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Abstract: Feature selection has been widely used in machine learning and data mining since it can
alleviate the burden of the so-called curse of dimensionality of high-dimensional data. However,
in previous works, researchers have designed feature selection methods with the assumption that
all the information from a data set can be observed. In this paper, we propose unsupervised and
supervised feature selection methods for use with incomplete data, further introducing an L2,1 norm
and a reconstruction error minimization method. Specifically, the proposed feature selection objective
functions take advantage of an indicator matrix reflecting unobserved information in incomplete
data sets, and we present pairwise constraints, minimizing the L2,1-norm-robust loss functionand
performing error reconstruction simultaneously. Furthermore, we derive two alternative iterative
algorithms to effectively optimize the proposed objective functions and the convergence of the
proposed algorithms is proven theoretically. Extensive experimental studies were performed on both
real and synthetic incomplete data sets to demonstrate the performance of the proposed methods.

Keywords: unsupervised feature selection; supervised feature selection; incomplete data; L2,1 norm;
reconstruction error

1. Introduction

Due to the rapid progress in the development of information technology in many fields,
such as pattern recognition, machine learning, computer vision and data mining, data are
usually represented by high-dimensional feature vectors. High-dimensional feature vectors
suffer from a high processing time and large space requirements. In addition, data sets with
high-dimensional representations usually contain noise features, which may degrade the
performance of data mining and pattern recognition tasks. To solve this problem, feature
selection [1–8] techniques have been proposed in order to select feature subsets from
high-dimensional feature vectors to achieve efficient and accurate data representations.

According to the availability of data labels, feature selection algorithms can be roughly
divided into two categories: supervised feature selection (SFS) and unsupervised feature
selection (UFS). SFS [1–3] algorithms identify the relevant features in order to best achieve
the goal of the supervised model, whereas UFS [4–8] algorithms are interpretable, since it
is usually difficult to obtain the labels of samples in practical applications.

In practical applications, it is challenging to analyze an incomplete data set with
unobserved data, such as missing data, although this issueis ubiquitous in industrial
data sets [9,10] and has a significant effect on design methodsin many machine learning,
computer vision, data mining, and pattern recognition applications. Moreover, most
technologies used for data analysis are based on data sets in which all the information can
be observed. Therefore, traditional feature selection methods cannot be directly applied
to incomplete data sets. In recent years, many strategies have been proposed to remove
the influence of missing data by deleting or imputing the unobserved instances, which has
enabled the utilization of existing machine learning techniques [9–12].

An instance-deletion method was proposed for removing the missing instances of
a data set, in which only the unbroken instances are applied in the feature selection
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process. This can cause some useful information from missing instances to be discarded,
which may degrade the data analysis performance. Furthermore, the scale of missing
instances in the incomplete data is usually so large that the instance-deletion method
becomes invalid. Therefore, imputation methods have been proposed to handle these
issues, in which the values of missing instances are estimated using the traditional machine
learning techniques [11,12], such as the K-nearest neighbor technique (KNN). However, in
feature selection with imputation methods, when using all instances, noise or non-useful
information may be introduced;thus, a margin-based feature selection method [13] was
designed without imputing missing values, in which the uncertainty of each instance
was considered.

In this work, the reconstruction of incomplete data is designed as the feature selection
criterion, in which the selected feature approximates the original missing instance by
means of a weigh matrix.Specifically, we propose unsupervised and supervised feature
selection methods for incomplete data by further introducing the L2,1 norm and through
reconstruction error minimization. Specifically, the proposed feature selection objective
functions take advantage of an indicator matrix for the unobserved information relating to
an incomplete data set. We design pairwise constraints, minimizing the L2,1-norm-robust
loss function and performing error reconstruction simultaneously.We further derive an
alternative iterative algorithm to effectively optimize the proposed objective functions
and the convergence of the proposed algorithms is proven theoretically. Consequently,
extensive experimental studies were performed on both real and synthetic incomplete data
sets to demonstrate the performance of the proposed methods.

This paper is organized as follows. In Section 2, we review the related works. Then,
in Section 3, we present the details of our approach, design the pairwise constraints
objection function, optimize the proposed objective functions, and prove the convergence.
Next, in Section 4, we display the results of extensive experimental studies and compare
the performance of our proposed approach with that of other approaches. Finally, Section 5
concludes the paper.

