (e.g., in cases of
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imbalanced data or high correlations), as well as which features should be considered
important to the predictive model.

Interpretability is the degree to which a human can consistently predict the model’s result [4].
This human prediction and the mimicking of the model’s reasoning is based on the mental
model, a human form of explanation with respect to how the model reached its decisions.
In [4,16], interpretability is considered equal to transparency. Transparency, however, can
be regarded at three levels. The first level is simulatability, and refers to the human capability
to simulate how a model reaches a prediction. The second level is decomposability, referring
to the ability to understand a predictive model in terms of its elementary components,
e.g., its inputs and hyperparameters. The last level, algorithmic transparency, denotes the
understandability of the inner working of a prediction algorithm [4].

Model transparency itself can be an inherent characteristic or be achieved through
explanation of a model. Transparent models are understandable on their own and satisfy
one or all model transparency levels [16]. Linear models, decision trees, Bayesian mod-
els, rule-based learning, and General Additive Models (GAM) are all considered to be
transparent and interpretable models.

However, the mental models of humans and our ability to mimic the reasoning process
of a predictive model, and hence to trust and accept its predictions, depend on several
qualities that determine a good explanation. The composition, content, and quality of an
explanation can be influenced, characterised, and evaluated according to its constructing
approach. XAI methods, in turn, can be differentiated along several factors, e.g., the way an
explanation is generated or the granularity and scope within which an explanation can be
generalised. Other factors may include the time at which an XAI method is applied, the way
an explanation is presented, and the user group to which an explanation is presented.

Explanations can be generated in several ways, e.g., by providing examples of process
instances which are similar in the values of their attributes but different in their prediction
outcome. Another way is to visualise the intermediate representations and layers of a pre-
dictive model, with the aim of qualitatively determining what the has model learned [14].
Explanation by feature relevance is one type of XAI method, and includes assigning impor-
tance scores to those features that contribute to the prediction process of an ML model.
Corresponding XAI methods include, e.g., SHAP [5] and Partial Dependence Plots (PDP)
[6]. An explanation can be generated locally for one process instance or sample, or it may
be applied globally to the reasoning process of a predictive model over the complete event
log. Accumulated Local Effects (ALE) [9] is an example of a global XAI method, whereas
LIME [8] is a local XAI method.

The presentation of an explanation depends on the way the explanation is generated,
the characteristics of the end user (e.g., their level of expertise), the scope of the explanation,
and the purpose of the explanation (e.g., to visualise effects of feature interactions on
decisions of a given predictive model). Finally, Ref. [17] differentiates between visual, verbal,
and analytic as three presentation forms of explanations.

The point in time at which an explanation is generated constitutes another relevant
factor of an XAI method. When imposing explainability as an integral part of the predictive
model, this is called intrinsic explanation, and the model is a white box. Finally, using
an explanation method to understand the reasoning process of a model in terms of its
outcomes is called post hoc explanation of a predictive model.

XAI methods are further categorised into model-agnostic and model-specific. Model-
agnostic methods are able to explain any type of ML-based predictive model, whereas
model-specific methods can only be used with specific models. For example,
DeepLift [7] and LRP [10] provide explanations for predictive models based on neural
networks. In [11], the authors discuss the advantages of model-agnostic methods, focusing
on flexibility with respect to model choice, explanation form, and representation. In turn,
Ref. [18] argues against the flexibility of model-agnostic methods and emphasizes that these
approaches make assumptions about explained predictive models in order to maintain the
expected flexibility.
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3. Research Problems

The goal of our research is to study the effects of choices made through the PPM
workflow on explanations as well as on how these explanations are able to reflect these
choices. To this end, the research problem investigated here can be approached from two
perspectives, the data side and the explanation side. It must be possible to understand the
phenomena observed through explanations by understanding how the data transformation
and preprocessing configurations change the original data. Furthermore, as illustrated in
Section 2.2, interpretability and transparency implicitly accompany explainability and are
inherent parts of it. On the way to achieving both, even partly, it should be possible for a
stakeholder to trace a prediction back to its inputs. This should be done through a clear
explanation that differs when the input data characteristics are different for the same ML
predictive model and the same XAI method. Therefore, we have defined two Research
Questions (RQ)s which capture this research problem on both sides.

RQ1: What are the effects of applying different preprocessing configurations on
the event log data in terms of changed characteristics and relations between features?
We need to study the expected changes resulting from the use of different preprocessing
configurations on features characteristics (e.g., cardinality levels) and relations both be-
tween features (e.g., correlations) and with the target feature. By understanding how the
applied bucketing and/or encoding techniques transform the characteristics of an event log,
it becomes possible to choose suitable ML models while taking into account the sensitivities
of these models to different data characteristics. Finally, by observing the changes caused by
a specific preprocessing choice, we may be able to understand several observed phenomena
through a single explanation.

RQ2: How may explanations differ depending on the chosen preprocessing config-
urations? After reaching an understanding of the changes occurring to the input data as
a result of different preprocessing configurations, and considering the sensitivities of the
used ML model(s), we need to understand how it is possible for an explanation to reflect
different data characteristics. For example, what is the degree of similarity between the
explanations generated by the same XAI method in explaining predictions of the same ML
model with the same input data? In cases of dissimilarity, to what extent is this observation
affected by the underlying data characteristics, e.g., collinearity between features? As
another example, take linear models, which are transparent by nature [16], i.e., they are
simulatable, decomposable, and algorithmically transparent. However, as confirmed by
many studies [16,19], even transparent models (including linear ones) lose their simulata-
bility and decomposability when facing high dimensionality or heavily engineered features.
Therefore, preprocessing configurations which increase the dimensionality of the feature set
may influence the explainability of certain predictive models. Moreover, self-explanatory
mechanisms provided by the predictive model itself have to be differentiated in terms of
stability over several runs of the model. Here, by stability we mean that the same feature
set has the same importance scores after querying the predictive model for the important
features several times. Henceforth, we refer to this analysis as a stability check.

4. Experiments

This section describes the choices of the experiments we performed in order to answer
the two research questions introduced in Section 3. The PPM workflow (cf. Section 2.1.1)
applies to all PPM tasks. In this study, we focus on predicting the outcome of a running
process instance as a PPM task. However, the analyses conducted in this study are not
PPM task-specific. For the basic workflow of experiments on PPM outcome prediction
tasks (without an integrated explanations mechanism), we are inspired by the framework
and findings presented in [2] and available at [20]. Note that, in order to take advan-
tage of the reported performance of predictive models and preprocessing configurations
from an explainability perspective, we have not changed any of the steps carried out in this
framework.



