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Abstract: Nonlinear vibration control of the twelve-poles electro-magnetic suspension system was
tackled in this study, using a novel control strategy. The introduced control algorithm was a com-
bination of three controllers: the proportional-derivative (PD) controller, the integral resonant con-
troller (IRC), and the positive position feedback (PPF) controller. According to the presented con-
trol algorithm, the mathematical model of the controlled twelve-poles rotor was established as a
nonlinear four-degree-of-freedom dynamical system coupled to two first-order filters. Then, the de-
rived nonlinear dynamical system was analyzed using perturbation analysis to extract the averag-
ing equations of motion. Based on the extracted averaging equations of motion, the efficiency of
different control strategies (i.e., PD,PD + IRC,PD + PPF,and PD + IRC + PPF) for mitigating the
rotor’s undesired vibrations and improving its catastrophic bifurcation was investigated. The ac-
quired analytical results demonstrated that both the PD and PD + IRC controllers can force the
rotor to respond as a linear system; however, the controlled system may exhibit the maximum os-
cillation amplitude at the perfect resonance condition. In addition, the obtained results demon-
strated that the PD + PPF controller can eliminate the rotor nonlinear oscillation at the perfect res-
onance, but the system may suffer from high oscillation amplitudes when the resonance condition
is lost. Moreover, we report that the combined control algorithm (PD + IRC + PPF) has all the ad-
vantages of the individual control algorithms (i.e.,, PD,PD + IRC,PD + PPF), while avoiding their
drawbacks. Finally, the numerical simulations showed that the PD + IRC + PPF controller can
eliminate the twelve-poles system vibrations regardless of both the excitation force magnitude and
the resonant conditions at a short transient time.

Keywords: nonlinear vibration control; rotor electro-magnetic suspension system; PD-control algo-
rithm; IRC-control algorithm; PPF-control algorithm; forward whirling motion; rub/impact force

1. Introduction

Vibration analysis and control of the electro-magnetic suspension system are among
the most important research topics for scientists and engineers worldwide. The im-
portance of this suspension system is due to its many industrial applications, including
its use in rotor dynamics and in the automobile industries. The rotor electro-magnetic
suspension system is a special type of active bearing that is used to support the rotating
shafts without any physical contact with the stator parts of the system. The working prin-
ciple of rotor electro-magnetic suspension is the application of controllable electro-mag-
netic attractive forces to support the rotating shafts in their hovering positions via
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compensating for the external loads that are exerted on these shafts. The operation of the
rotating shafts without physical contact with the stators gives this suspension system
many preferable features when compared with conventional bearings systems, such as
less maintenance, no need for lubrication between the rotors and stators, a clean working
environment, high operational speed, high reliability, and high durability. Accordingly,
many research articles have investigated the dynamical characteristics of different config-
urations of the rotor electro-magnetic suspension system.

Different control algorithms have been proposed to enhance the vibratory character-
istics and eliminate the undesired nonlinear bifurcation behaviors of this suspension sys-
tem. Ji et al. [1] studied the nonlinear dynamics and motion bifurcations of a rotor electro-
magnetic suspension system consisting of a four-poles configuration. They established the
mathematical model that governs the rotor lateral vibrations as a two-degree-of-freedom
nonlinear dynamical system. Then, they investigated the derived equations of motion us-
ing the multiple-time scales perturbation method. Based on their analysis, they reported
that the rotor system may lose its stability either via saddle-node or Hopf bifurcations.

Saeed et al [2] investigated the vibratory characteristics of a rotor supported by a six-
poles electro-magnetic suspension system. They introduced two control strategies utiliz-
ing the PD-control algorithm. The first control technique was established based on the
Cartesian displacements and velocities of the rotor in the horizontal and vertical direc-
tions, while the second control technique was designed according to the radial oscillations
of the rotor in the direction of the six poles. Based on their analysis, they reported that the
rotor system may lose its stability and exhibit unbounded oscillation in the case of the
radial control technique at a specific value of the proportional gain. In addition, they
showed that the system may perform either a quasi-periodic or chaotic response in the
case of the Cartesian control strategy at a strong excitation force.

Ji and Hansen [3,4] studied the nonlinear dynamics of a rotor supported by an eight-
poles electro-magnetic suspension system. They applied the Cartesian PD-control strat-
egy to improve the vibratory characteristics of that system at both primary [3] and super-
harmonic resonance conditions [4]. They reported that the eight-poles system has bi-stable
and tri-stable solutions. In addition, they showed that the system may be exposed to a
multi-jump when the rotor angular speed crosses its first critical speed.

El-Shourbagy et al. [5] introduced a nonlinear PD-control algorithm to enhance the
nonlinear lateral vibrations of a rotor supported by an eight-poles electro-magnetic sus-
pension system. Saeed et al. [6] explored numerically the motion bifurcations of a rotor
system supported by the eight poles when the rub-impact force between the rotor and
stator occurs. They illustrated that the rotor may execute either full annular rub mode or
rub-impact motion, depending on both the impact stiffness and the dynamic friction co-
efficients. In addition, Zhang, et al. [7-12] introduced detailed investigations of the eight-
poles electro-magnetic suspension system with variable stiffness coefficients. The nonlin-
ear dynamical behaviors of the twelve-poles electro-magnetic suspension system were in-
vestigated utilizing the PD-control algorithm for the first time by El-Shourbagy, et al. [13].
They reported that proportional control gain can play an important role in reshaping the
system dynamics. In addition, they demonstrated that the twelve-poles system may lose
its stability at a strong excitation force. Saeed, et al. [14] explored the dynamical charac-
teristics of the sixteen-poles system with constant stiffness coefficients utilizing the con-
ventional PD-control algorithm. Zhang, et al. [15-18] introduced extensive investigations
for the sixteen-poles rotor system with time-varying stiffness coefficients. Due to the con-
trollability and flexibility of the rotor electro-magnetic suspension system, it was used as
an active actuator to control the dynamical behaviors of some rotating machines [19-23].

The positive position feedback (PPF) control algorithm has been applied extensively
to eliminate the resonant vibrations of many dynamical systems [24-28]. Saeed et al. [28]
utilized the PPF-control strategy with a PD controller to mitigate the undesired vibra-
tions of the eight-poles rotor system for the first time. They concluded that the PPF con-
troller can eliminate the system’s lateral vibration at the perfect resonance condition.
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However, the main drawback of this control strategy was that the controller may add ex-
cessive vibratory motion to the rotor system if the tuning condition was lost. In addition,
the integral resonance controller (IRC) was one of the feasible control methods that was
applied to mitigate the undesired vibrations and eliminate the nonlinear bifurcations of
different dynamical systems [29-36]. Recently, Saeed et al. [36] introduced the IRC-con-
trol algorithm for the first time to mitigate the unwanted vibrations of the eight-poles rotor
system. They reported that the IRC controller can reduce the system’s vibrations and sup-
press the corresponding catastrophic bifurcations. However, the main drawback of this
control method was that the IRC-controller could not eliminate the rotor vibrations at a
resonance condition close to zero.

In the present work, a new control strategy is introduced to eliminate the nonlinear
lateral vibrations of the twelve-poles rotor system. The proposed controller is a combina-
tion of the three control algorithms: PD,IRC, and PPF. Accordingly, the whole-system
mathematical model is derived as a four-degree-of-freedom dynamical system that is cou-
pled to two first-order differential equations. Then, the system dynamical model is ana-
lyzed, and the corresponding slow-flow modulation equations are extracted. Based on the
obtained slow-flow modulation equation, the performance of the suggested control tech-
nique is explored. The obtained analytical results showed that the PD,IRC, and PD + IRC
controllers can mitigate the nonlinear oscillation of the system and force the rotor to re-
spond as a linear system. but the main drawback of these types of controllers (i.e., PD,IRC,
and PD + IRC) is that the controlled system may perform the maximum oscillation am-
plitude at the resonant condition. In addition, we found that the coupling of the PD +
PPF controller to the system can eliminate the rotor’s undesired oscillation at the perfect
resonance, but the system may suffer from high oscillation amplitudes if the resonance
condition is lost. Moreover, the acquired analytical and numerical investigations demon-
strated that the PD + IRC + PPF controller has all the advantages of the individual con-
trol algorithms (i.e., PD,PD + IRC, and IRC + PPF), while avoiding their drawbacks.

2. Equations of Motion

The studied rotor system is assumed to be a rigid body with a two-degree-of-freedom
system that has mass m and eccentricity e and rotates with angular velocity ¥, as
shown in Figure 1. In addition, this rotor system is supported in its nominal position via
the restoring forces f, and f, that are generated by twelve electro-magnetic poles.
Therefore, the system equations of motion can be expressed as follows [37,38]:

mii— f, =mey” cos(yr) (1)
mjj— f, =mey’ sin(y) v)

where f, and f, represent the resultant restoring forces of the twelve poles in both the
X and Y directions, respectively. In this study, the attractive forces f; (j =1,2,...,6) are
designed so that each adjacent pair of the poles generates a push-pull attractive force.
Therefore, f; (j = 1,2,...,6) can be expressed according to the electro-magnetic theory, as
follows [38]:

2 2
[ -0 (IO—I].) _(Io+1j)2 =126 3)

(o-6) (a+9)

where 0@ = %,uON 2Acos (¢) is constant, I, is constant current defined as a bias current, I;

(j = 1,2,..,6) is the control currents that will be defined later according to the purposed
control algorithm, ¢, is the nominal air-gap size between the rotor and the twelve poles,
and §; is the radial deviation of the rotor away from the geometric center O in the direc-
tion of the j™ pole.
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(b)

Figure 1. (a) twelve-poles rotor system at its nominal position, (b) twelve-poles rotor system with
small displacements x(t) and y(t) in the horizontal and vertical directions, respectively.

