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Abstract: In order to accurately realize the contact fatigue state identification of specimen, a new
method based on vibration and image heterogeneous data, as well as on D-S evidence theory, is
proposed. Firstly, combined with the bearing public data set from CWRU, the vibration signal
imaging methods such as SDP, GAF and GRI, as well as neural network models such as VGG16,
ResNet and S-T, were compared and analyzed. It is determined that the SDP method is used to
visualize the vibration signal, and the two state identification evidence bodies based on the vibration
information source are obtained through the VGG16 and ResNet models. Secondly, combined with
image monitoring signals, the fatigue defect identification method based on automatic weighting
threshold and the detection error dynamic compensation method based on fatigue defect edge
features are used to quantify the fatigue damage area and obtain the state identification evidence
body based on the image information source. On this basis, a state identification network model based
on vibration and image spatiotemporal heterogeneous data is constructed, and the D-S evidence
theory is used to realize the contact fatigue state identification of the specimen. The results show that
fusion of vibration and image data can achieve information complementarity and may identify the
contact fatigue state of the specimen more accurately. The accuracy of state identification after fusion
is 98.67%, which is at least 3% higher than that of a single information source. This research is of
great significance for the accurate acquisition of material contact fatigue properties and has certain
reference value for the heterogeneous data fusion from different sources.

Keywords: multi-source information fusion; pattern recognition; deep learning; D-S evidence theory

1. Introduction

Contact fatigue is mainly due to damage caused by cyclic loading below the contact
surface, until it extends to the surface to form pitting or spalling. The failure process is
essentially the initiation and propagation of cracks [1,2]. A large number of engineering
practices have proved that contact fatigue is the main reason for the failure of basic com-
ponents such as bearings and gears [3]. At present, the main way to obtain the contact
fatigue properties of materials is through rolling contact fatigue tests. Therefore, it is very
important to accurately evaluate the contact fatigue state of the specimen during the test
for the accurate acquisition of the material contact fatigue properties.

At present, there are two methods to realize the online state identification of the
specimen contact fatigue state. (1) It can be directly identified according to the damage
area of the specimen. For example, L. Solazzi et al. [4] applied machine vision technology
to the rolling contact fatigue test bench for the first time. Although the study used a line
scan camera to obtain the surface image of the specimen and observed the evolution of
fatigue damage, it was still only based on the traditional vibration analysis to determine
the fatigue failure. I. Bodini et al. [5] used an area scan camera to obtain surface images
of rolling contact fatigue specimen and compared the surface roughness of the specimen
under different rotational speeds to determine whether they failed. However, the image
stitching effect is not ideal, which directly affects the observation of the surface morphology
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of the specimen. Moreover, only the experiments under dry friction conditions were
carried out, and the influence of lubricating medium on image acquisition under actual
operating conditions was not considered. Until now, most of the existing testing machines
cannot obtain online images of the contact surface of the specimen, let alone quantify the
damaged area and track the damage evolution process. Therefore, our team independently
developed a rolling contact fatigue test equipment based on machine vision technology,
which solved this problem [6]. However, during the test, it was found that the change of
the test environment had a great influence on the acquisition of fatigue damage images,
especially in the later stage of the test. The oil blocking effect of the oil blocking device is
poor, or the lens is splashed with oil stains, which will cause the image to become black,
thus affecting the accurate acquisition of the fatigue damage area. It can be indirectly
identified according to the vibration signal, which is the most widely used method now.
For example, Manoj et al. [7] designed a three-roll rolling contact fatigue testing machine,
which realizes fault diagnosis through the vibration and sound signals generated by the
contact of the rolls. The time-domain characteristics of the vibration signal reflect the
overall fatigue characteristics of the specimen, while the frequency analysis identifies the
contact fatigue state of the specimen through Fast Fourier Transform (FFT). However,
the superposition complexity of multiple high peaks in the vibration signal makes it
difficult to identify the critical features of the specimen under different fatigue states.
Solazzi et al. [4] proposed a hybrid vibration signal analysis method, which uses FFT,
Power Spectral Density (PSD) and waterfall methods to analyze vibration signals and
evaluates the fatigue state of the specimen through windowed root mean square of digital
weighting filters. However, the vibration signal features extracted by the windowed root
mean square method are not sufficient, and may even lose important features, which
requires the combination of time-frequency analysis methods [8,9]. On the other hand, the
segmentation of vibration signal levels lacks robustness to occasional noise impulses and
non-stationary random disturbances.