Appl. Sci. 2022, 12, 8192 10 of 31

Figure 3 shows the taxonomy of the implemented experiments organized under four
dimensions to resemble an ML model creation pipeline, that is, aligned with the PPM
offline workflow and incorporating an explainability-related dimension. Note that the data
dimension has two blocks in the figure representing experiments performed before and
after preprocessing. Categorising the experiments in terms of the designated taxonomy
enables observation of the effect of making decisions in one dimension in isolation from
the other dimensions where settings are kept unchanged. These dimensions are further
investigated throughout this section.

Figure 3. Experimental Taxonomy.

4.1. Experimental Setup

First, we describe the building blocks of our experiments, including the data, chosen
preprocessing configurations, selected predictive models, and employed XAI algorithms.
Categorising the experiments and the employed techniques (as shown in Figure 3) is accom-
plished with the aim of studying the impact of these choices on the resulting explanations.
Observing the impact of modifications to different parameters in each dimension is the
intended basis of this study. Note that all experiments were run using Python 3.6 and
the scikit-learn library [21] on a 96-core a Intel(R) Xeon(R) Platinum 8268 @2.90 GHz with
768 GB of RAM. We applied all allowed combinations from each dimension using the
taxonomy defined in Figure 3 in a dedicated experiment, while keeping choices relevant to
other dimensions stationary. The code of the experiments is available through a Github
repository (https://github.com/GhadaElkhawaga/PPM_XAI_Comparison, accessed on
10 August 2022) to enable open access for interested practitioners.

4.1.1. Dimension 1: Data

The experiments were carried on three real-life event logs, which are publicly available
from the 4TU Centre for Research Data [22]. One challenge in predictive process monitoring
research is the limited availability of real-life event logs. Therefore, we depended on event
logs available in Business Process Intelligence Challenges (BPIC) published by the 4TU
Centre for Research Data [22]. We discarded logs that did not include a business process
and those which did not include both static and dynamic attributes [2]. After filtering these,
we obtained eight event logs, from which we selected three. The three basic event logs [22]
used are as follows:

• Sepsis: This event log refers to the healthcare domain and reports cases of sepsis as a
life threatening condition.

• Traffic Fines: This event log is a governmental one extracted from an Italian informa-
tion system for managing road traffic fines.

https://github.com/GhadaElkhawaga/PPM_XAI_Comparison
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• BPIC2017: This event log records instances of loan application processes in a Dutch
financial institution.

These vary with respect to the referenced domain (healthcare, government, and bank-
ing), the number of cases (i.e., process instances), and the number of events per case.
The chosen event logs further vary in the number of static and dynamic attributes, the num-
ber of categorical attributes, and as a result, the number of categorical levels available in
each categorical attribute. We believe that these three logs represent a comprehensive basis
for our experiments with respect to the five event logs that were left out. Choices in the
data dimension are mainly impacted by the issues that need to be studied in RQ1.

The focus of our study is to analyze explainability of outcome predictions, i.e., to
explain predictions of how a running process instance will terminate. Outcome predictions
answer a specific question driven by the labels of the process instances, which are stored
either in the training part of the event log or in its relevant testing event log. Outcome
prediction is usually a binary classification problem [2]. In order to use the three chosen
event logs in our experiments, we applied the same labelling functions defined in [2]
to classify each process instance into one of two classes, i.e., a binary classification task.
Regarding Sepsis, patients were classified according to

• whether a patient returned to the emergency room within 28 days of discharge in
Sepsis1, and

• whether a patient was admitted to intensive care in Sepsis2.

Process instances in Traffic_fines are binary classified according to whether the fine was
repaid in full or was sent for credit collection. Furthermore, instances from the BPIC2017
event log are classified by whether the loan application was accepted or refused, resulting in
BPIC2017_Accepted and BPIC2017_Refused event logs. As a result of applying these labelling
functions, the number of considered event logs increased from three to five. A predictive
model built for this classification task was then used to predict the labels we created in
this step.

We chose event logs with different positive class ratios varying between <1% and
47% to study the effects of imbalanced event logs on explanations of different granularity.
Table 4 shows basic statistics of the event logs used in our experiments. All event logs were
cleaned and transformed according to the rules suggested by the framework presented in [2].
For example, traces were cut before the event used in the labelling step. Moreover, the event
logs were enriched with derived attributes, e.g., the number of concurrently running cases
at the time of executing the current event. Other examples of derived attributes include the
position of an event in the case and the weekday, hour, and month, which were extracted
based on the timestamp of each event. In order to avoid a dimensionality explosion after
the encoding step, for each categorical attribute, category levels that appeared more than
ten times were the only ones kept. Those not meeting this requirement were filtered out
and replaced with the word “other” in the event log.

Table 4. Event logs statistics.

Event log #Traces Short.
Trace len.

Avg.
Trace len.

Long.
Trace len.

Max
prfx len.

#Case
Variants

%pos
Class

#Event
Class

# Static
Col

# Dynamic
Cols #Cat Cols #num Cols #Cat Levels

Static Cols
#Cat Levels

Dynamic Cols

Sepsis1 776 5 14 185 20 703 0.0026 14 24 13 28 14 76 38

Sepsis2 776 4 13 60 13 650 0.14 14 24 13 28 14 76 39

Traffic_fines 129615 2 4 20 10 185 0.455 10 4 14 13 11 54 173

BPIC2017_Accepted 31413 10 35 180 20 2087 0.41 26 3 20 12 13 6 682

BPIC2017_Refused 31413 10 35 180 20 2087 0.12 26 3 20 12 13 6 682

The analyses related to this dimension are intended to pinpoint the data characteristics
and relations that may affect the patterns learned by a predictive model. Types of analysis
in this dimension include:

• Correlations analysis. Correlation coefficient constitutes a measurement used to
describe the degree to which two variables are linearly related [23]. It takes values
between −1 and 1, with higher values indicating a stronger relationship. The sign
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represents the direction of the relation. Correlation coefficient is computed to allow the
normalised values of features to be investigated. For original event logs, we computed
the correlations between categorical attributes before encoding them with Cramer’s V
coefficient [24]. The latter measures the correlation between two nominal variables
and is based on Pearson’s chi-square.

• Mutual Information (MutInfo). Correlations between features indicate the degree to
which those features are dependent. However, correlations are not decisive with
respect to the independence of features [23]. This means that if two variables are
independent, their correlation coefficient equals zero. However, note that a correlation
coefficient of zero does not indicate the independence of two variables [23]. We
measured the MutInfo of features with respect to the label. MutInfo is the reduction
of uncertainty in a variable after observing the dependent one [23]. This analysis is
capable of capturing any kind of dependency, unlike the F-test, which captures only
linear dependency [25]. Results take values between 0 and 1, with 0 meaning that
the predicted label is independent of the feature and 1 meaning that both are totally
dependent.