Based on the system’s geometry as shown in Figure 1, for the small temporal Carte-
sian displacements x(t) and y(t) of the rotor in both the X and Y directions, one can
express the radial displacements §;, (j = 1,2,...,6) of the rotor system as follows:

6,(z,y) = x(t) cos(a) - y(t)sin(a), J,(z,y) = a(t),
0,(z,y) = a(t)cos(a) + y(t)sin(a), J,(z,y) = z(t)sin(a) + y(t) cos(a), (4)
&,(z,y) = y(0), S(w,y) == a(t)sin(@) + y(t) cos(a)

where a is the angle between every two consecutive poles (i.e.,, @ = 360°/12 = 30°). In
this work, the control currents were designed so that the control forces fi, f;,and f; de-
pend on the horizontal displacement x(t), while the forces f,, fs,and fs depend on the
vertical displacement y(t). Accordingly, the control currents I; (j = 1,2,...,6) are selected
as follows:

I,=1=I=1, I,=I=I=I 5)

where Iy is the control current that is responsible for eliminating the nonlinear oscilla-
tions of the rotor system in the X direction, while I is the control current that is respon-
sible for eliminating the nonlinear oscillations of the rotor system in the Y direction. Ac-
cordingly, to eliminate the undesired vibrations of the system, an advanced control strat-
egy was introduced. The suggested control method is a combination of three control al-
gorithms: the PD controller, the /RC controller, and the PPF controller. Therefore,
the control laws (i.e., control currents Iy and Iy) are designed as follows:

IX = k1x+k2z'v—k3u1 +k4u2, ]y = k1y+kzy—k5vl +k6v2 (6)

where k; and k, are the control gains of the PD controller, k3 and ks denote the con-
trol gains of the PPF controller, and k, and k4 represent the control gains of the IRC
controller. Accordingly, k;x + k,x and k;y + k,y are the components of the control cur-
rents (Iy and Iy) due to the PD controller in the X and Y directions, respectively,
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—ksu; and —ksv; are the components of the control currents due to the PPF controller
in the X and Y directions, respectively, while +k,u, and +ksv, denote the control
current components due to the IRC controller in the X and Y directions, respectively.
The equations of motion that describe the oscillatory behaviors of the PPF controllers are
provided as follows [24-28]:

i+, + Ay = Lo "

i}l + 021'21 + JQUI = léy 8)

where ¢; and c, denote the damping coefficients of the PPF controllers, 4; and 4,
represent the controller’s natural frequencies, and L; and L, are the feedback signals
gains. In addition, the dynamical behaviors of the IRC controllers are governed by first-
order differential equations that are provided as follows [29-36]:

U+ Ay, =L ©)
v, +Ay, =Ly (10)

where A; and 4, denote the internal feedback gain of the IRC controller, and L; and
L, represent the feedback signals gains. The interconnection between the twelve-poles
system and the proposed control algorithm (i.e., the PD+IRC+PPF controllers) is illus-
trated schematically in Figure 2, where the temporal Cartesian oscillations (i.e., x(t) and
y(t)) of the rotor in both the X and Y directions can be measured using two position
sensors that may be fixed on the poles-housing in the +X and +Y directions, as shown
in Figure 1a. Then, the measured signals, x(t) and y(t), are fed into a digital computer
on which the control algorithm (i.e., the PD+IRC+PPF controller) is implemented. Accord-
ing to the programmed algorithm, the controller computes the control currents Iy =
kyx + kyx — kauy + kyu, and Iy = kiy + k,y — ksvy + kgv,, as shown in Figure 2. Finally,
the computed control currents are applied to a power amplifiers network to energize the
twelve-poles electrical coils in order to generate the electro-magnetic forces (fi, f3, ..., fs),
which in turn try to mitigate the lateral oscillations, x(t) and y(t), of the rotor system.
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Figure 2. The engineering implementation of the combined control algorithm (i.e.,, PD + IRC + PPF
controller).

Now, to investigate the performance of the proposed closed-loop system, the whole-
system model should be obtained and then analyzed to report the optimum working con-
ditions of this system. Therefore, by substituting Equations (4) to (6) into Equation (3), we
have the following;:

(ke kg = k) (1 + R kg =l R,
fl =0 ' 2 (11)
(co —a:cos(a)ersin(a)) (cO +xcos(a)—ysin(a))
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2 2
I —kzx—-kz+ku —ku I +kx+kz—ku +ku
J§:®(o 1 2 3™ 42) _(0 1 2 3% 42) (12)

(¢, ~a) (¢, +a)

(co —mcos(a)—ysin(a)) (co +xcos(a)+ysin(a))

2 2
I, -ky-ky+kv —kuo I+ ky+ky—kov +kuv
‘][;:@ (U 1 2 571 02) _(0 1 2 1 02) (14)

(CO —xsin(a)—ycos(a))2 (co +xsin(a)+ycos(a))2

2 2
I —ky-ky+kv —kuv I +ky+ky—kov +kuv
];ZG(O 1 2 571 62) _(0 1 2 571 62) (15)

(Co - y)2 (co * y)2

o (1, ~hy=kg+ kv —kp,) (I, +hy+hi—ko, +k,) "
' (CO +£L‘Sin((l>—yCOS(0l))2 (c0 —xsin(a)+ycos(a))2

Based on the system geometry, as shown in Figure 1, the resultant attractive forces
fx and f, in the X and Y directions due to the forces fi,f5,..., f¢ can be expressed as
follows:

=5+ + 1) cos(a)+(f, — £)sin(e) (17)
f= £ +(f, +f)cos(a) +(f, - £)sin(a) (18)

Y
To simplify the rational form of the attractive forces f;, f, ..., fs , Equations (11) to
(16) were expanded, using the Maclaurin series, up to the third order approximation, as
provided in Appendix A. Now, substituting the expanded Equations (A1) to (A6) that are
provided in Appendix A into Equations (17) and (18), then inserting the resulting equa-
tions into Equations (1) and (2) and introducing the dimensionless parameters: t* =

x . x .. 4 y . y oo 3 U . Uy ..
ot,z,=—, Z, =—,2] = — Zy =—,2y =—,2y) =—F—,Z3 =—, Z3 =—,Z3 =
r41 CO’ 1 1900, 1 19200, 2 Co’ 2 19(/'0, 2 19200' 3 Co ’ 3 19(/'0, 3

‘l.l'.'l v . 17.1 . 171 Uy . u.z (%) . 17.2 Al
Iy =— g =— = —— Je=—=2 ="t 7z, =27 =2 W= |=—= w, =
92c” T g’ T 9y Y T 92¢0" 5 T p? BT 8¢’ 0T ¢’ 6 T 9cy’ 1L \1192' 2
Ay A3 Ay Y e Co coV cq1 [
I92,0)3 19,604 9’ 19’f CO’ 1% Io 1, Io 20 M 219’”2 29’ i
(142 cos(a))co _ (1+2cos(a))co _ (1+2cos(a))cy _ (142 cos(a))cy _ Ly _
k= kyy3 = ks, = ke, s = 55,16 =
Io Io Io Io 9
L L L . . . . .
19—22, N, = 33, Ng = f, ¥ = 4/0/mcj, one can obtain the following dimensionless equations

of motion that govern the nonlinear dynamics of the proposed closed-loop system:

@it ta i vaz i +azze i

2
ZZ‘+aile 47172 57172 67171 7717272

27172 3
2 . 2 2 . 2
+ﬁlzl 23 + ﬂQlelzfi + ﬁ32123 + ﬁ-'iZlZQZ-’l + ﬁﬁzlz-'i + ﬁ()'ZIZQZ-’l + ﬁTZZGZQ + ﬂSZIZSZS
. 2 2 3 2 2
+IB9Z12125 + ﬂl(lez-’lzb’ + ﬂllzlzr + ﬂ12zlzﬁ + ﬂl!izlezﬁ + ﬂl4zlz2zﬁ + ﬂ15zlz5 + '8162225)

= O f cos(Qt) + 1,2, + 1,2,

o . 2 3
Zo42ui + 0z — (a2 +a

(19)
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. . 2 3 2 2. .2 .2 .2 .
22 + 2/12?2 + @ 22 - (6{122 + 6{22221 + CZ32222 + a42221 + a52221 + CZGZQZQ + 0[7222121

2 3 2 2 . 2
SN TR NN NN NN NN AN NN A S NN

2 1 173 27476 (20)
. 2 2 13 2 2
+79222226 + 710222325 + 7112226 + 7122225 + 713222125 + 714222125 + }/152226 + }/1()‘21 z6)
= O’ fsin(Qt) +m,2, + 17,2,
Z, +2Uz, +a)12z3 =17 (21)
Z 421z + a)zzz4 =12, (22)
4 taz =112 (23)
z, t @z, =12, (24)

Equations (19) and (20) represent the dimensionless equations of motion of the con-
trolled twelve-poles system, while Equations (21) and (22) are the dimensionless equa-
tions of motion of the PPF controller. In addition, Equations (23) and (24) are the dimen-
sionless equations of motion of the IRC controller. Accordingly, the suggested closed-
loop system is governed by six-coupled nonlinear ordinary differential equations, four of
which are of the second order and the other two of which are of the first order, where the
coefficients of the above six equations are provided in Appendix B.