In recent years, the development of artificial intelligence technology has provided a
new way for state recognition, which can be realized through multi-source information fu-
sion. According to the different fusion levels, information fusion technology can be divided
into data-level fusion, feature-level fusion and decision-level fusion. Su et al. [10] achieved
bearing fault diagnosis by correlating multiple acoustic emission sensor signals and then
performing data-level fusion. Duan et al. [11] used Variational Mode Decomposition (VMD)
and Hilbert Transform (HT) methods to process the vibration signal into a time-frequency
image, and through data-level fusion with the infrared image of the same dimension,
the accurate diagnosis of the rotor system failure is realized. Liu et al. [12] constructed a
deep learning model for dynamic feature-level fusion of speech and facial images, and
realized the recognition of depression tendency with an accuracy rate of 71%. Ma et al. [13]
used a combination of feature-level and decision-level fusion to realize the diagnosis of
bearing fault types, where the cross-diagnosis of various eigenvectors was performed at
the feature level, and the evidence theory method was used for fusion diagnosis at the
decision level. Kächele et al. [14] achieved the classification of depression by performing
decision-level fusion of models trained from speech features and video features. Yang [15]
realized depression recognition through decision-level fusion of speech, facial images and
text with an accuracy rate of 86.73%.

In view of the shortcomings of the existing method in contact fatigue state identifica-
tion of the specimen, such as the problems of unstable image quality and influenced by the
test environment in visual detection, as well as the difficulties of identifying critical features
and poor robustness in vibration detection, combined with the powerful advantages of
artificial intelligence technology in pattern recognition, it is proposed to integrate two
heterogeneous data, vibration and image, to realize the contact fatigue state identification
of the specimen. Relying on the vibration signals and monitoring images obtained by the
rolling contact fatigue test equipment independently developed by the team, and compre-
hensively using theories and methods such as multi-source information fusion, pattern
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recognition and deep learning, a state recognition network model based on vibration and
image spatiotemporal heterogeneous data is constructed to realize the contact fatigue state
identification of the specimen accurately.

2. Methodology
2.1. Vibration Signal Visualization Method

At present, the methods of converting vibration signals into images mainly include the
Symmetry Dot Pattern (SDP) method, Gramian Angular Field (GAF) method and Grayscale
image (GRI) method [16–19]. The following uses the bearing public data set from Case
Western Reserve University (CWRU) to verify the validity of the above three vibration
signal imaging methods applied to state recognition, and to determine the method used in
this paper.

The rolling bearing test bench of CWRU is shown in Figure 1, which is mainly com-
posed of motor, torque sensor, power tester and electronic controller. During the test, the
motor speed is 1720 r/min~1797 r/min, and the test bearing is SKF bearing with single-
point damage by Electrical Discharge Machining (EDM) [20]. The data set includes four
categories, namely, normal state, inner ring damage, outer ring damage and rolling element
damage. The diameters of each type of damage are 0.007′′ (0.1778 mm), 0.014′′ (0.3556 mm)
and 0.021′′ (0.5334 mm) [20]. The acceleration sensor is used to collect vibration signals, and
the sampling frequency is 12 kHz. In this paper, three types data of drive end rollers with a
rotating speed of 1730 r/min, normal and damaged diameters of 0.3556 mm and 0.5334 mm
are selected to verify the effectiveness of the vibration signal visualization method in state
identification, as shown in Table 1. In each type of state data, 1024 data points are a group,
and each type of state data has 1500 groups.

Figure 1. CWRU rolling bearing test bench [21]. 1. Fan end bearings; 2. Motor; 3. Drive end bearing;
4. Torque sensors and encoders; 5. Dynamometers.

Table 1. Selected types of rolling bearing damages.