2. Related Work

Several feature selection approaches [1–8] have been introduced in the literature for
complete data in recent years. For incomplete data, there are two strategies that are gener-
ally used for feature selection: one involves deleting or imputing the unobserved instances
to convert the incomplete data set into a complete data set and then performing feature
selection; the other involves directly performing feature selection using the incomplete
data set. In this section, we review the work related to these two strategies and analyze the
differences between them.

2.1. Imputation Methods

A major issue in feature selection using an incomplete data set is that the traditional
methods become invalid. A number of works have addressed this issue and presented
a two-stage method to select features from incomplete data sets, primarily in which the
missing values are imputed or deleted.

A straightforward and simple method of complete case analysis (CCA) was proposed
in [14], in which the samples or features containing missing values are deleted. However,
this in turn becomes invalid when the proportion of missing instances is high and the total
amount is small. Imputation methods are another more intuitive option, and the classic
form of this method is mean imputation. The mean imputation method takes the mean
value of the observed feature values as the estimated value of the missing values [15].
However, this method reduces the uncertainty of features and the variance. Another
imputation method based on statistics is the expectation maximization (EM) imputation
method [16], which uses edge distribution of existing data to conduct maximum likelihood
estimation method for missing data, which is used to obtain the corresponding imputation
value. In recent years, S. Zhang et al. proposed KNN imputation [12], in which the mean



Appl. Sci. 2022, 12, 8752 3 of 21

value of the nearest neighbor samples was taken as the estimated value of the missing value.
An improved k-nearest neighbor imputation method was also proposed to improve the
classification accuracy further and achieve a filling effect [17]. J. Stekhoven et al. proposed
and evaluated an iterative imputation method (missForest) based on random forest, with
the results showing that missForest could successfully handle missing values, particularly
in datasets including different types of variables [18].

Recently, the use of deep learning models has been explored for missing-value impu-
tation [19–22]. Gondara et al. proposed an imputation model based on deep denoising
autoencoders for multiple imputation [19]. A probabilistic framework based on deep gen-
erative models for missing value imputation was proposed in [20]. Mattei et al. proposed
a simple framework for performing approximate maximum likelihood training with an
incomplete data set [21].

However, the results of missing value imputation of unobserved information may
be non-useful or even noisy [23]. The reason for this is that there is no ground truth for
unobserved information, so the correctness of the imputed information cannot be evaluated.

2.2. Unsupervised Feature Selection Methods on Incomplete Data Sets

Since obtaining class label information is difficult in real-world applications, UFS is
one of the dimensionality reduction techniques used to handle high-dimensional data.

UFS methods are usually divided into three categories: filter models, wrapper models,
and embedded models. The filter model [24] first selects the features of the data set and then
trains the classifier, and the feature selection process is independent of the data mining task.
Hence, they usually have a lower computational cost. Lapscore [25] is one of the classical
filtering methods, which independently calculates the score of each feature according to its
ability to retain the internal structure of the original data, and then select the feature with
the highest-ranking score.

The wrapper model [26] does not consider the difference of a specific classifier and
directly takes the performance of the classifier to be used as the evaluation criterion of
the feature subset. In general, the wrapper method can achieve better performance than
the filter method but with high computational cost. LVW (Las Vegas wrapper) is a typical
encapsulated feature selection method. It uses a random strategy to search subsets within
the framework of the Las Vegas method and evaluates feature subsets based on the error of
the final classifier.

The embedded model [27] integrates feature selection into the learning model. Since
there is no need to evaluate feature subsets, they are more efficient than the wrapper
approach. Therefore, many representative embedded methods have emerged continuously.
For example, the general framework for sparsity regularization (GSR) [28] is a general
sparse embedding model, which can simultaneously perform feature selection and reduce
outliers through parameter adjustment. Robust feature selection (RFS) [29] is another
typical embedded model of feature selection. The method has proven its effectiveness in
reducing the influence of outliers. Regularized self-representation (RSR) [8] is a framework
in which every feature is reconstructed from all features using self-representation, and
features are selected using L2,1-norm regularization.