3. Analytical Investigations

Many analytical methods have been introduced in the literature to investigate both
the linear and nonlinear vibration problems [39-41]. Accordingly, to explore the efficiency
of the introduced closed-loop system, we sought an approximate solution for the system
equations of motions (i.e., Equations (19) to (24)) within this section, in the form of a first-
order perturbation series as follows [39,40]:

z(t,e) = 2,(T,, 1)) +&2,(1,,T)) (25)
z,(t,8) = 2, (1, T) + €2, (T, T)) (26)
z(t,6) = 2, (T, T) + &2, (T, T)) (27)
z,(t,e)=2,(T,T)+ez, (1,T) (28)
% (t ) =2, (1, 1) + &', (T, T)) (29)
2, (te) =6z, (T, T)+&%,(T,T) (30)

where Ty =t, T; = €t, and ¢ is the perturbation parameter that was used as a bookkeep-
ing coefficient during this analysis [40]. According to the introduced two-time scales (i.e.,

2
Ty, Ty), the ordinary derivatives % and % should be re-written as follows:

d d _0 -
=D, +eD, E:D[‘;’+281)ODl,and Dj—aT, J=01 (31)
J
In addition, to perform the perturbation analysis using ¢ as a bookkeeping coeffi-
cient, the parameters of Equations (19) to (24) should be re-scaled as follows:
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f:gf, M= el :ul:g/[lla luzz‘gﬂy aj=€dj,ﬂj=8ﬁj, 7/]-2677]» n.=é
G=1-7, k=13567.8

Then, by substituting Equations (25) to (32) into Equations (19) to (24), we have

0(£°):
(D +a)z, =0 (33)
(D} + @)z, =0 (34)
(D +df)z, =0 (35)
(D} +e)z, =0 (36)
0(e"):

2 2 _ Y ~ 3 .~ 2 | o~ 2 52
(Do tw )Zu - 2D0D1z10 2,uDozm T2, T2 T a3z10D0Z10 + a4z20Doz10

~ 2 ~ 2 ~ 0.2 n
+q5z10 (DOZZO) + a6z10 <D0Z10) + a7z10Z20D0z20 + ,61210230 + ﬂ2210D0210230

o 2 . p o 2 . p B2
+ﬂ3Z10230 + 'B4Z10220240 + ﬂazlozzxo + 'B(SzloDOZZOz4O + ﬂ7220230 + ﬂ8z10230250 (37)
2 2
+ﬂ9Z1UD0z1[)Z50 +IB1[)Z10Z40Z60 + ﬁnzwzm] + ﬂuzwzeo + Pis?i0%a0%0
2 2 2 7 =
+ﬂ14210D0z20Z60 + ﬂlazlozso + ﬂ16220250 + 0 f cos(Qi) + Tz T 1%
2 2 _ _or ~ .3 = 2 o~ 2 ~ 2
(Do to )z21 - 2D0D1Z20 2fUDozzo Tz T 25, t Ol3z20D0z20 + a4Z10D0Z20

5 2 ~ 2 ~ ~ 9 ~
+a~3z20 (D()zlo) + aGZZO (D0z20) + a7z20210D0210 + }/1Z20240 + 72220D0220Z40

~ 2 ~ ~ 2 ~ ~ 2
TV 320200 T ViZnP%s + VP T 76Z20D0z10z30 T V%0%50 T VsZ0%a0%00 (38)

2 2
+7/9220D0220z60 + leZQOZBOZGO + 711z20260 + 7/12220250 + }/132202:10250

2 2 27 ~
+7/14z2[)D[)Z1(]Z5(] + 715z20z60 + ylﬁzl()zij() + Q fSlIl(Qt) + 773Z4[) + 774Z6(]

(D +af)z, =—2D Dz, —26 Dz, +171.2, (39)
(D +a3)z, =2D Dz, —2i,Dz, +72, (40)
(D, +,)z, =112, (41)
(D) + @)z, = 7], (42)

The steady-state periodic solutions of Equations (33) to (36), (41), and (42) can be
written as follows:

2, (T, T) = A(T)™ + A(T)e™™ (43)
2 (T, 1) = AT + A(T)e ™ (44)
2, (T, T) = B(T)e™" + B(T)e ™" (45)
2,(T,T) = B(T)e™ + BT )e ™" (46)

Z,

5

J(T.T) = pA(T)E™ + p AT )e ™" (47)
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(D} + @)z,

iol), 4 —iaf)
z@@,f;) = AT + p, A(T)e 9)
where i=v-1,p; = Y +w2 777' P = %ﬁ%ﬁz = %ﬁgf P2 = Z:g:;wz g

A(T),A,(T,),B;(T;) and B,(T;) are unknown that will be defined later.
A,(Ty), A,(T,),B,(Ty), and B,(T;) are the complex conjugate forms of
A1(Ty),A,(Ty), B1(Ty), and B,(T;), respectively. Inserting Equations (43) to (48) into Equa-
tions (37) to (40), we have the following:

= (20D, A, - 2ifiwA + 38, A A +20,AA A + &, AA] +id0A’ A
+2ia,wA A A, —id,0A A +20. 0’ AAA - a0’ AL + a0 ATA
+iad.wA A +2B ABB +2B.ABB, +2B pAA + B, AA
+IB13102A1A2Z‘2 + /)’13,021111422 - ZﬂmwpzAlA Z‘ + Z'IBuwprlA;
+&m%ﬂﬁ¢&wA@%+@a4)MWWﬁé““% a4
+a,A A + Z'O?Sa)Al3 +id,wA A} - a.o PAA - a,o AP + ZO!7C(JA1A;
+ifop A’ + B p A+ BLps AA + .o, AA +if wp,AA
B, P A+ p AN ) +(BAB, +if0A’B, + BAB, (49)
+B.p, A2B, )" + (B A'B, +iB,wA'B, + B AB, +,6'p1A]B) oo
+(2BAAB +2BAAB +B,pAAB )e"" + BAB
+BAB N 1 (B AAB, +if, a)AlAzB +/)’0p2AlAzB) (o)
+(BAAB, +if,0AAB,+5,p,AAB, )™ " + (5 AAD,
+B, A AB, —iB0AAB, +iB0AAB,+B,p,AAB,)e""

Pl 2 _i(w+20,)T; p A n2,ie,-0)T, l 2 7 QT
+B.AB,e + B, ABje + 5 Q*fe™ +ce

(D + ")z, = (-2i0D A, - 2ifioA, + 30, A} A, +2a,A A A +@,A A +ia,0A} 4,

+2id,0A A A —id,0A A’ +20. 0’ AAA - a0’ AA + a0 A4,
+id7a)ZzAf +27,A BB, +27.A BB + 27, P A + v, Pl AA
15PN AA + 7, P AA iy op AAA +iy op AN +y, pl A4
+27, P AAA + 774p2A2) “h 4 71,B, B +( @A + @, AN +ia,wA
+id4a)A2A12 - 0?5602142141 - aea) A2 + Za7a)A2Al + Wsa)pQAz + 7/11p2A2
VP AN+ 7, P AN iy Op AN + 1, DA+, p A A )€
+(74B, + i7,04B, + 7, A'B, + ygpzAf z) et 4 (7,48, (50)
+if,wA’B, + 7. A'B, + y,p,A:B, e ) {2o0,) (27/1A2A2B +27.AAB,
+7,2,AAB, )™ + 7 A B 1y A B (7, A,AB,
+7,0AAB, + 7, A A B, )¢ + (7 AAB, +i7,0AAB,
1P AA B ) 4 (7 AAB, + 7, AAB, ~i7,0A 4B,
-+-i776a)g,214131 + yl()plAzAlBl)ew‘% + 775AEBfei('”+2"’1m’ + jSZzBfemwl_wm

—linfe’QT“ +cc
2
(Dg + a)f)z31 = —Qia)lDlBlemlT” —21'[11(()1316"% + ﬁSAemT“ +cc (51)
(D +a))z, =—2ie,DBe™ —2if,oBe™ +7jAe™ +cc (52)
where cc in Equations (49) to (52) denote the complex conjugate term. To obtain the pe-

riodic solutions of Equations (49) to (52), the resonance conditions should be eliminated.
Therefore, let ,0;, and o, represent the closeness of the rotor angular speed (2) and the
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controller natural frequencies (w; and w,) to the rotor system natural frequency (w), as
follows:

Q=w+0, 0 =0+0, ©=0+0, (53)

Inserting Equation (53) into Equations (49) to (52), one can extract the following solv-
ability conditions:

—2iwD, A - 2ifioA +38, A A +2a,AAA +a,AA +id,wATA +2i0,0A A4,

—id4a)quz4; + 2d5w2A1A2Z2 - 0750)2/_11‘4; + dea)QAfZl + id?”‘ZlA; + 2'831413131

+2BEA1BZEZ +2ﬁllplA12Al +ﬂl2p;1411422 +ﬁ13p2A1A2A2 +ﬂ13p2AlA§ _iﬂl4a)p2A1A2A‘Z
‘ T T T ofBooh 5 3 2B

+if op A4 + B oI AA +2B, p AAA + 7B +ii,p A +(BAB,

+if 0B, + B AB, + fp A, )¢ " + (2BAAB, + 2B AAB + fpAAB, )" (54)

+(54A1A2§2 + ZﬁswArA‘zEz + ﬂ10p2A1A2E2)671502T“ + B:sanemaqu + (134‘412232

+ﬁ4A1AQB2 - Z'156‘0414282 + Z"‘?660‘4‘1‘4232 + ﬂ10p2A1AQB2)eMQTD + B5A1B22€21502T“

+%(a) +86) feh =0

—2iwD A, - 2ifiwA, + 36, AL A, +20,A\AA +8,A A +id,0A A +2i0,0AAA

_id4a)z'z’412 + 2&560214,2141111 - 075602221412 + 07660214222,2 + Z‘C~¥76‘)Z'2’L"12 + 2}73’423232

V27, A,B,B, +27,0,44, + 1,0 AL + 1 pAAA + 1 p AA i 00 AAA

7,00 AN 41 PR, 427, p AAR L BTN 4 A, + (7,4,

+i772wA22§2 + 777A12§2 + 7/8/)2’422E2 )e_w(}ZT“ + (2771’422232 + 2777‘41le2 + }/8/)214212232 )‘EMZTU (55)
~ 5 . B B\ eI, | ~ 7 p2, 26,1, ~ A

+H(7AAB, +7,0AAB, + 1, pAAB e " + 7 AR+ (7,A4B,

+774A2AlBl - ZI?GQ)ATATBI + ifsa)AzAiBl + 7/10p1A2AlBl )ezwlTU + 775A2B12621801T0

—%i(w +&6) Je =0

—2i(w+ &6, )DlBleMl% —2ifi (w+ &6, )Blei‘S‘%T0 +7.A4 =0 (56)

~2i(w+&6,)DBe™" —2ifi(w+&6,)B,e™™ +71A =0 (57)
To obtain the autonomous dynamical system that describes the oscillatory behaviors

of the considered closed-loop system, let us express the unknown functions 4,,4,, By,
and B, in the polar form as follows:

1 i 1 10,
Al(fl—l)zgal(fz;)e&l(’rl)’ 1%(]1)25(12(1—1)602(’1’1)