Damage Diameter
(mm)

Motor Load
(w)

Motor Speed
(r/min) Bearing Number Status Number

0 3 1730 Ball_0 0
0.3556 3 1730 Ball_1 1
0.5334 3 1730 Ball_2 2

In order to visually compare the image transformation effects of SDP method, GAF
method and GRI method, the transformed images of vibration signals in different time
periods for the same type of damage in the CWRU bearing public data set are shown in
Table 2. It should be noted that, in this paper, a set of sample data corresponds to generate
an SDP image. The specific steps are as follows: 1© Preprocess the vibration data and
convert it to the range of 0–255; 2© Set the conversion parameters to convert the vibration
signal to 224 × 224 SDP image. The initial angle θ = 120◦, time interval parameter l = 5 and
the magnification factor ζ = 30◦ were chosen [22], while the deflection angle was set to 120◦

in order to form a trilateral centrosymmetric pattern and to avoid interference phenomena
in the information between adjacent images.
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In order to get the verification results quickly and conveniently, this paper uses the
VGG16 model. The bearing data set is randomly divided into training set and test set
according to the ratio of 4:1, and the VGG16 model is trained by using the vibration
images of the training set, where the training parameter settings are shown in Table 3.
After 150 epochs of training, the accuracy and loss of the training set model are shown
in Figures 2 and 3, respectively, from which it can be determined that the model training
has converged.

The test set data of the three states are input into the respective trained VGG16
evaluation models for bearing state identification. The obtained bearing state identification
results are shown in Table 4. It can be seen that the accuracy rates of three vibration image
conversion methods applied to bearing state identification are all above 99%, which shows
that the method proposed in this paper to convert the vibration signal into an image and
apply it to the state identification is effective. There is no significant difference between the
three methods in terms of the bearing public datasets targeted.

Table 2. Transformation images of bearing vibration signals by SDP, GAF and GRI method.

Bearing Number Vibration Acquisition Signal Transformation Method
SDP GAF GRI

Ball_0
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Table 2. Cont.

Bearing Number Vibration Acquisition Signal Transformation Method
SDP GAF GRI

Ball_1
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Table 2. Cont.

Bearing Number Vibration Acquisition Signal Transformation Method
SDP GAF GRI

Ball_2

Note: In the acquisition of vibration signals, the horizontal axis represents the sampling point and the vertical axis
represents the signal value corresponding to the sampling point.

Table 3. Training parameters of VGG16 model.

Image Type and
Size Sample Type Data Set Size Epoch Batch_Size Learning Rate

SDP
224 × 224

Training samples 1200
150 32 0.001Test samples 300

GAF
64 × 64

Training samples 1200
150 32 0.001Test samples 300

GRI
32 × 32

Training samples 1200
150 32 0.001Test samples 300
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Figure 2. Accuracy change curve of model training set.

Figure 3. Loss degree change curve of model training set.

Table 4. The state recognition results of bearing test set for different image transformation methods.

Test Sample Number
Transformation Method

Type of Damage
SDP GAF GRI

1 0 0 0

0

2 0 0 0
3 0 0 0

98 0 0 0
99 0 0 0
100 0 0 0

1 1 1 1

1

2 1 1 1
3 1 1 1

98 1 1 1
99 1 1 1
100 1 2(×) 1
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Table 4. Cont.

Test Sample Number
Transformation Method

Type of Damage
SDP GAF GRI

1 2 2 2

2

2 2 2 2
3 2 2 2

98 2 2 2
99 2 2 2
100 2 1(×) 2

Number of identification errors 0 2 0 /

Accuracy 100% 99.33% 100% /
Note: “×” represent the recognition state does not match with the actual state.

Qualitatively analyzed, the SDP method converts one-dimensional signal data into a
two-dimensional polar coordinate system, and intuitively represents the characteristics of
the signal in the form of images, showing a perceptual ability to associate local information
with the global [23]. At the same time, in terms of image features, SDP transformed images
are simpler and more prominent than GAF images and grayscale images, which is beneficial
for subsequent neural network-based state recognition. In addition, in terms of the feature
fluctuation in the same state, by analyzing a large number of transformed images in Table 2,
it is found that the GAF image has the largest fluctuation, followed by the grayscale image,
while the SDP transformed image has the smallest fluctuation. This indicates the state
feature of the SDP transformed image is the most stable. Therefore, subsequent state
recognition converts the vibration signal into an SDP image.