The authors of [30] present a method of multicriteria-based feature selection in cost-
sensitive data with missing values, using a rough set theory to deal with unobserved
information. Shen proposed the HQ-UFS method, whichcan be directly applied to incom-
plete data sets [23]. The index matrix is used to filter the unobserved information, and the
half-quadratic minimization technique is used to make the weight of outliers negligible or
even zero, whereas the weight of essential samples is more prominent, thereby reducing the
influence of outliers. In [31], an L2,1-norm minimization method for UFS from incomplete
data was proposed, with the authors showing that the proposed algorithm can select more
accurate features from a large data set and showing an improved clustering effect.
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2.3. Supervised Feature Selection Methods on Incomplete Data Sets

In recent years, some researchers have considered the use of SFS on incomplete
data sets without preprocessing missing values. Similarly to the use of UFS methods on
incomplete data sets, SFS would also require some imputation methods to be implemented
prior to the application of existing SFS methods, such as Simba [32] and Relief [33]. In [34],
a method for modeling multivariate spatio-temporal data was presented, in which the
missing values are estimated first, and then the feature selection procedure is applied. Lou
proposed the SID (margin-based feature selection in incomplete data) feature selection
algorithm [13]. Due to the uncertainty of the neighbor relationship caused by the missing
data, the SID algorithm does not aim to determine the neighbors but to calculate the
probability that all samples are the neighbors of a specific sample and replaces the class
margin with the expectation of the class margin. Through experiments, it was shown that
the SID algorithm could filter out more irrelevant features compared with feature selection
based on standard preprocessing imputation methods.

However, the SID algorithm does not solve the problem that the distance between
samples cannot be calculated due to missing data. On the other hand, when calculating the
class margin for a sample, SID only considers the samples of which the observable features
include the observable features of the sample. This, in turn, can cause the actual nearest
neighbor samples to be ignored, resulting in inaccurate class margin calculations.

Recently, several classification methods have been proposed to deal with incomplete
data sets directly, without estimating the missing values in advance. Samples are treated as
sets of pairs in order to naturally process the incomplete data set [35]. In [36], a general-
ization of the RBF (radial basis function) kernel approach to the case of missing data was
proposed. The authors in [37] adapted a CNN architecture to incomplete images, taking
the uncertainty contained in missing pixels into account. However, these are all classifica-
tion approaches, rather than SFS approaches. They are not suitable for high-dimensional
data with a large number of irrelevant features. In contrast, in our proposed approach
we directly integrate feature selection with unobserved information, instead of estimating
missing values.

3. Approach
3.1. Notations and Definitions

In this article, we use italic uppercase letters, bold italic lowercase letters, and normal
lowercase letters, respectively, to denote matrices, vectors, and scalars. Let X ∈ Rn×d be the
incomplete data set with n instances and d features. The scalar xij is denoted as the ith row
and jth column of X, where i = 1, · · · , n j = 1, · · · , d. Tr(X)denotes the trace of matrix X if
X is square, and XT denotes the transpose of X.

Let I be the index matrix indicating whether the information in X is complete or not.
Specifically, Iij is defined as

Iij =

{
1, when xij is observed
0, when xij is unobserved

. (1)

The L2,1 norm of the matrix X is defined as follows:

‖X‖2,1 = ∑
i

√
∑
j

x2
ij. (2)

Table 1 shows a list of frequently used parameters throughout this paper, along with
their short definitions.
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Table 1. The notations used in this article.

Notation Definition

X ∈ Rn×d Incomplete data set of n instances and d features

Y ∈ Rn×c The label set c is the total number of classes

I ∈ Rn×d The index matrix indicating whether the information in X is complete or not

W ∈ Rd×d The feature weight coefficient matrix

V ∈ Rn×n The reconstruction weight matrix

‖.‖F Frobenius norm of a matrix

‖.‖2,1 L2,1 norm of a matrix

‖.‖2 L2 norm of a function

◦ Hadamard product

3.2. L2,1-Norm Minimization UFS for Incomplete Data
3.2.1. The Basic Unsupervised Feature Selection Method

Assume that X ∈ Rn×d denotes the data matrix; each row and column of X represent
an instance and one feature dimension, respectively. The general UFS framework based on
sparse learning can be formulated as (3)

min
W
‖X− XW‖F + λ‖W‖2,1, (3)

where W ∈ Rd×d is the feature weight coefficient matrix, λ is a nonnegative tuning
parameter, ‖·‖F is the Frobenius norm, and ‖X− XW‖F is the loss term. ‖W‖2,1 is a L2,1-
norm-sparseregularizer that eliminates unimportant features by automatically assigning
the corresponding rows with a zero-value weight coefficient W, and λ is a nonnegative
tuning parameter used to control the sparsity of the feature weight coefficient matrix W.