1 i0,(T;) 1 i0,(T;) 9
B(T) =S80, B(T) = b, (T )e
According to Equation (58), we have the following;:
d Lo . 5 g d L. . s
DA =—A=—|[de" +iabe"), DA =—A =—|de* +iabe>
1141 gdt 25( 1 171 ) IAZ gdt 25( 2 272 ) (59)
d Lo | . 56 d Lo 5 s
DB = EBl = %(ble P +1b b ), DB, = EBQ =g(b2e +ib,0.e )

Substituting Equations (58) and (59) into Equations (54) to (57) and separating the
real and imaginary part yields the following:
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o 1 7,71, 1 2B, 2a)3ﬂ15’7$ 3
a, _Fl(alva'zabl b27¢17¢2v¢3a¢4) 2(2/J+ +a) )a1+§(a3_a)§+w2 _(w§+a)2)2)a1
2
+l(2a4 _ Bym _OPTs Qﬁwﬂ? )a Laz i 1( —a, +a + 20, 5,71 _ Bty
8 o+ O+ O+ 8 (0} + &) @ +
a o - > ®
1Pl — 1 g a2 cos(24, — 24,) + l(—2 -0+ (@, )'élzﬂg +—2 13’78A
) + & 8 w (o] + a)z)2 (o} + ")
ﬂ U 1 1 ,
a) _1:; )aa sin(2¢, —2¢,) + (- %mb1 20 2b ——,B7a ) sin(g,)
(60)
1 261 1, By
ﬂda b? sin(24,) + g(ﬂ2 - i ;Q Ja’b, cos(g,) — g(a)2 1:1 Z) Ja,a,b, cos(¢g,)
3 4
1 a)4ﬁ1()778 1 2 . 1
+£(a)42 e )a,a,b, sin(g@,) + 5 a,b, sin(24, — 24, + ¢3) + %(ﬁﬁw
p, 11 1 o, 11
- f; Ja,a,b, cos(2¢, —2¢, — ¢,) + 8—w(ﬂ4 + i +ma)8 Ja,a,b, sin(24, —2¢, — ¢,)
4 4
+$ﬂ5alb22 sin(2¢, — 24, —2¢,) + i(a) +o)f sin(g,)
. n,n 1 271, 20,7
a, :Fz(av 2’ ¢1’¢2’¢57¢) <2/u+w 12;)2)(124_5(0{3_&)21;2 _(w24+1a)28)2 2
4 4
‘ 10) 2y, 20, 2 ‘
+ L, - ?3'77 N Py lia va - O Tl
8 o +to o +0 0+ 8 (0, +0°) o, +o
7,1 1 (@) -0y, oyn
e 72)a2a12 cos(2¢, —2¢) + — (>~ a0+ ———-21 TR
o, + 8 w (o, +a)) (o] + )
oy, n . 1 1 .
+%>a2af sin(2¢, —2¢,) + (——n,b, ——y,ab, — ;/7a ’b,)sin(g,)
W, + o 20 8w 4o
2 (61)
1 . 1 20y,1 1 oy
_573(121)22 sin(24, ) + a()/za) —— +86082) azb, cos(g,) — Py fa; Ja,a,b, cos(g,)
4 3
1 wy.n 1 1
+—(=""")a,a.b, sin(g,) + 7/7a ’b, sin(24, — 24, + 4,) +—(r,@
8w @, + 8w
y, 1 .y,
- -1:) 7 —)a,a,b, cos(2¢, —24, —4,) + 5(7/4 + - _:_Oaj Ja,a.b sin(2¢, —2¢, - ¢,)
3 3
1 . 1
Jr—w;/5a2b12 sin(2¢, — 24, —24,) - —w(a) +0)’ fcos(g,)
b =F ..., b, + ———n. i .
1 '3( 1? 27 17 27¢1 ¢2 ¢3 ¢4) ’Lll 1 2(a)+61)77-3a1 Sln(¢3) (62)
62 :F4(al 99 17 27¢17¢27¢37¢) b + 776&2 Sin(¢4) (63)

2(w +0,)
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P _ 1 ws”z”? 1 2 2waﬂ11777
é = F(a,0,b,0,,4,0,6,,4,) = 0+g(w) +87w(3a1 +o0 + W
2
+( ; — @ )181]77 w4ﬂ1‘5778 Py 2w3ﬂ16777
(@) +&’) 8w ) + 0’ a)42+a)2 . + &
( -1 )ﬂlzng a)-1ﬂ13778 a) ﬂ14778 )a COb(2¢ 2¢ )
(a)f + o) 0)2 + 0)2 o+ o

2 .
w4a)ﬂ12778 n op, 1 o, ﬂ14778)a s1n(2¢ 2¢) (1771b1

1,0 1 >
+Eﬂ5b2 +£(a2 70!560 +

+—(e,w-—a o+
80) 4 7

(a)2+a)2)2 o +0 o +o

3, 1., OS5l oy 08y )

+—Lfab +— b+, a’db —_— bcos )

Sﬂlll 4ﬂ/ 4w§+a) 11) wa] ﬁ (¢;)

LB singg) - ﬂabsm@)+j>@ﬂ+- OBy b cos() + (-2
8a)§+a)2 t ? 8w ! o+ 2 8 6
ﬂlOUS)

o +o

+

. 1
a,b, sin(g, ) + ry—  asb, cos(2¢, — 24, + ¢,) + ;(ﬂ“‘

Ol ——)ab, cos(24, 24, — ¢, )+L( ~po+—; by ——")a,b, sin(2¢, — 24, — ¢,)
) + o’ !+ o’

-i—iﬂrb;Z cos(24, — 24, —2¢,) + L(a) + O')QfCOS(¢1)
8w’ 20a

1

1 1
Ja; + —(2a, +2a 0" + — =~ — + )a2+—wﬂ3612

(64)

, @,11,77 1 20,7,
= F(a,,0,,b,b,.4,.4,.9,, S IV I T WY B VAT
¢2 (l 2771 2¢1 ¢2 ¢5¢) Qw(a)?+a)2) Sw( 1 6 a)2+a)2
2 2
+—(w4 )7, Y2 +—(2a, + 20 o + 'l @ Nl 20, 71"778) +—7 b?
@+’ "7 8o T @+ w§+a)2 R A T
2 2
, a,y.. @
+ 75bf +—(a, - ozaa)2 + (@ )712777 + ;7137772 + 2}/147772 )al2 cos(2¢, —2¢4,)
(@) + &) O+ O+
1 20,0y, 10} 1
+—(a,0-a.0+ 2 71_777 - il + BNl )a sin (24, —24,) + (Zn,b,
8w (@ +&’) @ +0" o+ 2
3 o L oy o, cos(d) 1
+8 7/1a‘zbz +— 77 b +— 1 a) 4—8; gbz) o0 8_75b COS(2¢4)

2

1 _ Vs 1 1 D70 1

— ab sin - fab sin +— 27, + ab Cos +—(-2y.

8a)+af (¢,)- 3 720b, (¢) 8@(}’4 a)3+a)2) (4, 8( 2
}/1077 1 2 1

+ absm + a’b, cos(2¢9 —2¢ + +—

Sl )+ oS24, =244 40+ 2,
e AL )a b cos(24, —2¢, — ¢,) + l(—;/6 + —710777 )alb1 sin(24, — 24, - 4,)

a) + : 8 a) + o’ ; ’

+L;{,bl2 cos(2¢, — 24, —24,) + L (w+0) fsin(g,)
8w " N T 2wa,

2

(65)
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) 1 @,17,1]..
), = F.(a,,0,,0,,b,,4,4,,¢,,4,) = -0, + —————n.q, cos(¢,) - — (/==
¢J 7( 1 2771772 ¢1 ¢2 ¢$ ¢4) 1 2((0+O'I)bl (¢) 2@(0) +a) )
9 2 2 2

—L(i’)al +a0’ + ?3'81177 + (@, ~ )bt Jal — L —(2a, +2a,0° + -2 P

8w o + o (& + a)2)2 8w o) + &’
2
208 _

_ C()Zﬁmnz + a:dﬂm’]; )(l: _iﬂgbf ﬂ)b_ _7(a _ C{ C() + ( - )ﬂlz’]&%
o, +0 o+ 4o 8w (0] + &)
opn, @B 1 20,0, ofn,

+7; 13 Z 14 x) cos(2¢, —2¢,) - — (a0 — .0 + 5 2“ +— 13 82
o+ O+ 8w (0] +&°) &+
o0pn | o,  cos()

o ;Z) Ja; sin(2¢, —24,) — ( b += ﬂlalbl += ﬂ7 b, Z §+ ~a'b) a)ali (66)
1 B, . ) 1
,ngz cos(24,) + 3 o+ —a,b, sin(4,) —gﬂ;albl sin(g,) —8—60(2@1
; 1Pro'ls )a b, cos(g,) — 1 —(-2p, + ﬂ“'% )a b, sin(g,) — 1 ﬁ7a22b1 cos(2¢, —2¢, + 4,)
o] + ®° 8 o8
1 o, BN ,6’ U .

-— (8, +%)agb2 cos(2¢, —2¢, — ¢,) - ( Bo+—2= ) ab, sin(2¢, — 2¢, — ¢,)
8w @, + w4 + o’

1 1

—— B.bcos(2¢ —2¢ —2¢ ) — —— (0 + o) f cos
o P32, -2) (oo fe(d)

, 1 1 onn

= F a,a. 7 y P10 ¥ WPao ———1.a,CO8(@p, ) —— ﬂ

¢-’1 8( 1 1 2 ¢1 ¢2 ¢5 ¢) 2(w+o_2)b2 77[) 2 (¢4) 2a)(wj +a)2
) 2 2 _ 2 2 ) ) ) )

_L(gal v a o+ 2O +(w,1 @)7,570; it - (20, + 200" +

8w ) + o’ (@] +0’) =~ 8w 7 o + o’
2 2
[ 20 o -’ =

~ 271477; | 200, )2 iy3b§ 1 7 _i(a oo ., (@ )71/7
o+ o+ 4o 4a) 8w (a) +@')
oy 0. 07 1 20,0y,1. @y,

+ T ek cos (24, - 2¢)) — — (a0 - a0 + — 2T - 1T
o+ @+ 8w (a) +tw) o+t
@1y 1 3 1 Oy 5, 0S(4,)

20, —2 a’h b b 67

+ )a sin(24, - (151)—(*?73 +=7,0,b, +—y.a; S———a,b,) (67)
a) + @ 8 4 4 o, +©
1 1 77 1 . 1

—— b’ cos(2 88 a,b, sin(g,) + = 7,a,b, sin(g,) —— (2
a)y(;z (¢4) 86()?-}—0) (¢) 8}/2 2% (¢4) 80)( }/4

N, 1 71077 1

+—2 T b cos(p,) — — (27, + —>T=)a,b, sin a’b, cos(2¢, — 24 +
CU:‘FC()Z) 171 (¢3) 8( }/6 §+ _) (¢) 80)&2 }/7 1% ( ¢2 ¢1 ¢4)
1 .y, .1 71077 .