2.2. Neural Network Model

Neural network models mainly include Convolutional Neural Network (CNN), Recur-
rent Neural Network (RNN), Auto-Encoder (AE), Generative Adversarial Network (GAN),
Graph Neural Network (GNN), Transformer, etc. [24]. The CNN model has the advantages
of simple structure, easy reproduction and good effect in the field of target classification,
while the Transformer model has powerful global modeling capabilities, breaking through
the limitations of the RNN model that cannot be parallelized, and self-attention can produce
a more interpretable model. Therefore, the initial consideration is to choose the CNN model
and the Transformer model.

Commonly used CNN models mainly include VGGNet, ResNet and AlexNet [25]. In
comparison, the input image of VGG16 model [26] passes through successively stacked
convolutional layers and pooling layers to obtain the main feature information in the
image and compress it, and finally pass the fully connected layer and the output layer to
the learned image. The information is integrated and classified, which has outstanding
characteristics such as parameter unification and simple model. The ResNet model [27]
activates the input of the unit directly with the output of the unit, so that the features can
be directly propagated from any shallow layer to the deep layer, so as to realize the identity
mapping. That is to say, ResNet model realizes the skip layer connection by introducing
the residual block, and the original input is directly connected with the output through the
skip connection, which can largely avoid the loss of information and reduce the difficulty
of learning. Hence, this paper chooses the VGG16 model and the ResNet model.

Combined with the SDP images transformed from the aforementioned CWRU bearing
public data set, the effects of different neural network models applied to state recognition
are compared, and the model used in this paper is determined.

Similarly, the bearing data set is randomly divided into training set and test set
according to the ratio of 4:1, and three models of VGG16, ResNet and S-T are trained
respectively by using the vibration images of the training set. The training parameter
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settings are shown in Table 5. After 150 epochs of training, the accuracy and loss of
the training set model are shown in Figures 4 and 5, respectively, from which it can be
determined that the model training converges.

Table 5. Training parameters of model.

Model Sample Type Data Set Size Epoch Batch Size Learning Rate

VGG16
Training samples 1200

150 32 0.001Test samples 300

ResNet
Training samples 1200

150 32 0.001Test samples 300

S-T
Training samples 1200

150 32 0.0003Test samples 300

Figure 4. Accuracy change curve of each model training set.

Figure 5. Loss degree change curve of each model training set.

The test set SDP images of three states are input into the respective trained models
for bearing state recognition. The obtained bearing state recognition results are shown in
Table 6. It can be seen that the accuracy rates of three models of VGG16, ResNet and S-T
are all 100% in bearing state identification based on the SDP transformed image dataset,
and there is no difference.

According to Figures 4 and 5, in the process of bearing state identification, ResNet
model has the fastest convergence and the most stable convergence process, while S-T
model and VGG16 model have little difference in the convergence process. However,
the S-T model has a more complex structure and is more sensitive to network parameter
settings. For example, in the case of a common learning rate of 0.001, the S-T model fails to
converge, and the learning rate needs to be set to 0.0003. Therefore, the subsequent state
recognition selects VGG16 model and ResNet model.
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Table 6. The state recognition results of bearing test set for different neural networks.

Test Sample Number
Recognition Model

Type of Damage
VGG16 ResNet S-T

1 0 0 0

0

2 0 0 0
3 0 0 0

98 0 0 0
99 0 0 0
100 0 0 0

1 1 1 1

1

2 1 1 1
3 1 1 1

98 1 1 1
99 1 1 1
100 1 1 1

1 2 2 2

2

2 2 2 2
3 2 2 2

98 2 2 2
99 2 2 2
100 2 2 2

Number of identification errors 0 0 0 /

Accuracy 100% 100% 100% /

2.3. D-S Evidence Theory

At present, the fusion theories mainly include D-S evidence theory, Bayesian theory,
fuzzy set theory, rough set, etc. In comparison, D-S evidence theory can deal with the
uncertainty caused by ignorance and can well characterize the uncertainty information [28].
Therefore, this paper chooses D-S evidence theory to perform decision-level fusion of state
identification results from a single information source of vibration or image.