• Profiling an event log. For each event log, we generated a statistical profile called the
pandas profile [26] both before and after preprocessing. Each pandas profile reports
on statistical characteristics of each feature within the event log. Such characteristics
include, for example, descriptive statistics of the feature, quantile statistics, missing
values, most frequent values, and histograms.

Experiments along the data dimension were applied to the original event logs before
starting the preprocessing step of the PPM workflow, i.e., before bucketing and encoding
an event log. Afterwards, the same experiments were repeated on the transformed event
logs. In this way, we analysed the effect of the increased dimensionality of an event log
on the relationships between latent features that result from feature encoding. In addition,
in the case of categorical attributes, experiments were performed in order to study which
levels were highly correlated to other attributes.

4.1.2. Dimension 2: Preprocessing

As discussed in [2,12], the chosen bucketing technique might have an effect on the
perceived performance of the predictive models. The more information available to the
predictive model at the time the prediction is generated, the more accurate the prediction.
Bucketing techniques can affect the information available to a predictive model if the
bucketing prefixes are in the same execution state, have the same length, or if all prefixes
from all traces are bucketed together. Here, we want to study whether the influence of a
bucketing technique can be propagated and become clearer in explanations generated for a
given prediction.

Moreover, the encoding technique equips the predictive model with different sets of
features. As a result, its predictions are influenced by the characteristics of the encoding
techniques. Examples of encoding technique characteristics include information loss or
increased dimensionality [2]. The obligation of using either shorter traces or traces with
gaps results from the latter characteristic.

In order to bucket traces of a chosen event log, we applied prefix-length bucketing
with a gap of five events in addition to single bucketing. We believe that this gap size may
enable a balanced situation to be reached in which only few prefixes are produced in case
of event logs with longer traces, while enough prefixes remain available in case of event
logs with shorter traces. Furthermore, the choice of a moderate gap size prevents a large
number of events from being left out and avoids the risk of information loss, unlike in the
case of larger gap sizes. Finally, this choice avoids overloading the experiments with large
numbers of buckets when using a prefix size-dependent bucketing technique or single
bucketing technique, unlike in the case of smaller gap sizes.

Moreover, we applied aggregation and index-based encoding techniques. Usually,
both techniques are coupled with static encoding in order to transform static attributes
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for use as input to the predictive model along with their dynamic counterparts. Two
configurations of bucketing and encoding techniques were applied to satisfy both pre-
processing tasks. These configurations were single-aggregation and prefix-index. As index
encoding leads to a dimensionality explosion (because each categorical level of each feature
is encoded as a separate column), we decided to apply this encoding only to the following
event logs: Sepsis (i.e., the two derived event logs), Traffic_fines, and BPIC2017_Refused. Our
decision to choose these two configurations, i.e., single-aggregation and prefix-index, was
driven by several factors.

• Considering that certain encoding techniques turn subcategories of categorical at-
tributes into separate features, we wanted to study how the relationship between the
resulting new features is reflected though an explanation.

• We needed to study the ability of explanations in order to reflect differences in the
reasoning process of a predictive model when all information is available in one
input bucket. We aimed to compare the former situation against others when several
predictive models are trained based on different groups of traces that differ in their
lengths, and hence in the amount of information provided to a single predictive model.

• Our goal was to ensure the coherence of each scenario when a PPM pipeline is
supported with explanations on top of it. By coherence, we mean that a scenario
employs the best-performing techniques so as not to result in explanations which
might be affected by limitations of the underlying choices. For example, we excluded
the last-state encoding technique from our experiments, as its working mechanism ends
with a scenario in which the predictive model is provided with limited information
that is often insufficient for making accurate predictions [2].
We chose single-aggregation and prefix-index because they have the least information-
lossy techniques (i.e., index encoding) or the most comprehensive techniques to
enable the input of various sizes of prefixes to the same predictive model (i.e., single
bucketing). Finally, the results reported in [2,12] show that these configurations
enable the building of predictive models with good performance. We applied single-
aggregation to the five labelled event logs. After applying prefix-index (with a gap of
five events) to the same event logs, we obtained thirteen event logs. At this point, we
executed our experiments on eighteen event logs in total.

Tables 5 and 6 enumerate a few statistics about the event logs after applying single-
aggregation and prefix-index, respectively.

Table 5. Statistics after applying single-aggregation to the event logs.

Event Log Training Bucket Size Testing Bucket Size # Features

Sepsis1 8974 2297 175

Sepsis2 7222 1848 174

Traffic_Fines 362,094 88,530 254

BPIC2017_Accepted 494,892 124,815 722

BPIC2017_Refused 494,892 124,815 722

Table 6. Statistics after applying prefix-index to the event logs.

Event Log Prefix Length Training Bucket Size Testing Bucket Size # Features

Sepsis1

1 620 156 99

6 618 156 243

11 531 140 425

16 226 158 543



Appl. Sci. 2022, 12, 8192 14 of 31

Table 6. Cont.

Event Log Prefix Length Training Bucket Size Testing Bucket Size # Features

Sepsis2

1 620 156 99

6 614 154 240

11 468 124 408

Traffic_Fines
1 103,652 25,923 201

6 8736 1965 901

BPIC2017_Refused

1 25,130 6283 120

6 25,118 6283 1143

11 24,952 6283 4104

16 24,589 6261 7214

As discussed in Section 2.1.1, preprocessing configurations transform an event log into
a format suitable for machine learning. From Table 5, we can observe the large bucket sizes
of both training and test event logs preprocessed using single bucketing compared to their
counterparts preprocessed using prefix bucketing, as presented in Table 6. Furthermore,
index encoding is responsible for loading the event logs with a large number of features,
as indicated in Table 6, compared to the number of features resulting from applying
aggregation encoding (cf. Table 5). Event log preprocessed using prefix-index configuration
comprise a lower number of prefixes having larger number of features with increasing
prefix length. A crucial part of our study is to observe the effect of these transformations on
data characteristics and generated explanations.