-— @, + 321077 )a b cos(2¢, —24 — 4,) — ( 7+ 7210 7 2)a1b1 sin(2¢, —2¢, — ¢,)
8w a) + o, +

3

b 7.b! cos(2¢, — 24, —2¢,) - L (w+0) fsin(g,)
8w’ 2wa,

2

Where ¢1 = ot — 91, ¢2 = ot — 92, ¢3 = 91 - 93 - O-lt, and ¢4 = 92 - 94 - 0-21:. By in'
serting Equations (43) to (48) and (58) into Equations (25) to (30), one can extract an ap-
proximate solution for the closed-loop system given by Equations (19) to (24), as follows:

% (t) = a,(t)cos (Q1t - 4,(t))

%, (t) = a,(t) cos (Qt — ¢, (1))
2,(6) = (1) cos (2t = (4,()) + 4,(1)))
2,(6) = b (t) cos (Rt — (,(6) +4,(1)))

(1) = — (@, cos(Q1 — 4 (1)) + wsin(Qt - (1))

C()+C()

(68)
(69)
(70)

(71)

(72)
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(), cos(O2t ~ (1)) + osin(@1 ~4,(1) 73)
C()4 +

z,(t) =
It is clear from Equations (68) to (71) that a,(t) and a,(t) are the steady-state oscil-
lation amplitudes of the twelve-poles rotor system, while ¢;(t) and ¢,(t) represent the
phase angles of the controlled rotor. In addition, b,(t) and b,(t) represent the oscilla-
tion amplitudes of the PPF controllers and ¢, (t) + ¢3(t), p,(t) + ¢,(t) are the corre-
sponding phase angles. In addition, Equations (72) and (73) show that the dynamical char-
acteristics of the IRC controller depend on the dynamics of the rotor system (i.e., z5(t)
depends on a;(t),¢.(t) and z4(t) depends on a,(t), $,(t)). Moreover, the derived
nonlinear autonomous system that is provided by Equations (60) to (67) governs the evo-
lution of the oscillation amplitudes (a4, a,, by, b,) and the corresponding phase angles
(P1, 2, B3, P4) of the closed-loop system as a function of the different system parameters
(i.e, f,0,01,02,0,d,11,M2,13, M4, M5, M6 N7, Ngs .., €EC). Accordingly, the dynamical charac-
teristics of the closed-loop system can be explored by investigating the nonlinear dynam-
ical system provided by Equations (60) to (67). Therefore, one can explore the steady-state
dynamics of the closed-loop system by inserting a, = a, = by=by=¢;=¢, =ps =
¢, =0 into Equations (60) to (67), which results in the following nonlinear algebraic sys-
tem:

F’(a’lﬂaQ’blﬂb27¢l7¢27¢3’¢4):0; j:172""78 (74)

J

Solving Equation (74), utilizing o as a bifurcation parameter at the different values
of the system and control parameters (f, o1, 02, 0, d, 11,12, M3, M4, N5, N6 7 Ngs -, €LC), WeE
can explore the efficiency of the introduced control technique (i.e., PD + IRC + PPF con-
troller). In addition, to investigate the stability of the solution of Equation (74), one can
check the eigenvalues of the Jacobian matrix of the dynamical system given by Equations
(60) to (67), which can be obtained via letting (a10, @20, b10, P20, P10, P20, P30, Pao) be the
solution of Equation (74) and (ay1, @21, b1o, b2o, P11, P21, P31, Pa1) be a small deviation
about this solution. Therefore, one can write

) =y + b/ =bytbyy b =60ty 4 =4y, (75)
b,=b, 6 =9 j=12 k=12..4.
Inserting Equation (75) into Equations (60) to (67) and expanding for the small devi-

ations (ay1, @21, b10, P20, P11, P21, P31, P41), retaining the linear terms only, one can derive
the following linearized dynamical system:

dll Jll ‘]12 J13 J14 Jl‘} J16 J17 J18 all
d.Ql JZl J22 J‘Z 3 J24 J‘Z 5 JZG JZ? J‘28 a2 1
l?l 1 J3 1 Jd 2 Jdd J 34 J35 JSO Jd 7 JSB bl 1
b.Zl — J41 J42 J—id J44 J45 J4b J47 J48 b?l (7 6)
¢€1 1 Jf)l JGZ J53 J54 JFJFJ JE}G Jo7 J58 ¢1 1
?2 1 J(jl JGZ de JG4 J(SS JGG J(J7 J()B ¢2 1
?ﬁi 1 J?l J72 J73 J74 J?FJ J?G J77 J78 ¢3 1
¢4 1 J8 1 JZS 2 J83 J84 J8 5 J80 JZS 7 J88 ¢4 1

where [, (m=1.2,..,8 n=1.2,..,8)are provided in Appendix C. Accordingly, the sta-
bility of the dynamical system provided by Equations (60) to (67) has been studied by
examining the eigenvalues of the linearized system provided by Equation (76) (see [42]),
where the stable solution was illustrated as a solid-line, while the unstable solution was
plotted as a dotted-line, as shown in the different bifurcation diagrams in Section 4.
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4. Steady-State Oscillation and Bifurcation Analysis

Based on both the derived mathematical model of the closed-loop system provided by
Equations (19) to (24) and the nonlinear algebraic Equation (74), one can investigate the effi-
ciency of the proposed control technique (i.e, PD + IRC + PPF controller) in improving the
oscillatory characteristics and eliminating the catastrophic bifurcation behaviors of the studied
twelve-pole system. As Equation (74) governs the steady-state vibration amplitudes
(ay,az, by, by) and the corresponding phase angles (i.e., ¢4, ¢2, ¢3, ¢4), we can investigate the
steady-state oscillatory behaviors of both the rotor system and the connected controller via
solving Equation (74) numerically using the Newton—Raphson predictor—corrector algorithm
(see [43]), utilizing o as the bifurcation parameter, where the stable solution is plotted as a
solid-line and the unstable solution is shown as a dotted- line. In addition, to validate the ac-
curacy of the derived analytical solution (i.e., Equation (74)), as well as to investigate the full
system response (i.e., steady-state and transient response) of the closed-loop system, one can
simulate the system’s temporal equations of motion (i.e., Equations (19) to (24)) numerically
using the Rung-Kutta method of fourth order. Accordingly, the following values of the pa-
rameters have been used to simulate the system dynamics [29,36]: f = 0.013,p = 1.5, d =
0005 , m=m=n=n3=1n,=1n5=10=021n;,=ng=1u =p, =001, 0=0, =
0,=0,Q=w+0, W =w+0y, W, =w+0y,w3 =w, =1, a =30°, where the other sys-
tem parameters p,w, aj,,[?k,yk,(j =12,..7; k=12,..,16) are defined below Equation
(24). Before proceeding further, let us go back first to the normalized equations of motion
(Equations (19) to (24)), where the rotor normalized temporal displacements in the X and

y@®

Y directions are defined such that z,(t) = ? and z,(t) = — where ¢, is the nominal
0 0

air-gap size between the rotor and the poles-housing and x(t), y(t) are the actual temporal
displacement of the rotor in the X and Y directions, respectively. Accordingly, for safe work-
ing conditions for the rotor system without the occurrence of rub and/or impact forces be-
tween the rotor and the pole housing, x(t) and y(t) should be smaller than the air-gap

size ¢, (i.e., |%:)| =|z,(t)] < 1 and |%f)| = |z,(t)| < 1 ). Therefore, for the safe operation

of the rotor system without rub and/or impact between the rotor and the stator, |z,(t)| =
la;(t)cos (At — ¢, ()| and |z,(t)| = [a,(t)cos (At — ¢, (t))| should be smaller than unity,
which implies that |a;| and |a,| must be lower than unity (e, |a;| < 1& |a,| < 1). In ad-
dition, the parameter o is defined in Equation (53) such that Q = w + 0. Accordingly, o is
used in the whole article as a bifurcation control parameter to describe the rotor dynamics
when the system angular speed () is close to or equal to the rotor’s natural frequency (w).

4.1. System Dynamics in the Case of PD-Control Algorithm

The parameters P = j—o k; and d = C;’—ﬁ k, denote the normalized proportional gain and
0 0

derivative gain of the PD-control algorithm, respectively. In addition, the parameters 7, =
(142 cos(a))co (142 cos(a))co

p p 5 are the normalized control gains the PPF-control
0 0

algorithm that is connected to the rotor system, while n, = mh and 7, =
0
Ml% represent the normalized control gains of the IRC-control algorithm (see

Io
L 2

Equations (6), (19) and (20)). Moreover, the parameters 75 = > and ng = % are the normal-

ized feedback gains of the PPF-control algorithm, while 1, = %3, Ng = %“ denote the feed-
back gains of the IRC-control algorithm (see Equations (7)—(10) and (21)—(24)). Accordingly,
one can investigate the influence of the PD controller only on the rotor dynamics via setting
=0 (k=12,..,4).