The basic principle of D-S evidence theory is as follows [29]. Let U represent a complete
set of possible values of object X to be recognized, and all elements of U are incompatible
with each other, then U is called the recognition frame of X.The function h : 2U → [0, 1]
is said to be basic probability assignment of h(A) to A when the following condition (1)
is satisfied. {

h(∅) = 0
∑

A⊂U
h(A) = 1 (1)

Assuming that Ai, Bj, · · · , Zk is the k evidence bodies on the same identification frame,
and h1, h2, · · · , hn is assigned to its corresponding basic probability, then Dempster compo-
sition rules are as follows:

K = ∑
Ai∩Bj∩···∩Zk=∅

h1(Ai)h2
(

Bj
)
· · · hn(Zk) < 1 (2)

The joint basis probability assignment for any subset C ⊂ U,h1, h2, · · · , hn is
defined as:

h(C) =


∑

Ai∩Bj∩···∩Zk=C
h1(Ai)h2(Bj)···hn(Zk)<1

1−K

0, C =∅
, C 6= ∅ (3)

where K is the conflict factor, which reflects the degree of evidence conflict.
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3. Contact Fatigue State Identification
3.1. Introduction of Rolling Contact Fatigue Test Equipment

According to “Rolling Contact Fatigue Test Method for Metal Materials” (YB/T
5345.2014) [30], the contact fatigue properties of materials are obtained by testing on
a rolling contact fatigue testing machine. Our team successfully developed a rolling contact
fatigue testing machine, as shown in Figure 6, which is mainly composed of the mechanical
system, electrical system, vision system, measurement and control software system and
lubrication system. It can monitor the running state of the specimen in real time and solved
the problems of similar test technologies, such as discontinuous data collection, untraceable
damage evolution and difficulty in accurately obtaining fatigue strength.

Figure 6. The structure of the self-developed RCF-A test machine. (a) 3D model, (b) Prototype.

During the test, various sensors were installed to realize the measurement and control
of key parameters such as vibration, load, oil temperature, rotational speed and torque.
At the same time, an image acquisition system with independent intellectual property
rights has been developed, which realizes real-time acquisition and quantitative analysis of
damage images.

3.2. Rolling Contact Fatigue Test

The test was carried out on the RCF-A type testing machine, as shown in Figure 7. The
specimen and the accompanying specimen are processed according to the YB/T 5345.2014
test standard, the material is 40Cr, and the quenching and tempering process is used.
During the test, set the rotational speed of the main shaft (specimen) to 1000 r/min, the
rotational speed of the accompanying shaft (accompanying specimen) to 1100 r/min, the
slip rate to be 10%, and the radial load to be 2071 N. The 1A307E accelerometer is installed
on the headstock box by magnetic attraction, and the EM9118B-6/ICP data acquisition
card is used to collect vibration signals. The image acquisition system selected LINEA
series line scan cameras from Canada DALSA company and MLM-3XMP lens from Japan
COMPUTAR company to acquire the contact surface image of the specimen.

Figure 7. Schematic diagram of the shaft box of the RCF-A test machine. 1. Accompanying axle box;
2. Spindle box.

The performance degradation of the specimen is a gradual process, and the period
of rolling contact fatigue test is relatively long. In order to avoid too much repetitive



Appl. Sci. 2022, 12, 8509 12 of 21

information in the data, the vibration signal is collected by interval sampling during the
test. The signal acquisition parameter settings are shown in Table 7, and the control interface
of the testing machine is shown in Figure 8.

Table 7. Signal acquisition parameter settings.

Signal Sample Frequency/Hz Sample Interval/min Time per Sampling/s

Vibration 10k 2 1
Image 1 10 1

Figure 8. The control interface of the RCF-A test machine. 1. Visual display module; 2. Fatigue test
control module; 3. Vibration signal acquisition module.

3.3. Contact Fatigue State Identification Method

Contact fatigue failure is a gradual process. The multi-source information, such
as vibration signal and image signal, reflect the contact fatigue state of the specimen
from different aspects. In this paper, vibration monitoring and damage evolution are
combined, and different models are used to realize contact fatigue state identification based
on vibration signal/damage evolution. On this basis, the decision-level fusion of the state
identification results from different information and different models is carried out, and
finally the contact fatigue state identification of the specimen with the fusion of vibration
and image heterogeneous data is realized.

The contact fatigue state identification process of the specimen is shown in Figure 9.