To handle the influence of outliers, the Frobenius norm in (3) is replaced with a robust
loss function—the L2,1 norm [29] , then the UFS framework is changed into (4).

min
W
‖X− XW‖2,1 + λ‖W‖2,1. (4)

To preserve the statistical properties of the data, the reconstruction error function
between each instance and a linear combination of its important neighbors has been
proposed with simultaneous feature selection in [38]. This optimization problem can be
represented as

min
W,VT1=1

‖X− XW‖2,1 + γ‖X−VX‖2,1 + λ‖W‖2,1. (5)

where V ∈ Rn×n is the reconstruction weight matrix and γ is a nonnegative tuning parameter.

3.2.2. The Objection Function of UFS on Incomplete Data

In this paper, to enhance the robustness of the reconstruction error of data points and
select the discriminative features, we apply the L2,1-norm loss function and a reconstruction
error term. More specifically, in the incomplete data set, instance xi is only reconstructed
by a few important neighbors, rather than being reconstructed by all the instances (as
illustrated in Figure 1).
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Figure 1. Instance xi is only reconstructed by a few important neighbors in an incomplete data set,
rather than being reconstructed by all the instances.

Based on the observed cases in which each instance has a different missing value in
an incomplete data set, we cannot apply an optimization algorithm to obtain the weight
matrices W and V. In order to take into account the observed information in an incomplete
data set, the indicator matrix I is employed. To minimize the reconstruction error and the
residual loss term and to preserve the incomplete data manifold structure, we can express
the problem as follows:

min
W,V

‖I ◦ (X− XW)‖2,1 + γ‖I ◦ (X−VX)‖2,1 + β ∑
i,j

vij
∥∥Ii ◦ (xiW)−Ij ◦ (xjW)

∥∥2
2 + λ‖W‖2,1, (6)

where ◦ is the Hadamard product, which enables us to formulate the objective function of
the proposed unsupervised feature selection for incomplete data (UFS-ID) method.The first
term in problem (6) is used to minimize the loss function of W and the second term is used
to minimize the reconstruction error of data instances. To preserve the incomplete data
structure, the third term, for structure embedding,is added into the problem (6), and the
fourth term of problem (6) is used to force the matrix W to havesparsity and robustness.
Since these four terms of the objective function in (6) are related to each other, they can
jointly improve the performance of feature selection in an incomplete data set.

Remark 1. λ is a nonnegative tuning parameter used to control the sparsity of the feature weight
coefficient matrix W, β is a nonnegative tuning parameter used to balance the structure embedding
in the problem (6), and γ is a nonnegative parameter used to control the reconstruction error of
data instances. In our experiments, we observed that the results of the proposed approach were
sensitive to the regularization parameters γ, β, and λ, so these parameters were all tuned in the grid
{10−3, 10−2, 10−1, 1, 10, 102, 103} in our experiments.

3.2.3. Optimization of Objective Function

Solving Equation (6) is challenging, because it introduces two variables, V and W.
We thus solve the problem by means of an alternative optimization strategy, alternatively
optimizing the two variables V and W.

(1) Update W by Fixing V
Before updating W, to derive the optimization of the objective function, we must first

make the following observation about the L2,1 norm based on algebraic theory:

‖W‖2,1 =
d
∑

i=1
‖wi‖2 = Tr(WTWQ) = Tr(WTQW)

where Q is a diagonal matrix, of which the i-th element is defined as qi,i =
1

2‖wi‖2
.