This section is dedicated to investigating the rotor dynamics in the case of the PD-control
algorithm only, at different levels of the excitation force f, as shown in Figure 3. The figure
was obtained by solving the nonlinear system provided by Equation (74) when 7, =
0,(k=12,..,8) at f =0.004,0.007,0.01, and 0.013. Figure 3a,b shows the rotor steady-
state vibration amplitudes in both the X and Y directions at four different values of the
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Phase angles

3mi2
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excitation force f, while Figure 3c shows the evolution of the phase angles ¢; and ¢, ver-
sus 0 when f = 0.004. In addition, Figure 3d illustrates the phase angles ¢; and ¢, at
f = 0.013.Itis clear from Figure 3a,b that the vibration amplitudes (a; and a,) of the twelve-
poles system is a monotonic increasing function of the excitation force, where the rotor system
may be subjected to rub and/or impact force between the rotating disk and the pole-housing
if f>0.013 (ie., the rotor may exhibit vibration amplitudes a; > 1 and/or a, > 1 if f >
0.013). Accordingly, one can conclude that the considered system can work properly without
a catastrophic rub and/or impact between the rotor and stator, as long as the excitation force
f is smaller than 0.013 when only the PD-control algorithm is applied. In addition, Figure
3c,d depicts that the phase angle ¢, is always greater than ¢;, which means that the rotor
system performs a forward whirling motion only (according to Equations (68) and (69)) along
the o axis, regardless of the excitation force magnitude. By examining Figure 3, one can note
that the rotor system has symmetric oscillation amplitudes in both the X and Y directions
(i.e, a; = ay) and the phase difference ¢, — ¢, is always g , which demonstrates that the

rotor system performs a circular forward whirling motion along the ¢ axis, regardless of the
excitation force magnitude.
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Figure 3. Vibration amplitudes and phase angles of the twelve-poles rotor in the case of the PD-
control algorithm only: (a,b) vibration amplitudes (a;, a,) when f = 0.004, 0.007, 0.01, and 0.013,
(c) phase angles (¢, ¢,) when f = 0.004, (d) phase angles (¢4, $,) when f = 0.013.
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4.2. System Dynamics in the Case of the PD + PPF-Control Algorithm

The rotor dynamics at four different magnitudes of the excitation force were investi-
gated when both the PD-and PPF-control algorithms were applied simultaneously. Fig-
ure 4a—c shows the steady-state vibration amplitudes of both the rotor system (a; and a,)
and the PPF-control algorithm (b; and b,) when p = 1.5,d = 0.005,n;, =13 = 0.2, and
n, =N, = 0.0 at the four excitation force amplitudes f = 0.0025,0.0075,0.0125, and
0.0175. In addition, Figure 4e,f illustrates the evolution of the rotor phase angles ¢; and
¢, at £ =0.0025 and f = 0.0175, respectively. By comparing Figure 3a,b with Figure
4a,4b, one can deduce that the integration of the PPF-control algorithm to the twelve-poles
rotor has suppressed the system’s vibrations at the perfect resonance condition (i.e., it has
suppressed the system’s vibrations at ¢ = 0.0). However, two undesired resonant peaks
appeared on both sides of o = 0.0. In addition, Figure 4a,b demonstrates that the rotor
system may work safely without rub and/or impact between the rotor and the poles-hous-
ing, as long as the excitation force f < 0.0175 (i.e, a; <1 and a, <1 aslongas f <
0.0175). Moreover, Figure 4e,f shows that the phase difference (¢, — ¢,) of the rotor lat-
eral oscillationsinthe X and Y directions is always constant, so that ¢, — ¢, = g, which

implies that the system exhibits only a forward circular whirling motion, regardless of
both the angular speed and the excitation force magnitude. Generally, Figure 4 shows that
the integration of the PPF-control algorithm to the system with the P -controller sup-
pressed the rotor’s undesired vibrations at the perfect resonance condition (i.e., when Q =
w + 0,0 = 0.0), regardless of the excitation force amplitude; however, the system may suf-
fer from high oscillation, especially if Q > w. Accordingly, the PPF-control algorithm
acts as a notch filter that eliminates the system’s vibrations at a specific frequency band.

0.8
=0.0175
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Figure 4. Vibration amplitudes of the twelve-poles rotor and the PPF controller in the case of the
PD + PPF-control algorithm when f = 0.0025, 0.0075, 0.0125, and 0.0175: (a,b) vibration am-
plitudes (a,, a,) of the rotor, (c¢,d) vibration amplitudes (by, b,) of the PPF controller, (e) phase an-
gles (¢4, $,) when f = 0.0025, and (f) phase angles (¢4, $,) when f = 0.0175.

4.3. System Dynamics in the Case of the PD + IRC-Control Algorithm

The oscillatory behaviors of the system were explored when the [RC-control algo-
rithm was coupled to the rotor system with the PD controller, while the PPF controller
was turned off. Accordingly, Figure 5 shows the motion bifurcation of the rotor system
when p = 1.5,d =0.005,7, =13 =0, and n, =1, = 0.2 at four different magnitudes of
the excitation force (i.e., f = 0.02,0.04,0.06 and 0.08). It is clear from Figure 5a,b that the
IRC-control algorithm forced the twelve-poles system to respond like the linear system,
even at the strong excitation forces. Moreover, Figure 5c,d demonstrates that the system
can perform only a circular forward whirling motion along the ¢ axis, regardless of the
excitation force magnitude, where ¢, — ¢, = g and ay,a, are symmetric on the interval

—0.3 < 0 < 0.3. By examining Figure 5, we can deduce that the system can rotate safely
without rub and/or impact force between the rotor and the stator, even at the strong exci-
tation forces (i.e,, f = 0.08), compared with the case of the PD-control algorithm only, as
shown in Figure 3. Therefore, coupling the IRC-control algorithm to the system increased
the rotor linear damping coefficients, which ultimately decreased the lateral vibrations
even at the large excitation forces. However, the IRC controller could not eliminate the
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system vibrations close to zero at the resonance condition (i.e., at o = 0), as in the case of
the PPF-control technique, but the maximum vibration occurred at o = 0. Therefore, uti-
lizing the PPF-and IRC-control techniques as a one-control algorithm, along with the PD
controller, may have the advantages of both the PPF and IRC controllers, as illustrated

in the next subsection.
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Figure 5. Vibration amplitudes of the twelve-poles rotor in the case of the PD + IRC-control algo-
rithm when f = 0.02, 0.04, 0.06, and 0.08: (a,b) vibration amplitudes (a;, a,) of the rotor, (c)
phase angles (¢, ¢,) when f = 0.02, and (d) phase angles when f = 0.08.

4.4. System Dynamics in the Case of PD + IRC + PPF-Control Algorithm

The dynamical behaviors of the considered twelve-poles rotor system were explored
when the three control algorithms (i.e., PD + IRC + PPF-control algorithms) were acti-
vated simultaneously. Figure 6 shows the nonlinear dynamics of the controlled rotor sys-
tem when P =15,d=0.0057; =1, =n3 =1, =0.2 when the extinction force f =
0.025,0.045,0.065, and 0.085. Figure 6a,b illustrates the evolution of the system’s lateral
vibrations (a,, a,) against o, while Figure 6¢,d shows the vibration amplitudes of the PPF
controller against the detuning parameter o. In addition, Figure 6e,f illustrates the phase
difference of the rotor’s lateral vibrations in both the X and Y directions when f =
0.025 and f = 0.085, respectively. It is clear from Figure 6a,b that the vibration ampli-
tudes (a;,a,) of the twelve-poles system was close to zero, regardless of the excitation
force magnitude, as long as ¢ = 0, due to the effect of the PPF-control algorithm. In
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addition, the resonant peaks that appeared on both sidesof o = 0 (as in Figure 4a,b) were
mitigated, due to the effect of the IRC-control algorithm. Moreover, Figure 6a,b shows
that the rotor system worked properly without impact occurrence between the rotor and
stator, as long as f < 0.085. It was also clear from Figure 6e,f that the controlled rotor
system performed a circular forward whirling motion, as long as —0.3 < 0 < 0.3, where
the phase difference was ¢, — ¢, = m/2. Based on Figures 3 to 6, one can conclude that
the integration of the PD —, IRC —, and PPF-control algorithms to act as a single control-
ler can provide for the safe operation of the considered rotor system with small oscillation
amplitudes at the resonant conditions (i.e., when ¢ = 0.0), even if the excitation force is

strong.
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Figure 6. Vibration amplitudes of the twelve-poles rotor in the case of the PD + IRC + PPF-control
algorithm when f = 0.025, 0.045, 0.065, and 0.085: (a,b) vibration amplitudes (a,, a;) of the ro-
tor, (c,d) vibration amplitudes (by, b,) of the PPF controller, (e) phase angles (¢4, ¢,) when f =
0.025, and (f) phase angles (¢4, ¢,) when f = 0.085.