Figure 9. The process of contact fatigue state identification of the specimen.

The steps are as follows:

(1) The vibration signals collected in the test under the same working conditions are ran-
domly divided into training set, test set and verification set according to a
certain proportion.

(2) The SDP method is used to convert the vibration signals into images.
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(3) For the transformed training set and test set SDP images, we train the VGG16 model
and the ResNet model respectively.

(4) For the vibration signal of the verification set, we use the trained VGG16 model and
the ResNet model to identify the state, respectively, and obtain two state identification
evidence bodies m1 and m2 based on the vibration information source.

(5) For the image signal, we first perform the denoising processing, and then combine
the fatigue defect identification method based on automatic weighted threshold and
the dynamic compensation method for detection error, based on fatigue defect edge
features proposed by the research group [6]. We then calculate the fatigue damage
area and obtain evidence body m3 based on image information source.

(6) On this basis, we fuse the evidence bodies m1, m2 and m3, and make a decision to
obtain the contact fatigue state identification result of the specimen.

3.4. Contact Fatigue State Identification of Specimen
3.4.1. Vibration Signal Processing

According to “YB/T 5345-2014 Rolling Contact Fatigue Test Method for Metallic
Materials”, the criteria for judging rolling contact fatigue failure are as follows [30]:
1© The deep peeling area is greater than or equal to 3 mm2; 2©When the pitting is peeled

off (concentrated area), the damage with a pitting rate of 15% occurs within a 10 mm2 area.
In this paper, aiming at the first criteria, the fatigue state of the sample is divided into three
states: normal, medium and failure, which are represented by (0, 1, 2), respectively, as
shown in Table 8, where 0.01 mm2 is the visual method for the smallest damage area that
can be detected [31].

Table 8. The contact fatigue state of the specimen.

Status Number Specimen Status Damage Area S/mm2

0 Normal S ≤ 0.01
1 Medium 0.01 < S < 3
2 Failure S ≥ 3

For three different states of the specimen, each state contains 1200 sets of sample data,
and each set contains 1024 vibration data points. According to the ratio of 9:2:1, the training
set, test set and validation set are randomly divided, and each state contains 900 sets of
training samples, 200 sets of test samples and 100 sets of validation samples, as shown in
Table 9.

Table 9. SDP image dataset.

Sample Type Number of SDP Images
Normal Medium Failure

Training Samples 900 900 900
Test samples 200 200 200

Validation samples 100 100 100

3.4.2. Image Signal Processing

Figure 10 shows the defect area calculation process of specimen based on machine
vision [31,32]. Firstly, the image is denoised by fast guided filtering. Secondly, the au-
tomatic weighted threshold method is used to perform threshold segmentation on the
image. Thirdly, the connected domain analysis is carried out and the segmented maximum
interesting area is located. Finally, the maximum interest area is obtained by filling the
minimum circumscribed rectangle, and then multiplied by the corresponding equivalent
pixel 3.99× 10−4mm2 [31] to obtain the corresponding damage area.
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Figure 10. Calculation process of specimen damage area.

Table 10 shows a group of the vibration signal and the corresponding SDP image,
image signal and the corresponding maximum damage area under three states of the
specimen in normal, medium and failure.

Table 10. A group of vibration and image signals of the specimen in three states.

Specimen
Status

Vibration Signal Image Signal

Original Vibration Signal SDP Image
Visual Recognition of

Maximum Damage
Region

Quantification of
Area Values/mm2

Normal 0.0273

Medium 0.7754
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Table 10. Cont.

Specimen
Status

Vibration Signal Image Signal

Original Vibration Signal SDP Image
Visual Recognition of

Maximum Damage
Region

Quantification of
Area Values/mm2

Damaged 4.6991

Note: In the acquisition of vibration signals, the horizontal axis represents the sampling point and the vertical axis
represents the signal value corresponding to the sampling point.

3.4.3. State Identification Results and Analysis

The vibration signals and the contact surface images of the specimen collected by the
testing machine are divided into three states of A (normal), B (medium) and C (failure).
Thus, the identification framework of D-S evidence theory is set as {A, B, C}. In the
following, a group of vibration and image data collected during the same failure period
is taken as an example to illustrate the contact fatigue state identification process of the
specimen, as shown in Table 11.