Let B = I ◦ X; when V is fixed, (6) is simplified into (7):

min
W

Tr
(
(B− I ◦ (XW))TR(B− I ◦ (XW))

)
+ 2βTr

(
WTHW

)
+ λTr

(
WTQW

)
(7)

where R and Q indicate a diagonal matrix, of which the i-th element is defined as

ri,i =
1

2‖(B−I◦(XW))i‖2
, (8)
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qi,i =
1

2‖wi‖2
, (9)

and H = (I ◦X)Hv(I ◦ X)T , Hv = Dv− V+VT

2 is the Laplacian matrix. Dv is also a diagonal

matrix, of which the i-th element is ∑
j

vi,j+vj,i
2 .

By taking the derivative of problem (7) with respect to W and setting it to zero, we have

−XT(I ◦ RB) + (I ◦ X)TRXW + 2βHW + λQW = 0. (10)

Hence, we obtain the following solution of W:

W = ((I ◦ X)TRX + 2βH + λQ)−1XT(I ◦ RB)
. (11)

(2) Update V by Fixing W
When W is fixed, problem (6) becomes

min
V

γTr
(
(B− I ◦ (VX))TG(B− I ◦ (VX))

)
+ βFWV. (12)

where G is a diagonal matrix, of which the i-th element is defined as

gi,i =
1

2‖(B−I◦(VX))i‖2
, (13)

and the (i, j)-th entry of matrix FW is
∥∥xiW− xjW

∥∥2
2.

The derivative of (12) with respect to V is

−2γXT(I ◦GB) + 2γ(I ◦ X)TGVX + βFW = 0. (14)

Hence, the solution of V is

V = ((I ◦ X)TG)−1(XT(I ◦GB)− 1
2γ βFW)X−1. (15)

We summarize the detailed UFS-ID optimization approach in Algorithm 1.

Algorithm 1 Proposed Algorithm for Optimizing (6)

Input: Incomplete dataset X ∈ Rn×d, regularization parameter λ, γ, β, λ and feature
selection number k.
output: W ∈ Rd×d, V ∈ Rn×n.
(1) Initialize W, V, R.
(2) After setting different missing ratios, calculate the indicator matrix I according to (1).
(3) Calculate B = I ◦ X.
(4) Fixed V, calculated W according to (11).
(5) Fixed W, calculated V according to (15).
(6) Repeat steps (4) and (5) until convergence.
(7) Use the calculated results W to select the features.

3.2.4. Convergence Analysis

To prove the convergence of the proposed algorithm, we need the following lemma [29].

Lemma 1. For any integers p, q, the following inequality is always true:

√
p− p

2
√

q ≤
√

q− q
2
√

q . (16)

The convergence of the Algorithm 1 is summarized in the following theorem.
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Theorem 1. The objective function value in problem (6) monotonically decreases until convergence
by updating matrix W in Algorithm 1.

Proof. For convenience, we define

ρ(W) = ‖I ◦ (X− XW)‖2,1 + γ‖I ◦ (V−VX)‖2,1 + β ∑
i,j

vi,j
∥∥Ii ◦ (xiw)− Ij ◦ (xjw)

∥∥2
2

W̃ is denoted as the updated W, since W becomes smaller in each iteration and, in the
light of L2,1-norm minimization [29], we have

d
∑

j=1

∥∥w̃j
∥∥2

2 6
d
∑

j=1

∥∥wj
∥∥2

2. (17)

and

ρ(W̃) + λ
d
∑

j=1

‖w̃j‖2
2

2‖wj‖2
6 ρ(W̃) + λ

d
∑

j=1

‖wj‖2
2

2‖wj‖2
. (18)

According to Lemma 1, we obtain

∥∥w̃j
∥∥

2 −
‖w̃j‖2

2
2‖wj‖2

6
∥∥wj

∥∥
2 −
‖wj‖2

2
2‖wj‖2

. (19)

by combining (18) with (19), we have

ρ(W̃) + λ
d
∑

j=1

∥∥w̃j
∥∥

2 6 ρ(W) + λ
d
∑

j=1

∥∥wj
∥∥

2. (20)

Thus, according to the inequalities above, we achieve

ρ(W̃) + λ
∥∥∥W̃

∥∥∥
2,1

6 ρ(W) + λ‖W‖2,1. (21)

This states that the objective function monotonically decreases by updating w in each
iteration.

3.3. Supervised Feature Selection for Incomplete Data
3.3.1. The Basic Supervised Feature Selection Method

The difference between the method described in this sectionand the unsupervised
method is that the data set used in this section has a label set Y ∈ Rn×c, where c is the
total number of classes in the data set. Recently, structured sparsity has been used for
classification-based feature selection, and structured sparsity has been efficiently applied to
the selection of useful features, such as LASSO.