4.5. Sensitivity Analysis of the PD + IRC + PPF-Control Algorithm

As the combined control algorithm (i.e., PD + IRC + PPF) has many advantages
over the individual three control techniques, this subsection explores the sensitivity of this
control method to the variation of different control gains. The effect of increasing the pro-
portional gain (P) on the vibration suppression efficiency of the control algorithm is illus-
trated in Figure 7. The figure shows that the increase in P increases the oscillation ampli-
tudes (a;, a,) of the twelve-poles system and degrades the control algorithm'’s efficiency.
Therefore, the P gain should be kept at the small possible value to guarantee the high
performance of the proposed control technique. Based on the system parameters provided
below Equation (24), the natural frequency of the rotor system w is defined as =

J2Pcos(a) + P — 3 . Therefore, the minimum value of P should be selected in a way that
guarantees that w > 0. On the other hand, the effect of the PPF-control gains (i.e., 7;
and 73) on the whole-system dynamics is depicted in Figure 8. The figure demonstrates
that the increase of 1, and 75 (i.e, 1, = 13 = 0.5) enhanced the controller performance
in eliminating the rotor oscillations at the perfect resonance condition (i.e., when o = 0.0),
as well as widening the frequency band at which the system could work properly with
small vibration amplitudes. In addition, Figure 9 demonstrates that the increase in the
IRC-control gains (i.e., n, =1, = 0.5) decreased the resonant peaks that appeared on both
sides of o = 0.0, and improved the controller efficiency in suppressing the twelve-poles
rotor vibrations along the ¢ axis (i.e., the controller was able to eliminate the rotor oscil-
lations at any angular speed Q = w + 0, —0.3 < ¢ < 0.3 ). Finally, the best tuning condi-
tions between natural frequencies of both the rotor system (w) and the suggested control
technique (w; and w,) are shown in Figure 10, where the rotor vibration amplitudes (a,
and a,) are plotted in 3D space against the variables ¢ and o; = 0,. By examining Fig-
ure 10a,b, we deduced that the smallest oscillation amplitudes of the rotor system (i.e.,
a, = a, = 0) occurred along the dashed line that had the equation ¢ = g, = 0. Therefore,
the best working condition of the introduced control algorithm occurred if ¢ = 0y = 05.
Accordingly, one can conclude from Equation (53) that the optimum tuning conditions
(i.e., 0 = 0y = 0;) occurred when adjusting the controller’s natural frequencies (w; and
w3) had the same value of rotor angular speed (). Accordingly, the combined control
algorithm eliminated the rotor vibrations close to zero, regardless of the excitation force
amplitude and its angular speed, if the control gains and the tuning condition were ap-
plied, as discussed above.
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Figure 7. Vibration amplitudes of the twelve-poles rotor in the case of the PD + IRC + PPF-control
algorithm at f = 0.013, n; =1, =n3 =14 = 0.2 when p = 1.2, 1.6, and 2.0: (a,b) vibration am-
plitudes (a4, a,) of the rotor, and (c,d) vibration amplitudes (b4, b,) of the PPF controller.
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Figure 8. Vibration amplitudes of the twelve-poles rotor in the case of the PD + IRC + PPF-control
algorithm at f = 0.013, P = 1.5, n, =1, = 0.2 when n; =13 = 0.1, 0.3, and 0.5: (a,b) vibration
amplitudes (a,, a,) of the rotor, and (c,d) vibration amplitudes (b4, b,) of the PPF controller.
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Figure 9. Vibration amplitudes of the twelve-poles rotor in the case of the PD + IRC + PPF-control
algorithm at f = 0.013, n; = n3 = 0.2, when n, =71, =0.1, 0.3, and 0.5: (a,b) vibration ampli-
tudes (ay, a,) of the rotor, and (c,d) vibration amplitudes (b;, b,) of the PPF controller.
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Figure 10. Vibration amplitudes of the twelve-poles s rotor in the case of the PD + IRC + PPF-con-
trol algorithm at f = 0.013, and 7; =1, = n3 =14 = 0.2: (a,b) vibration amplitudes (a,, a,) of the
rotor, and (c,d) vibration amplitudes (b;, b,) of the PPF controller.

5. Numerical Simulations and Comparative Study

Numerical validations for all of the obtained results in Section 4 were validated nu-
merically via solving the temporal equations of the closed-loop system (i.e., Equations (19)
to (24)), using the Rung-Kutta method. In addition, the performances of the different con-
trol algorithms in eliminating the twelve-poles system vibrations were compared. It is
worth mentioning that the small circles illustrated in Figure 11 represents the steady-state
numerical solution of Equations (19) to (24). This numerical solution was obtained via
solving Equations (19) to (24) numerically, using the ODE MATLAB solver for a long time-
period until reaching the steady-state response at the different values of ¢ (notice that
Q = w + o). Then, the maximum temporal vibration amplitudes at steady-state were cap-
tured as the steady-state vibration amplitudes (i.e, a; =max (z,(t)), a, = max(z,(t)),
as = max(z3(t)), a, = max (z,(t))).
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Figure 11. Vibration amplitudes and phase angles of the twelve-poles rotor in the case of both the
PD-control only and the PD + PPF-control algorithms, when f = 0.013: (a,b) vibration amplitudes
(ay, ay) of the rotor, and (c,d) vibration amplitudes (b;, b,) of the PPF -controller, (e) phase angles
(¢1, ¢2) when 1y =1, =13 =1, = 0.0, and (f) phase angles (¢, ;) when 7, =13 = 0.2, n, =1, =
0.0.

Figure 11 compares the rotor dynamics in the case of both the PD- and the PD +
PPF-control algorithms, when the excitation force f = 0.013. The excellent correspond-
ence between the numerical solutions (i.e., small circles) obtained by solving Equations
(19)-(22) and the analytical solutions (i.e., solid and dotted lines) obtained by solving the
algebraic system provided by Equation (74) is clear. In addition, the figure demonstrates
that the coupling of the PPF-control algorithm with the PD controller eliminated the
strong vibration amplitudes of the rotor at the resonance condition (i.e., when ¢ — 0);
however, two resonant peaks appeared on both sides of o = 0. Accordingly, we con-
cluded that the PD + PPF-control algorithm had high efficiency in eliminating the rotor’s
undesired vibrations at the perfect resonance case (i.e., when ¢ = 0 or, in other words,
when the angular speed ) was equal to the system’s natural frequency w, Q = w + o).
However, if the resonant condition was lost (i.e.,, Q # w), the controller may pump exces-
sive vibratory energy to the rotor system, rather than suppress it (see, for example, Figure
11a,b at o = 0.1).
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The instantaneous oscillations of the controlled twelve-poles system in the case of
both the PD-and the PD + PPF-control algorithms are simulated in Figure 12, according
to Figure 11, at 0 = 0.0, f = 0.013, and Q = w. The figure was obtained by solving Equa-
tions (19) to (22) numerically on the time interval 0 <t < 500 and turning off the PPF-
control algorithm (i.e,, with setting 1, = 13 = 15 = ng = 0); then, at the instant ¢ = 500,
the PPF-control algorithm was turned on via setting 1, = 173 =15 = n¢ = 0.2 along the
period 500 <t < 1000. Figure 12a,b illustrates the instantaneous oscillations of the
twelve-poles system in the case of both the PD-control algorithm on the time interval
0 <t <500 and the PD + PPF-control algorithm on the time interval 500 <t < 1000,
while Figure 12c shows the rotor whirling orbit before and after turning on the PPF-con-
trol algorithm. Figure 12d compares the vibration amplitude of the rotor system in the
case of both the PD and PD + PPF-control algorithms. In addition, Figure 12e,f illus-
trates the temporal oscillations of the PPF controller. It is clear from the figure that the
high instantaneous oscillations of the rotor system (i.e., z;(t) and z,(t))in the case of the
PD controller only were suppressed close to zero when the PPF-control algorithm was
activated at the time instant t = 500, where the rotor vibration energy was channeled to
PPF controller.
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Figure 12. Time response of the rotor system according to Figure 11 when o =0 (i.e,, when Q =
w) in the case of the PD-control algorithm and the PD + PPF-control algorithm: (a,b) the temporal
oscillations z;(t) and z,(t) of the rotor system, (c) the rotor whirling orbits, (d) the rotor frequency
spectrum, and (e,f) the temporal oscillations z3(t) and z,(t) of the PPF controller.

Figure 13 illustrates the instantaneous oscillatory behaviors of the twelve-poles sys-
tem in the case of both the PD-control algorithm only and the PD + PPF-control algo-
rithm, according to Figure 11, when o = 0.1 (i.e., when the perfect resonance condition
is lost, O = w + 0.1). Therefore, Figure 13 is a repetition of Figure 12, but o = 0.1. It is
clear from Figure 13a,b that the twelve-poles system exhibited small vibration amplitudes
on the time interval 0 <t < 500, as long as the PD controller only was activated. How-
ever, the figures demonstrate that the activation of the PPF controller along with PD
controller on the time interval 500 <t < 1000 increased the rotor lateral vibration ra-
ther than suppressing it, which agrees with Figure 11 at o = 0.1.
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Figure 13. Time response of the rotor system according to Figure 11 when o = 0.1 (i.e, when Q =
w + 0.1) in the case of the PD-control algorithm and the PD + PPF-control algorithm: (a,b) the tem-

poral oscillations z;(t) and z,(t) of the rotor system, (c) the rotor whirling orbits, (d) the rotor

frequency spectrum, and (e,f) the temporal oscillations z3(t) and z,(t) of the PPF controller.

The steady-state oscillatory motion of the rotor system in the case of both the PD-
control algorithm only and the PD + IRC-control algorithm is compared in Figure 14,
when f = 0.013. It is clear from the figure that the high oscillation amplitudes that oc-
curred at the resonance case (i.e., when o — 0) in the case of the PD-control algorithm
only was mitigated to small lateral oscillations when the combined PD + IRC-control al-
gorithm was activated. However, while the PD + IRC-control algorithm can mitigate the

rotor vibrations along the ¢ axis, it cannot eliminate the rotor vibration close to zero at

the resonant condition, as in the case of the PD + PPF-control algorithm.
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Figure 14. Vibration amplitudes and phase-angles of the twelve-poles rotor in the case of both the
PD-control only and the PD + IRC-control algorithm when f = 0.013: (a,b) vibration amplitudes
(ay, ay) of the rotor, (c) phase angles (¢4, ¢,) when ny =1, =13 =n, = 0.0, and (d) phase angles
(¢1,¢2) when n; =n3 = 0.0, 1, =n, = 0.2.