Table 11. Contact fatigue damage of a specimen and the recognition results.

Signal types

Vibration Signal Image Signal

Original Vibration Signal SDP Image
Visual Recognition of

Maximum Damage
Region

Quantification of
Area Values/mm2

1.649

Recognition
status Damaged Damaged Damaged Medium

1© The evidence bodies m1 and m2 obtained by the SDP image of the vibration signal
through the VGG16 and ResNet neural network models are respectively as follows:

m1 : m1(A) = 0.005, m1(B) = 0.0260, m1(C) = 0.969

m2 : m2(A) = 0.005, m2(B) = 0.013, m2(C) = 0.982

2© The maximum damage area of the contact surface image obtained by image pro-
cessing is misidentified as 1.65 mm2.
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The damage area data of the specimen obtained in the previous test are shown in
Table 12. It can be seen that the damage area identified by machine vision technology
in the normal, medium and failure state fluctuates in [0, 0.1511 mm2], [0.334932 mm2,
2.38746 mm2] and [3.59476 mm2, 8.29375 mm2], respectively. On this basis, the normal
distribution functions of the three states A, B and C in the identification framework con-
structed by comprehensively considering the median damage area and the coverage rate of
all damage areas are:

XA ∼ N
(
0, 0.12)

XB ∼ N
(
2, 2.90752)

XC ∼ N
(
4.9, 1.52)

Table 12. Damage area statistics table.

Specimen Status Image Number Damage Area/mm2 Median

Normal

1 0 (min)

0

2 0
3 0.1511 (max)

148 0.0894
149 0.0560
150 0.0273

Medium

1 1.58652

1.21317

2 0.361148 (min)
3 2.1244

148 2.38746 (max)
149 0.334932
150 1.57748

Failure

1 8.29375 (max)

4.10303

2 3.59476 (min)
3 3.96178

6 4.327
7 3.71363
8 4.24428

The respective function distributions are shown in Figure 11.

Figure 11. Distribution diagram of normal function of three states.
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Therefore, the normal probability density values corresponding to the three states
when the damage area in the identification frame is 1.65 mm2 are:

fA(1.65) =
1

0.05
√

2π
e−

(x−0)2

2×0.052 = 2.68× 10−236

fB(1.65) =
1

2.905
√

2π
e−

(x−2)2

2×2.9052 = 0.1363

fC(1.65) =
1

1.5
√

2π
e−

(x−4.9)2

2×1.52 = 0.254

The basic probability assignments corresponding to various states in the recognition
framework are:

m(i) = fi(x)/
n

∑
i=1

fi(x) (4)

where x is the damage area; fi(x) is the normal probability density value corresponding to
the i-th state in the identification frame; n is the number of states in the identification frame.

Therefore, the evidence bodies m3 is:

m3 : m3(A) = 0.001, m3(B) = 0.843, m3(C) = 0.156

3© Using the Dempster combination rule of the D-S evidence theory, the decision-level
fusion of the evidence bodies m1, m2 and m3 can be obtained:

m(A) = 0.000, m(B) = 0.0008, m(C) = 0.9992

Therefore, it is determined that the state identification result of the specimen corre-
sponding to this set of data is “failure”.

According to the above method, the contact fatigue state identification of the specimen
is carried out for three states of normal, medium and failure with 100 validation set data
respectively. The results are shown in Table 13.

From an individual case analysis, it can be seen that: 1©When the real state of the
specimen is “0”, although the samples numbered 98, 99 and 100 are wrong to identify the
state of the specimen based on the image signal, the state can be correctly identified by the
vibration and image information fusion method in this paper. 2©When the real state of
the sample is “1”, although the state identification of the specimen based on the vibration
signal of the sample numbered 3 is wrong, and based on the vibration signal VGG16 model
of the sample numbered 98 is also wrong, the state can still be correctly identified by the
vibration and image information fusion method in this paper. 3©When the real state of
the sample is “2”, although the state identification of the specimen based on the vibration
signal ResNet model of the sample numbered 99 is wrong, the state can also be correctly
identified by the vibration and image information fusion method in this paper. It is clear
that the fusion of vibration and image data can achieve information complementation and
can more accurately identify the contact fatigue state of the specimen.