4.1.3. Dimension 3: ML Model

We are interested in explaining the predictions of process instance outcomes. This type
of prediction task constitutes a binary classification task. Here, we employ two predictive
models, XGBoost and Logistic regression (LR). Our target is to study the way explainability
outcomes reflect the sensitivities of the predictive model being explained. Our choice of
these models was based on two reasons:

• Both models provide mechanisms to highlight the most important features used in
generating their predictions. In LR, the weights of the features may serve this purpose,
whereas in XGBoost, a built-in capability can be used to retrieve feature sets and rank
them by their importance to the model. Criteria used to rank features include gain,
weight, and cover, according to the XGBoost API documentation [27]. Two comple-
mentary importance criteria are available through the scikit-learn implementation of
XGBoost. These criteria are total_gain and total_cover.

• XGBoost is the best performing model according to the findings reported in [2], and is
one of the best performing according to [12]. In order to build on the results and
findings of these benchmarks with respect to different prediction tasks in predictive
process monitoring, especially outcome predictions, we decided to adopt XGBoost.

Table 7 reports the performance of both models after training them in three iterations
and using them to generate predictions for all the event logs. Note that both predictive
models do not perform well on Sepsis1, although these results can be justified when
considering the imbalance between class labels indicated in Table 4.

4.1.4. Dimension 4: XAI

Explainability experiments are divided into two sets, i.e., experiments depending on
intrinsic explainability and experiments depending on post hoc XAI methods. Intrinsic
explainability is achievable through querying mechanisms provided by the predictive model
for retrieving features that influence prediction generation. We compared the explainability
of predictive models to the results generated by each applied XAI method.
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Table 7. AUC scores of predictive models categorized according to preprocessing configurations.

Event Log Preprocessing XGboost Logistic Regression

Sepsis1
single_agg 0.33427 0.57124

prefix_index (avg. AUC of len 1–16, gap = 5) 0.4292 0.52599

Sepsis2
single_agg 0.91374 0.88567

prefix_index (avg. AUC of len 1–11, gap = 5) 0.81379 0.46253

Traffic_fines
single_agg 0.73918 0.7949

prefix_index (avg. AUC of len 1 & 6, gap = 5) 0.6515 0.67804

BPIC2017_Accepted single_agg 0.86429 0.8244

BPIC2017_Refused
single_agg 0.68328 0.70706

prefix_index (avg. AUC of len 1–16, gap = 5) 0.7556 0.7677

To choose which XAI methods to apply, we considered criteria obtained from the
explainability taxonomy available in [28]. Considering the explanations scale, in order to be
able to explain the reasoning process of an ML model over the whole training event log,
a global XAI method is needed. As intrinsic explainability is already satisfied by querying
the used ML models themselves, post hoc XAI methods are necessary to validate the
important features revealed by the models themselves. The chosen XAI methods have to be
explaining by showing the relevance of features to the resulting predictions. Outcomes and
explanations of the aforementioned methods are most comparable to the resulting set of
important features when the ML model is queried. Furthermore, it is necessary to choose
model-agnostic methods in order for the results to be applicable to predictions of both the
LR and XGBoost models.

To this end, we used Permutation Feature Importance and SHAP (the global form).
Moreover, we analysed LR coefficients and features important to XGBoost, as this provides
a means to query them for important features. To check execution stability, we ran experi-
ments with different settings and combinations of settings from the taxonomy in Figure 3
twice. Stability checks following this definition are expensive due to computational costs,
which are affected by the number of choices used in the experiments for each dimension.
As a result, it was not possible to run the full experimental settings combinations more than
twice in the context of stability checks. However, in this study we are more concerned with
a comprehensive experimental framework including several experimental dimensions.

The focus of stability checks in this dimension is on the stability of the explanations
being generated by the model itself. Furthermore, we compared explanations of two global
XAI methods over two runs of the experiments. In this study, we adopt a data-oriented
focus and follow the data with analyses, starting from the event log and ending with the
different explanations generated. A comparison of XAI methods with an in-depth analysis
of their strengths along with their weaknesses constitutes a research gap that should be
addressed; however, for this study these aspects are out of scope.

Figure 4 provides a summary of this section. For each of the selected event logs, we
ran several experiments that follow the taxonomy depicted in Figure 3 and constitute steps
in the following order.

1. Conduct data analysis of the event log features using three different techniques,
namely, pandas profiling, correlation analysis, and mutual information analysis.

2. Preprocess the event log using single-aggregation and prefix-index configurations, which
in turn produce several versions of the same event log.

3. For each event log resulting from the previous step,

• Conduct data analysis using the same techniques as in step (1);
• Train and build a separate predictive model using Logistic Regression

and XGBoost;
• Query each model for the important features it depends on (intrinsic explainability);
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• Compare the most important features of each model over two runs (stabil-
ity check);

• Compare the most important features of the two models with each other;
• Explain the predictions of the two models based on two XAI methods, i.e., Permu-

tation Importance and SHAP (global explainability). We generated explanations
twice and checked the similarity of the results in both runs (stability check).

Figure 4. Experiments summary.

5. Results

It is important to view explanations in light of all contributing factors, including the
characteristics of the input data, the effect of the preprocessing configurations, and the way
in which certain predictive model characteristics affect its reasoning process. This section
illustrates the observations we made during the experiments described in Section 4. We
focus on the most remarkable observations and illustrate them by figures and tables. We
categorise the obtained observations according to the respective perspective (either data
and preprocessing or XAI). Finally, we sub-categorise the observations based on the goals
of each of the two RQs defined in Section 3.

Due to lack of space, we cannot include the figures from all eighteen event logs we
used in our experiments. Furthermore, some of the applied analysis techniques resulted in
files with large sizes on disk and large numbers of columns; in particular, pandas profiles
and correlation analysis produced large HTML documents and plots with hundreds of
columns. Nevertheless, we build our observations on the results from these profiles.
As the inclusion of the aforementioned artefacts is not possible in the context of this
paper, we uploaded all plots and several other artefacts to a Github repository (https:
//github.com/GhadaElkhawaga/PPM_XAI_Comparison, accessed on 10 August 2022).
We encourage researchers and practitioners to check this repository in order to ensure
the repeatability and extension of these experiments as well as to reproduce the analysis
and results.

5.1. Data- and Preprocessing-Related Observations

In the data analysis experiments we performed before preprocessing the event logs, we
made several observations. Moreover, in the data analysis experiments we performed after
preprocessing the event logs, we could observe the effects of preprocessing configurations.
Studying the data characteristics before and after preprocessing the logs revealed a number
of interesting observations, which are described in detail below.

https://github.com/GhadaElkhawaga/PPM_XAI_Comparison
https://github.com/GhadaElkhawaga/PPM_XAI_Comparison
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Data characteristics after preprocessing:

Observation 1: Several features that have a constant value before encoding show non-constant
values after preprocessing depending on the applied encoding technique.