With regards to traditional ridge regression, instead of applying the squared L2-norm
regularization, the supervised feature selection methods can be formulated by imposing
L2,1-norm regularization :

min
W
‖Y− XW‖2

F + λ‖W‖2,1, (22)

where W ∈ Rd×c is the projection matrix and the Frobenius norm of A ∈ Ru×v is ‖A‖F =(
u
∑

i=1

v
∑

j=1
a2

ij

) 1
2

.
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In this paper, we further focus on some important features that are only correlated to a
subset of classes. Since the L2,1 norm cannot handle these cases properly, the supervised
feature selection framework can be formulated by adding an L1-norm regularizer:

min
W
‖Y− XW‖2

F + λ‖W‖2,1 + γ‖W‖1. (23)

3.3.2. The Objection Function of Supervised Feature Selection on Incomplete Data

In this section, by virtue of the proposed UFS approach with the reconstruction error
and robust loss function, a supervised feature selection approach based on a reconstruction
model L2,1 norm and an L1-norm regularizer is imposed to minimize the loss term error
and the reconstruction error.

Similarly to the UFS approach, the indicator matrix I is imposed to prevent unob-
served information from interfering with the feature selection process.We propose a novel
supervised feature selection approach for incomplete data set via the following objective
function, namely, supervised feature selection for incomplete data (SFS-ID):

min
W,V
‖Y− (I ◦VX)W‖2

F + λ‖W‖2,1 + γ‖W‖1, (24)

where V ∈ Rn×n is the reconstruction weight matrix, which can be used to measure the
degrees of contribution of the classes in order to reconstruct each instance in an incomplete
data set. The first term of problem (24) is used to minimize the reconstruction error between
the value of the class and a linear combination of its selected features after projection for an
incomplete data set. The second and third items are used to impose the weight matrix W to
ensure sparseness for the supervised feature selection process.

Note that the last two items of problem (24) are included to ensure that the weight
matrix W has both robustness and sparsity, because the robustness loss is smoothly inter-
polated between L2,1 and the Frobenius norm, which can respectively prevent excessive
overfitting and obtain sparsity for effective feature selection. Since the four components of
the objective function in (24) are interrelated, they can jointly improve the performance of
feature selection in incomplete data sets.

3.3.3. Optimization of Objective Function

In this section, we present the optimization of the above objective function. Al-
though the above objective function is convex, solving problem (24) is still difficult, be-
cause the two regularization terms are non-smooth and the two variables W and V need to
be optimized simultaneously. We propose an efficient algorithm to solve this problem by
alternatively optimizing variables W and V, respectively.

(1) Update W by Fixing V
Let B = I ◦VX; thus, the problem (24) becomes

min
W
‖Y− BW‖2

F + λTr(WTQW) + γ‖W‖1. (25)

Taking the derivative of problem (25) with respect to W by setting (26) to zero, we have

BTBwi − BTyi + λQwi + γZiwi = 0, (26)

where Zi (i = 1, · · · c) is a diagonal matrix, of which the k-th element is denoted by 1
2|wki |

,

where Q is a diagonal matrix qi,i =
1

2‖(w)i‖2
.

Hence, we can obtain the solution of W :

wi = (BTB + λQ + γZi)
−1BTyi. (27)
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(2) Update V by Fixing W
When W is fixed, problem (24) becomes

min
V
‖Y− (I ◦VX)W‖2

F. (28)

Furthermore, according to the Frobenius norm framework, (27) can be rewritten as

min
V

Tr(YTY− 2IT ◦ (VX)TWTY) + Tr((IT ◦ (VX)T)WTW((VX) ◦ I)). (29)

By taking the derivative of problem (28) with respect to V and setting it to zero, we have

−2(I ◦ X)TWTY + 2(I ◦ X)TWTW(VX) = 0. (30)

Hence, we can obtain the solution of V :

V = W−1YX−1. (31)

Based on the above derivation, the whole SFS-ID procedure for optimizing the
problem (24) is summarized in Algorithm 2.