Numerical simulations for the instantaneous lateral vibrations of the rotor system
(i-e., z,(t) and z,(t)) and the IRC-control algorithm (i.e., z5(t) and z4(t)) are illustrated
in Figures 15 and 16, according to Figure 14 when ¢ = 0.0 and ¢ = 0.1, respectively. The
two figures were obtained via solving Equations (19), (20), (23), and (24) using ODE45
MATLARB solver on the time interval 0 <t < 700 and deactivating the IRC-control algo-
rithm (i.e,, when 71, =1, =1, =ng = 0), whileat t = 700 the IRC controller was turned
on by setting n, =1, = 0.2, n; =ng =1 on the interval 700 <t < 1000. One can note
from Figure 15 that the strong instantaneous vibrations of the system (i.e., z;(t) and
z,(t)) in the case of the PD-control technique at ¢ = 0 was reduced to small values (but
not close to zero) when the IRC-control algorithm was turned onat t = 700 and the rotor
vibration energy was partially transferred to the IRC controller. On the other hand, Fig-
ure 16 shows that the IRC-control algorithm also reduced the rotor vibrations to a small
value when ¢ = 0.1 rather than pumping more excess energy to the system, as in the case
of the PD + PPF-control technique (see Figure 13).
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Figure 15. Time response of the rotor system according to Figure 14 when o = 0.0 (i.e,, when Q =
w) in the case of the PD-control algorithm and the PD + IRC-control algorithm: (a,b) the temporal
oscillations z;(t) and z,(t) of the rotor system, (c) the rotor whirling orbits, (d) the rotor frequency
spectrum, and (e,f) the temporal oscillations z5(t) and zg(t) of the IRC controller.
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Figure 16. Time response of the rotor system according to Figure 14 when ¢ = 0.1 (i.e,, when Q =
 + 0.1) in the case of the PD-control algorithm and the PD + IRC-control algorithm: (a,b) the tem-
poral oscillations z;(t) and z,(t) of the rotor system, (c) the rotor whirling orbits, (d) the rotor
frequency spectrum, (e,f) the temporal oscillations zs(t), and z(t) of the IRC controller.

Finally, the rotor dynamics in the case of both the PD-and the PD + IRC + PPF-con-
trol algorithms are compared in Figure 17, when f = 0.013. It is clear from the figure that
the high oscillation amplitudes of the rotor system in the vicinity of ¢ = 0 in the case of
the PD-control algorithm only have been eliminated close to zero, when the PD + IRC +
PPF-control algorithm is considered. In addition, the resonant peaks that appeared in Fig-
ure 11 (i.e., in the case of PD + PPF-control) were also suppressed, as shown in Figure 17.
In other words, the PD + IRC + PPF-control algorithm had all the advantages of the in-
dividual control algorithms PD,IRC, and PPF, while avoiding their drawbacks.
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vibration amplitudes (a4, a,) of the rotor, and (c,d) vibration amplitudes (b,, b,) of the PPF control-
ler, (e) phase angles (¢4, ¢,) when n; =1, = n3 =1, = 0.0, and (f) phase angles (¢, ¢,) when n; =
N3 = Nz =14 =02

Figures 18 and 19 compare the instantaneous oscillations of the rotor system in the
care of both the PD- and the PD + IRC + PPF-control algorithms, according to Figure 17,
when f =0.013 at 0 =0 and o = 0.1, respectively. Figure 18 was obtained by solving
Equations (19) to (24) numerically, using the ODE45 solver along the time interval 0 <
t <700 and activating the PD controller only (i.e., P = 1.5,d = 0.005, and 7, = 0,k =
1,2, ...,4); then, at the time instant t = 700, the IRC + PPF-control algorithm was turned
on, along with the PD controller, via setting n; =1, =13 =1, = 0.2 on the time inter-
val 700 <t < 1000. Figure 19 is a repetition of Figure 18, but when ¢ = 0.1 rather than
o = 0.0. By examining Figure 18a-c, one can notice that the high oscillation amplitudes of
the twelve-poles system were eliminated close to zero at a very small transient time as
soon as the PD + IRC + PPF controller was turned on. In addition, Figure 19 demon-
strates that the PD + IRC + PPF-control algorithm did not add excessive energy to the
rotor system when the resonant condition was lost (i.e,, when = 0.1).
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Figure 18. Time response of the rotor system according to Figure 17 when ¢ = 0.0 (i.e, when Q =
w) in the case of the PD-control algorithm and the PD + IRC + PPF-control algorithm: (a,b) the
temporal oscillations z;(t) and z,(t) of the rotor system, (c) the rotor whirling orbits, (d) the rotor
frequency spectrum, (e f) the temporal oscillations z3(t) and z,(t) of the PPF controller, and
(g/h) the temporal oscillations z5(t) and zs(t) of the IRC controller.
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Figure 19. Time response of the rotor system according to Figure 17 when ¢ = 0.1 (i.e,, when Q =
w + 0.1) when the PD-control algorithm and the PD + IRC + PPF-control algorithm are applied:
(a,b) the temporal oscillations z;(t) and z,(t) of the rotor system, (c) the rotor whirling orbits, (d)
the rotor frequency spectrum, (e,f) the temporal oscillations z;(t) and z,(t) of the PPF control-
ler, and (g h) the temporal oscillations zs5(t) and zg(t) of the IRC controller.

6. Conclusions

In this article, three different control techniques were introduced to eliminate the un-
desired vibrations of the twelve-poles electro-magnetic suspension system. The intro-
duced control algorithms were the PD, IRC, and PPF controllers and their different
combinations (i.e., PD +IRC,PD + PPF,PD + IRC + PPF). Relying on the classical me-
chanics” principle, the dynamical model that governs the controlled twelve-poles rotor
was established as a nonlinear four-degree-of-freedom system that is coupled to two first-
order filters. Then, an approximate analytical solution for the controlled system mathe-
matical model was obtained using the asymptotic analysis. Based on the derived analyti-
cal solution, the efficiency of the different control algorithms in suppressing the undesired
vibrations and improving the bifurcation characteristics of the considered twelve-poles
system was explored. In addition, numerical simulations were performed to confirm the
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accuracy of the obtained analytical investigations, as well as to explore the transient oscil-
latory behaviors of the rotor system with the different control strategies. Based on our
analysis and the discussions above, we reached the following conclusions:

1. The rotor system responds as a linear dynamical system with small vibration ampli-
tudes in the case of the PD-control algorithm, as long as the excitation force f <
0.004.

2. When only the PD-control algorithm is activated, the twelve-poles rotor behaves like
a hardening duffing oscillator, and the nonlinearities dominate its response when the
rotor is exposed to a considerable excitation force amplitude (i.e., f > 0.004) at the
resonance condition. In addition, the electro-magnetic suspension system may suffer
from rub and/or impact force between the rotor and the stator if f > 0.013 in the
case of PD-control algorithm.

3. Integrating the PPF-control algorithm with P -controller can eliminate the rotor’s
undesired vibrations at the resonance condition (i.e.,, when Q —» w, o — 0) to negli-
gible oscillation amplitudes, regardless of the excitation force magnitude, but two
undesired resonant peaks appear on both sides of ¢ = 0.0 that may result in high
vibrations for the rotor system if the resonant condition is lost (i.e., if Q # w).

4.  The IRC + PD-control algorithm can mitigate the undesired vibrations and elimi-
nate the nonlinear bifurcation behaviors of the twelve-poles system. However, the
main drawback of this controller is that the rotor may perform high oscillation am-
plitude at the perfect resonance (i.e., when Q - w, o - 0).

5. Utilizing the three control algorithms (i.e., PD + IRC + PPF) as one control strategy
eliminated the high oscillation amplitudes of the rotor system close to zero at the
perfect resonance conditions. In addition, the resonant peaks that appeared in the
case of PD + PPF controller were also suppressed close to zero.

6. The PD + IRC + PPF-control algorithm has all the advantages of the individual con-
trol algorithms, PD, PD +IRC and PD + PPF, while avoiding their drawbacks.

7. Although both the PD + PPF and PD + IRC + PPF-control algorithms can elimi-
nate the nonlinear vibrations of the twelve-poles system at the perfect resonance con-
dition, the PD + IRC + PPF has the advantage of having the short transient time in
suppressing this undesired motion.

8. Tuning the natural frequencies (w; and w,) of the PD + IRC + PPF-control algo-
rithm to be close to or equal to the rotor angular speed () guarantees the elimination
of the system’s lateral vibrations, regardless of the excitation force magnitude.
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Abbreviations
N Normalized displacement, velocity, and acceleration of the twelve-poles
Z1,21, % . .
system in the X direction.
2y 2y s Normalized displacement, velocity, and acceleration of the twelve-poles
e system in the Y direction.
2oy 70, 2 Normalized displacement, velocity, and acceleration of the PPF-control
Y algorithm that connected to the twelve-poles system in the X direction.
.. Normalized displacement, velocity, and acceleration of the PPF-control
ZyyZ4, 24 . . -
algorithm that connected to the twelve-poles system in the Y direction.
7 s Normalized displacement, and velocity of the IRC-control algorithm
> that connected to the twelve-poles system in the X direction.
2 2 Normalized displacement, and velocity of the IRC-control algorithm
e that connected to the twelve-poles system in the Y direction.
U Normalized damping parameter of the twelve-poles rotor system.
U1, Normalized damping parameters of the PPF-control algorithms.
w The normalized natural frequency of the twelve-poles rotor system.
w1, Wy Normalized natural frequencies of the PPF-control algorithms.
W3, Wy Normalized Internal-loop feedback gains of the IRC-control algorithms.
Q The normalized angular speed of the twelve-poles rotor system.
f Normalized excitation force of the twelve-poles rotor system.
P d Normalized proportional and derivative control gains of the PD-control
’ algorithm, respectively.
N1,73 Normalized control gains of the PPF- control algorithms.
N2, M4 Normalized control gains of the IRC- control algorithms.
Ns,Ne Normalized feedback gains of the PPF- control algorithms.
N7, Mg Normalized feedback gains of the IRC- control algorithms.
@ j=1,..7 Normalized nonlinear coupling coefficients due to the PD-control
7 " algorithm.
Bj=1,.16 Normalized nonlinear coupling coefficients due to both the IRC and
7 """ PPF control algorithms in the X direction.
Vi =116 Normalized nonlinear coupling coefficients due to both the /RC and
]' """ PPF control algorithms in the Y direction.
o a Normalized vibration amplitudes of the twelve-poles rotor system in the
vz X and Y directions, respectively.
Phase angles of the twelve-poles rotor system in the X and Y directions,
P12 respectively.
. a Normalized vibration amplitudes of the PPF-control algorithms in the
3 X and Y directions, respectively.
Phase angles of the PPF-control algorithms in the X and Y directions,
P3P respectively.
- Difference between the angular speed (1) and the normalized natural
frequency (w): 0 = Q — w.
Appendix A

Expanding Equations (11) to (16), using the Maclaurin series up to the third-order
approximation, yields the following:
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