Example 1. in the BPIC2017_Refused event log, the feature “EventOrigin” has one value labelled
“other” before preprocessing, and has 20 such values after applying frequency aggregation encoding.
Moreover, certain features remain constant after encoding, e.g., “case:ApplicationType” in the same
event log after its encoding based on frequency aggregations.

Observation 2: Certain features show a high number of zeros (i.e., have sparse vectors) before and
after encoding.

Example 2. in Traffic_fines, the “points” feature has a sparse vector of about 97% zeros before
encoding. This percentage is the same for both encoded versions of the same event log. However,
the percentage of zeros increases in almost all event logs after preprocessing, as a result of applying
either one-hot encoding in index encoding or counting the frequencies of categorical levels in
aggregation encoding. The percentage of zeros reaches 99% in event logs encoded with index
encoding, e.g., Traffic_fines.

Moreover, after applying aggregation encoding techniques, certain event logs show
a relatively low percentage of zeros, e.g., Sepsis2, which has about 33% of zeros, whereas
other event logs have a high percentage of zeros, from 44 to 99%, e.g., BPIC_2017. This
observation can be justified by two factors:

• The effect of the bucketing technique. Aggregation encoding is combined with single
bucketing, which buckets all prefixes in the same group. Having many prefixes of the
same process instance is more likely to reduce the effect of feature value imbalances.
Such imbalances can happen due to the presence of prefixes generated from process
instances with longer trace lengths. Moreover, index encoding is combined with prefix
bucketing, which reduces the number of process instances fed into each encoding
technique. As a result, combining index encoding with prefix-based bucketing has the
potential to magnify imbalances in feature values.

• The difference in ’zero’ indication in both encoding techniques. In aggregation encoding,
a zero means that the feature did not have any value in the encoded event. In turn,
in index encoding, a zero indicates whether the feature has a value in the process
instance. Note that after aggregation encoding, a process instance might be represented
along many rows, whereas after index encoding, it is represented by exactly one row.
As a result, a high number of zeros does not guarantee the absence of a feature value
after preprocessing certain events using aggregation encoding. A high number of zeros
after index encoding, however, denotes the absence of a value. In summary, a feature
might be considered for a predictive model even though it has a large percentage
of zeros.

Observation 3: Categorical levels extracted from certain categorical attributes dominate in prefix-
indexed versions of certain event logs. This dominance increases with the length of the prefixes.

This observation holds in the dominance of categorical levels of the “credit_score”
feature in the prefix-indexed version of BPIC2017_Refused logs (cf. Figure 5).

Data relations after preprocessing

Observation 4: Mutual Information, i.e., the dependency between features and the label in event
logs, has low values in most cases.

An exception to this observation holds for the single-aggregated version of BPIC2017
logs. As a remarkable observation, labels in these logs depend on the feature “min_event_nr”,
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which remains among the top five highly dependent features with the label. In addition,
these single-aggregated logs have a high dependency between aggregated forms of the
“timesincecasestart” feature, which is the most dependent feature on the label in the original
form of these logs. The same observation holds in the single-aggregated version of Sepsis2,
whereas “remainingtime” depends on the label with a coefficient of nearly 0.4, reflecting
similar dependency in the original log with a lower coefficient.

Figure 5. Mututal Information analysis of BPIC2017_Refused preprocessed with prefix index-
configuration.

Studying correlations between features uncovers the following observations:

Observation 5.1: Two features are completely correlated across all event logs before and after
applying the two preprocessing configurations, i.e., single aggregation and prefix index.

To be more precise, these features are ”hour” and ”timesincemidnight”. Note that these
two features are artificial and their correlation is normal, as they are both extracted from
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the same original DateTime column. This observation draws our attention to the possible
effect that adding artificial columns might have on the prediction process to be conducted.

Observation 5.2: Certain domain-related features inherit correlations from the original logs and
propagate this correlation in a strong form in the encoded versions of the same event log.

Example 3. “monthlycost”, “numberofterms”, “offeredamount”, and “requestedamount” are
strongly correlated in the two versions of the BPIC2017 event logs. After applying single aggregation
preprocessing the correlations remain the same, followed by correlations between aggregated versions
of computed attributes such as “timesincemidnight”, “timesincelastevent”, and “timesincecasestart”.
The same happens after applying prefix index preprocessing, with longer prefixes suffering from
multicollinearity between category levels of the same attribute, e.g., “org:resource”.

Example 4. This example is present in the complete correlations (i.e., those equal to 1) between
categorical levels of certain features, e.g., “org:resource” and “dismissal”, along with many other
high correlations. These high correlations appear in event logs with longer prefixes in Traffic_fines
more frequently than in event logs with shorter prefixes.

Example 5. Another example is manifested in the high collinearity between categorical attributes
in original Sepsis logs, as shown in Figure 6 Such collinearity inherited as complete collinearity in
those event logs obtained using either preprocessing configuration. However, the difference becomes
obvious for numerical features in both preprocessing configurations. Partially, high correlations
exist between aggregated forms of numerical features in single-aggregated event logs. Finally, only
a few correlations exist between numerical features in shorter prefixes, increasing in number when
prefixes become longer.

Observation 5.3: High correlations emerge between features that are not correlated in the original
log, while showing high correlations after applying both preprocessing configurations.

Example 6. There are correlations in Traffic_fines event logs after preprocessing in which certain
correlated features contain constant values.

We can summarize the former observations by indicating the effect of a preprocessing
configuration in magnifying the absence of a feature value when it is not available in
certain events of a process instance, rather than the whole trace. Another insight is that the
applied preprocessing configurations generate many features which do not have a strong
relation to the target while overloading the encoded event log with redundant features
with strong collinearity.

The applied configurations load the encoded event logs with a large number of features
derived from categorical features, despite the balance between categorical and numerical
columns in three out of five event logs (Traffic_fines, BPIC2017_Accepted, BPIC2017_Refused).
As a consequence, the high collinearity and dominance of these derived features with
relevantly higher MutInfo values all result from the encoding techniques applied as part of
the preprocessing configurations. The former observations are more obvious in event logs
with longer prefixes, which demonstrates the key role of the choice of bucketing technique.
With these observations, we reach the answer to RQ1.

5.2. XAI-Related Observations
5.2.1. Observations of Model-Specific Explanations

In the experiments described in Section 4, we apply LR and XGBoost. Both provide
insights into the importance of features used in the prediction task through coefficients
and feature importance in LR and XGBoost, respectively. As discussed later in this section,
these methods do not always provide reliable results. However, the results can indicate
which features influence the predictive model’s decisions and their order regardless of the
importance scores of these features.
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Figure 6. Collinearity between categorical attributes in Sepsis2.