From the overall analysis, it can be seen that: 1© For the state identification of the
specimen based on vibration signal, the accuracy of VGG16 model is 95.33%, while the
accuracy of ResNet model is 91.00%; 2© The state identification of the specimen based on
the image signal has an accuracy rate of 93.33%; 3© Based on the multi-source information
fusion method proposed in this paper, the accuracy of state identification reaches 98.67%,
which is 3.34%, 7.67% and 5.34% higher than that of VGG16 model, ResNet model and
image signal identification, respectively.
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Table 13. State identification results for validation set data.

Sample Number Based on Vibration Signal Based on Image
Signal

Vibration +
IMAGE Real StateVGG16 ResNet

1 0 0 0 0

0

2 0 0 0 0
3 0 0 0 0

98 0 0 1(×) 0
99 0 0 1(×) 0

100 0 0 1(×) 0

1 1 1 1 1

1

2 0(×) 0(×) 1 0(×)
3 0(×) 0(×) 1 1

98 0(×) 1 1 1
99 0(×) 0(×) 1 0(×)

100 2(×) 2(×) 1 2(×)

1 2 2 2 2

2

2 2 2 2 2
3 2 2 2 2

98 2 2 2 2
99 2 1(×) 2 2

100 1(×) 1(×) 2 1(×)

Number of
identification

errors
14 27 20 4 /

Accuracy 95.33% 91.00% 93.33% 98.67% /
Note: “×” represent the recognition state does not match with the actual state.

Therefore, in terms of the contact fatigue state identification of the specimen, whether
from an individual case or an overall analysis, the method in this paper can more accurately
identify the state of the specimen than the method based on a single vibration or image
information source.

The validity of the method proposed in this paper is further verified by the ROC curve
(Receiver Operating Characteristic Curve). The ROC curve takes each detection result as a
possible recognition threshold, calculates the corresponding True Positive Rate (TPR) and
False Positive Rate (FPR) as follows, and the curve drawn with FPR as the abscissa and
TPR as the ordinate [33]. The ideal state should be TPR = 1, FPR = 0, that is, the (0,1) point
in the figure. Therefore, the ROC curve should be as close as possible to the (0,1) point and
deviate from the 45-degree diagonal.

TPR =
TP

TP + FN
(5)

FPR =
FP

TN + FP
(6)

where TP is the number of correct judgments in True, TN is the number of correct judgments
in False; FP is the number of incorrect judgments in True, and FN is the number of incorrect
judgments in False.

The contact fatigue state identification of the specimen is carried out for three states of
normal, medium and failure with 100 validation set data, respectively. The ROC curves are
shown in Figure 12. It is clear that the ROC curve of the method proposed in this paper is
close to the (0,1) point and deviates from the 45-degree diagonal.



Appl. Sci. 2022, 12, 8509 19 of 21

Figure 12. State identification ROC curves for validation set data.

Therefore, it is feasible and effective to use D-S evidence theory to perform decision-
level fusion of state identification results from a single information source of vibration and
image, which improve the accuracy of contact fatigue state identification of the specimen.

4. Conclusions

Most of the state recognition of contact fatigue is based on a single information source
of vibration signal or image signal. However, it is well known that vibration detection has
shortcomings such as poor robustness and difficulty in identifying critical features, while
visual detection has shortcomings such as unstable image quality and being affected by the
test environment. In this paper, a fusion recognition model is proposed, which innovatively
combines the essential information of two different structural types of vibration and
image signals, and realizes the information complementation between vibration and image
signals, so as to improve the accuracy of contact fatigue pattern recognition. Relying
on the monitoring data of the self-developed rolling contact fatigue test equipment, and
comprehensively using multi-source information fusion, pattern recognition, deep learning
as well as other theories and methods, a state recognition network model based on vibration
and image spatiotemporal heterogeneous data is constructed. The contact fatigue state
identification of the specimen is realized. The results show that fusion of vibration and
image data can achieve information complementarity and may identify the contact fatigue
state of specimen more accurately. The accuracy of state identification after fusion is 98.67%,
which is at least 3% higher than that of a single information source. This research is of
great significance for the accurate acquisition of material contact fatigue properties and has
certain reference value for the fusion of heterogeneous data from different sources.
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