Interpreting coefficients or weights of features in the context of LR, for example, is not
a straight forward process the way it is in linear regression. LR employs a log function, and
hence outputs the probability of belonging to a certain class [23]. Therefore, LR weights do
not linearly influence the prediction. Instead, a change of a feature by one unit results in a
change in the log odds ratio by the value of the corresponding weight of this feature [4].
Log odds means the logistic function of the probability of an event occurrence divided by
the probability of no event [4].

Effect of the applied preprocessing configurations

When running LR over the used event logs twice, the following observations were made.

Observation 6: Event logs preprocessed with the single-aggregation configuration show a 100%
match in features coefficient analysis with respect to the features set and importance scores. How-
ever, the event logs do not show any similarity between the most important features, as indi-
cated after querying the model and the features with high dependency on the label, according to
MutInfo analysis.

The Traffic_fines event log represents an exception to the latter observation. Analysis of
the results of this event log show a similarity between the first two features with the highest
LR coefficients and the first two features with high dependency on the label, according to
MutInfo analysis. High collinearity between these two features is observed with respect to
correlations analysis, as they constitute aggregations of “timesincelastevent” feature.

Observation 7: Event logs preprocessed with the prefix-index configuration show similarities in
feature coefficient analysis in terms of the features set with increasing prefix length. However,
the importance scores remain different across several execution runs.

Moreover, the similarity between the most important features according to the model
and the set of features with high dependency on the label increases as the prefix length
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increases. An exception to both observations with respect to prefix-indexed event logs is
provided by the Traffic_fines event log. Here, the feature sets are not similar either when
comparing them across the two runs of LR model coefficients analysis or when comparing
them to the indicated features with high MutInfo values. As indicated in Table 4, Traf-
fic_fines provides only shorter prefixes. Therefore, dissimilarity between feature sets across
execution runs on this event log could be a result of its short prefixes. As a consequence, it
is not possible to observe a change in longer traces, unlike in other event logs.

XGBoost characteristics revealed when using the applied preprocessing configurations

Referring back to the criteria provided by XGBoost to order features according to their
importance, gain is considered to be the most relevant attribute in measuring the relative
importance of each feature. We decided to rely on gain importance as provided by XGBoost,
as it can be complementary to MutInfo, that is, the measurement representing the expected
gain from a data analysis perspective. Comparing results from both a data analysis per-
spective and a model reasoning perspective, as well as observing how both sides (dis)agree,
may lead to interesting insights which can highlight how a predictive model learns from the
underlying data and reflects any anticipated characteristics. However, in our experiments
we compare feature importance ranks based on all five criteria available in order to rank
the importance of XGBoost features. These criteria are presented in Section 4.1.3. Note that
in our observations there are two usages of the term weight, i.e., weight, indicating one of
the five feature importance criteria analysed, and the weight indicating the importance score
according to one of the five importance criteria. The following observations are made as a
result of analysing features importance according to XGBoost-based models.

Observation 8: XGBoost models show complete inconsistency across the two execution runs for all
event logs preprocessed with the single-aggregation configuration.

The two Sepsis event logs constitute an exception. They have the same feature set with
different importance scores for four of the five criteria, whereas the feature set increasing
the gain of the model is totally different across the two execution runs. However, in event
logs preprocessed with the prefix-index configuration, models trained on prefix length-
based event logs use the same feature sets with the same importance scores across the
two execution runs for the five XGBoost criteria to rank important features. An exception
to this consistency can be observed for prefix length-based event logs extracted from the
BPIC2017_Refused event log.

Observation 9: Multicollinearity, i.e., high correlations reaching complete correlations in certain
cases, is an issue in event logs preprocessed with the single-aggregation configuration.

There is an exception to this observation for the two event logs extracted from the
BPIC2017 log. This multicollinearity can be observed across the feature set of each criterion
in the same execution run. Moreover, it can be observed in feature sets of the same criterion
across the two execution runs.

Observation 10: Feature sets which are important according to their gain differ from those with
high dependency on the label, as indicated by the MutInfo analysis.

This observation applies to all event logs, independently of whether they are prepro-
cessed with single aggregation or prefix index configuration, across the two execution runs,
except for the prefix length-based event logs extracted from the BPIC2017_Refused event
log. For the latter event logs, the gain-based feature sets tend to match the MutInfo-based
feature sets with increasing length of the prefixes in event logs.
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Observation 11: In the event logs preprocessed with the prefix-index configuration, as prefix
lengths increase the top important feature sets (according to their weight and cover criteria) become
more similar across event logs.

However, when comparing features across the same criterion (i.e., gain, weight, cover,
etc.), we observe that, for similar features, the respective feature importance score decreases
for longer prefixes. The Traffic_fines prefix length-based event logs provide an exception
to this observation. This exception can be explained by the fact that these logs do not
provide longer prefixes when applying a gap of five events; see the experiments settings in
Section 4.1.

For example, Figures 7–9 compare LR coefficients with XGBoost features importance
based on gain criterion. The comparison indicates increasing similarity concerning the
important features subset with increasing prefix length.

Figure 7. LR coefficients for different prefix lengths of BPIC2017_Refused.

Figure 8. XGBoost features importance (gain) for prefix length (11) of BPIC2017_Refused.
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Figure 9. XGBoost features importance (gain) for prefix length (16) BPIC2017_Refused.

5.2.2. Observations of Global XAI Methods Results

In this subsection, an analysis of Permutation Feature Importance (PFI) and SHAP
results is presented. For each XAI method, we search for indications of multicollinearity and
(dis)conformance with important feature sets indicated by the employed predictive model.

Permutation Feature Importance (PFI).

The basic idea of PFI is to measure the average between the prediction error before and
after permuting the values of a feature [4]. Feature values permutation or shuffling aims to
estimate the increase in prediction error as an indicator of the feature importance. PFI was
executed twice to query LR and XGBoost models trained over the event logs preprocessed
with single-aggregation and prefix-index configuration. Each execution run included ten
shuffling iterations. The mean importance of each feature was computed. In detail, PFI
execution led to the following observations.

Observation 12: In single-aggregated event logs, the results of the two runs are consistent with
respect to feature sets and the importance scores of these features. However, the resulting feature sets
are affected by multicollinearity between the features. In prefix-indexed event logs, the two runs are
consistent in all event logs.

An exception in prefix-indexed event logs is present in the four logs derived from
BPIC2017_Refused, with prefix lengths of [1, 6, 11, 16]. In the latter event logs, the dissimi-
larity between the feature sets across the two runs increases with increasing length of the
prefixes. This observation can be attributed to the effect of the increased dimensionality
in the event logs with longer prefixes. In prefix-indexed event logs, weights or scores of
important features change with increasing prefix length.

Observation 13: (Dis)similarity between feature sets that results in the first run of PFI, on one
hand, and LR coefficients or XGBoost feature sets on the other, is independent of the preprocessing
configuration. In nearly all cases, dissimilarity can be observed.

After comparing the results of the first PFI run with LR coefficients and XGBoost
feature sets (based on the total gain criterion), complete dissimilarity can be observed
between the PFI feature sets and LR coefficients regardless of the preprocessing configura-
tion. Moreover, when compared to XGBoost feature sets, event logs showing no similarity
in a single-aggregated form showed more similarity in certain features in prefix-indexed
form with increasing length of the prefixes. Examples of this observation include the
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BPIC2017_Refused, Sepsis1, and Sepsis2 event logs. Figures 10 and 11 show PFI scores
according to LR and XGBoost trained over BPIC2017_Refused of different prefix lengths.

Figure 10. PFI according to LR trained over BPIC2017_Refused (preprocessed with prefix index
configuration).

Observation 14: Multicollinearity between PFI feature sets of all single-aggregated event logs is at
high levels, and increases with longer prefixes in prefix-indexed event logs.

Multicollinearity implies features with very high or complete correlations amongst
each other.

SHapley Additive exPlanations (SHAP).

SHAP is an explanation method that belongs to the class of feature additive attribution
methods [5]. These methods use a linear explanation model to compute the contribution of
each feature to a change in the prediction outcome with respect to a baseline prediction.
Afterwards, a summation of the contributions of all features approximates the prediction
of the original model. To maintain comparability of the global XAI methods used in our
experiments, we constructed a SHAP explainer model on training event logs independently
of another SHAP explainer model constructed from relevant testing event logs. The obser-
vations in this section are obtained based on the training SHAP explainer model.

Observation 15: While comparing the two execution runs, the results do not depend on the pre-
processing configuration; rather, they differ depending on the respective predictive model for which
explanations are generated.
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Figure 11. PFI according to XGBoost trained over BPIC2017_Refused (preprocessed with prefix index
configuration).



Appl. Sci. 2022, 12, 8192 26 of 31

In terms of explaining the predictions of the LR model, performing two executions of
the SHAP method results neither in different feature sets nor in different ranks based on
SHAP values, regardless of the preprocessing configuration used. In contrast, explaining
the predictions of XGBoost model reveals that having the highest-contributing feature is the
same across both execution runs. Furthermore, the rest of the feature set happens to be the
same, with different respective ranks. An exception is present in the feature set of the two
Sepsis event logs, where feature ranks are the same across both runs. These observations
are aligned with the observations made regarding model-specific explanations and feature
importance according to XGBoost-based models across two execution runs.

In order to study how SHAP results relate to feature importance as revealed by the
predictive models, it becomes necessary to compare the features ranked according to their
SHAP values with the important feature sets as indicated by the predictive models used in
these experiments.

Observation 16.1: Important features according to their ranking based on their LR coefficients are
unaligned with important features ranked by their SHAP values.

This observation is valid for all considered event logs regardless of the preprocess-
ing configuration.

Observation 16.2: When using the total gain as a criterion to rank important features according to
XGBoost models, the former observation is not valid.

In prefix-indexed event logs, the two compared feature sets are somehow similar.
In contrast, in single-aggregated event logs, only in BPIC2017_Accepted and Sepsis1 does
there exist any similarity (though not a complete match) between the two compared fea-
ture sets.

Observation 17: Despite adjusting SHAP explainer parameters to be true to the model rather than
the underlying relations between features, SHAP results reveal high multicollinearity between the
most important features

This observation especially holds for predictions based on the event logs preprocessed
with the single-aggregation configuration. It is valid for the feature sets that are important
to LR models, and is valid for the XGBoost models in the case of the Sepsis1 event log
as well. Multicollinearity in the underlying data affects LR, as its presence counteracts
the underlying assumptions of LR. In contrast, multicollinearity is not supposed to affect
XGBoost. This claim is justified by the fact that, in boosting, whenever collinearity exists
between a subset of features the model chooses one feature to be the data splitting criterion.
The entire importance score is assigned to the splitting feature, in contrast to the excluded
correlated features, which are not considered important in this case [29]. However, in case
of the Sepsis1 event logs, the very high class imbalance (cf. Table 4) indicates that the model
overfits patterns in training data.

Moreover, in event logs preprocessed with the prefix-index configuration, high cor-
relations can be observed between features in the feature sets ranked highly according
to LR with increasing prefix length. Multicollinearity in single-aggregated event logs is
mainly inherited from high correlations present in original event logs. This multicollinearity
increases with single aggregation preprocessing of an event log.

According to SHAP values, for certain event logs LR models depend on only one
feature. The aforementioned logs are event logs with a prefix length of one, namely, those
extracted from the event logs BPIC2017_Refused, Sepsis1, and Sepsis2. SHAP nullifies the
contribution of features when they are not important to a predictive model. Therefore,
for these event logs, only the important feature has a contribution value, while all other
features receive zeros.
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In Figure 12, features with values that are vertically allocated (around 0 in both sub-
figures) are ignored by the predictive model. In contrast, features with values that are
spread along the horizontal axis influence model predictions. This influence can be present
through either lowering or increasing the values of model predictions. The color of the
points corresponds to feature values in relevant process instances, independent of whether
the value is high or low.

(a) SHAP values of BPIC2017_Refused with prefix = 11

(b) SHAP values of BPIC2017_Refused with prefix = 16

Figure 12. Summary plots of SHAP values of features used by LR.

6. Discussion

Explaining ML-based predictions is a prerequisite for gaining user acceptance and
trust in the predictions of respective models. It becomes necessary to consider explainability
as a continuous process that needs to be integrated throughout the ML pipeline. A first
step towards such integration would be to study the effects of different pipeline decisions
on the resulting explanations. The main concern in our research is to study the ability of
an explanation to reflect how a predictive model is affected by different settings in the
ML pipeline. Another concern is to study how the inherent characteristics of a predictive
model are confirmed and highlighted through an explanation. Our experimental results,
described and analysed in Section 5, confirm the following conclusions:

• Encoding techniques used in the preprocessing phase of PPM have a major impact on
both the ability of the predictive model to be decisive as to what the important features
are and the selection of certain XAI methods to explain the model’s predictions. Both
studied encoding techniques load the event log with a large number of derived features.
However, the situation is worse in index-based encoding, as the number of resulting
features increases proportionally with the number of dynamic attributes, especially the
number of categorical levels of a dynamic categorical attribute. In aggregation-based
encoding, the number of resulting features increases in proportion with the number of
dynamic attributes.
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Increased collinearity in the underlying data constitutes another problem, resulting
from encoding techniques in varying degrees. The effect of collinearity is observed in
index-based preprocessed event logs, and is not totally absent in aggregation-based
event logs. This collinearity is reflected in explanations of predictions with respect to
process instances from prefix-indexed event logs as the length of a prefix increases.

• The selected bucketing technique has an effect on global XAI methods, especially
when accuracy depends on the sufficiency of the process instances to be analysed. PFI
is affected by the number of process instances as the average of errors in prediction is
calculated over the number of event log process instances.

• Our experiments show the sensitivity of LR to collinearity in several situations. This
conclusion can be made, for example, when comparing features ranked highly based
on SHAP and PFI to high-importance features based on LR coefficients. In contrast,
there is a degree of similarity when comparing the former important feature sets to
XGBoost important features sets, especially for explanations of predictions from prefix-
index preprocessed event logs. However, when querying the XGBoost model for the
set of important features twice, the resulting sets do not match. Such a mismatch
indicates inconsistency as a result of the collinearity between features. Note that both
predictive models are affected by collinearity. However, in LR the effect is magnified,
and prevails in all comparisons in which LR coefficients take part. In most cases, it
is observed that dimensionality and collinearity prevent both LR and XGBoost from
relying on features that have a dependency relationship with the label.

This discussion emphasizes the importance of considering the explanation of an event
log as an accumulated effort, starting from features analysis and selection stage, to training
a predictive model, and finally to an explanation model. Despite having XAI methods true
to the model, explanations have the power to highlight how underlying data characteristics
affect and are reflected in the model’s reasoning process. The experiments executed in
the context of this study are open to improvements and enhancements. For example,
more real-life event logs are available; experimenting on more event logs with more varied
characteristics may enable different observations to be obtained after the preprocessing step.
Furthermore, despite using the most high-performing preprocessing configurations for our
experiments, we believe that there is room for unexpected conclusions if the remaining set
of preprocessing configurations are used.

7. Related Work

Over the last decade, a plethora of research has emerged that addresses PPM as an
improvement and enhancement use case of process mining. Different techniques have been
proposed and applied to predict different information about running process instances.
These techniques are illustrated and compared in [30,31]. In [30], the authors categorise
approaches based on prediction type, input type, algorithms used, and tool availability.
They categorised the studied approaches into numerical, categorical, and next activity
prediction-based approaches. A contribution of the study in [31] is the consideration of the
process-awareness perspective when categorising runtime PPM approaches.

As an example of techniques that make use of the inherent transparency of the under-
lying predictive models, [32] uses Dynamic Bayesian Networks (DBN) to analyse the role of
contextual attributes in predicting the next event of a running process instance. The former
proposal benefits from the transparency of a DBN model, as the conditional probability
distributions can be extracted at each state and time slice. A further example is proposed
in [33], where a process-aware PPM approach is taken to predicting the remaining time of a
running process instance while providing a transparent model. The latter paper provides
an analysis of process performance using flow analysis techniques. The authors of [34]
propose the use of fuzzy neural networks to predict the possible outcomes of running
process instances. Through this proposal in [34] the authors discuss the transparency of
the predictive model, as it is possible to extract the relations between input features and
generated predictions in terms of IF–THEN rules.
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As a complementary part of our present research, in [28] we study how characteristics
of different XAI methods can be reflected in the generated explanations as well as how
explainability methods can be compared according to different criteria. Furthermore,
in [28], we propose an empirical analysis framework to study the impact of different PPM-
related settings and ML model-related choices on the characteristics and expressiveness
of the generated explanations. These explanations are generated on both global and local
scales, i.e., for the whole event log and for individual process instances, respectively. We
believe that the research introduced in this paper, along with the framework available
in [28], constitutes a comprehensive framework. This framework enables study of the
potential of explanations to reflect characteristics of contributing techniques and underlying
phenomena taking place through the complete PPM workflow.

The authors of [35] propose an approach that integrates Layer-wise Relevance Propa-
gation (LRP) to explain the next activity predicted using an LSTM predictive model. This
approach tends to propagate relevance scores backwards through the model in order to in-
dicate which previous activities were crucial to obtaining the resulting prediction. Another
approach to explaining LSTM decisions is presented in [36]. According to this approach,
the total number of process instances in which a certain feature contributes to a prediction
is identified at each timestamp for the whole event log. This identification is directed by
SHAP values. In [36], the authors use the same approach to provide local explanations for
running process instances.

Explanations may be used to leverage predictive model performance, as proposed
by [37]. Using LIME as a post hoc explanation technique to explain predictions generated
using Random Forest, [37] identify feature sets which contributed to producing wrong
predictions. After identifying these feature sets, their values were randomised, provided
that they did not contribute to generating right predictions for other process instances.
The resulting randomised event log was then used to retrain the model again until its
perceived accuracy improved.

8. Conclusions

In this research, a framework is implemented to study the effects of several choices
made in the context of a PPM task on the relationships between data before and after
preprocessing. Furthermore, we analyze explanations of predictions made for business
process instances. These explanations are generated using either self-explanatory predictive
models or post hoc methods. We study the ability of these methods to reflect underlying
characteristics of the input data, and hence to improve the transparency of the prediction
process, at least from the input perspective.

Using two preprocessing configurations with two predictive models and two post
hoc XAI methods may limit the generalisability of the observations and conclusions made
in our experiments. However, we argue that our conclusions can provide useful insights
about how certain preprocessing configurations lead to certain data characteristics that
can expose sensitivities of certain predictive models, and hence become clear through
the generated explanations. Furthermore, despite the limited number of techniques we
experimented on, the same techniques have been reported in several studies to lead to the
best performance results.

Our study reveals inconsistencies between data characteristics, the way an ML model
uses these data, and the way such usage is reflected in the resulting prediction explanations.
Our study highlights situations in which data problems do not affect the accuracy of
predictions, only the usefulness and consistency of explanations. Therefore, explainability
should be seamlessly integrated into PPM workflow stages as an inherent task, not as a
follow-up effort. We believe our findings can help stakeholders to make more informed
decisions about which techniques to apply through the PPM workflow in light of the
analysis provided here.
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