Algorithm 2 Proposed Algorithm for Optimizing (24)

Input: Incomplete dataset X ∈ Rn×d, Y ∈ Rn×c, regularization parameter λ, γ.
output: W ∈ Rd×c.
(1) Initialize W, Q, Zi, V.
(2) After setting different missing ratios, calculate the indicator matrix I.
(3) Calculate B = I ◦VX.
(4) Fixed V, the optimal W is formed by (27).
(5) Fixed W, Calculate the diagonal matrix V according to (31).
(6) Repeat steps (3)–(5) until convergence.
(7) Use the calculated results W to select the features.

3.3.4. Convergence Analysis

The convergence of the Algorithm 2 is summarized in the following theorem.

Theorem 2. The objective function value in problem (24) monotonically decreases until convergence
by updating matrix W in Algorithm 2.

Proof. For convenience, we define

κ(W) = Tr((Y− BW)T(Y− BW)). (32)

In addition, the updated W is defined by W̃; according to Algorithm 2, we have

W̃ = min
W

κ(W) + λTr(WTQW) + γ
c
∑

i=1
wT

i Ziwi. (33)

Since W becomes smaller in each iteration, we have

κ(W̃) + λTr(W̃TQ̃W̃) + γ
c

∑
i=1

w̃T
i Z̃iw̃i 6 κ(W) + λTr(WTQW) + γ

c

∑
i=1

wT
i Ziwi, (34)

where Q̃ and Z̃i is the function of w̃i. According to this analysis, we obtain
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κ(W̃) + λ
d

∑
i=1

(
‖w̃i‖2

2
2‖wi‖

− ‖w̃i‖2 + ‖w̃i‖2

)
+ γ

d

∑
i=1

c

∑
j=1

(
(w̃ij)

2

2
∥∥wij

∥∥ − ∥∥w̃ij
∥∥+ ∥∥w̃ij

∥∥)

6 κ(W) + λ
d

∑
i=1

(
‖wi‖2 +

‖wi‖2
2

2‖wi‖2
− ‖wi‖2

)
+ γ

d

∑
i=1

c

∑
j=1

(∥∥wij
∥∥+ (wij)

2

2
∥∥w̃ij

∥∥ − ∥∥wij
∥∥). (35)

According to Lemma 1, for any vector w and w̃, we obtain

‖w‖2 −
‖w‖2

2
2‖w̃‖2

6 ‖w̃‖2 −
‖w̃‖2

2
2‖w̃‖2

. (36)

Furthermore, by combining the two inequalities above, we have

κ(W̃) + λ
d

∑
i=1
‖w̃i‖2+γ

d

∑
i=1

c

∑
j=1

∥∥w̃ij
∥∥ 6 κ(W) + λ

d

∑
i=1
‖wi‖2 + γ

d

∑
i=1

c

∑
j=1

∥∥wij
∥∥. (37)

which shows that the objective function decreases monotonically by updating W in each
iteration.

4. Experiment and Result Analysis

In this section, we describe the exhaustive numerical experiments conducted on incom-
plete data sets to validate the effectiveness of the proposed UFS-ID and SFS-ID methods.

4.1. Unsupervised Feature Selection
4.1.1. Evaluation Metrics

We compared the clustering performance of our UFS-ID method with that of compet-
ing approaches on five incomplete data sets. Similarly to previous works, we evaluated
the performance of UFS methods using two extensively employed evaluation metrics:
clustering accuracy (ACC) and normalized mutual information (NMI). ACC denotes the
percentage of samples that are correctly classified, and it can be computed as follows:

ACC = nc
n , (38)

where n is the number of instances and nc denotes the number of correctly clustered
instances. Hence, a larger ACC indicates better performance.

NMI expresses the correlation between the predicted labels and the real labels, that is,

NMI =

c
∑

k1=1

c
∑

k2=1
nCk1

∩Ck2
log(

nCk1
∩Ck2

nk1
nk2

)√
c
∑

k1=1
nk1

log(
nk1

n )

√
c
∑

k2=1
nk2

log(
nk2

n )

, (39)

where nk1 is the number of instances in the cluster Ck1 , nk2 is the number of instances in the
cluster Ck2 , and nCk1

∩Ck2
denotes the number of instances in the Ck1 ∩ Ck2 set.

All experiments were carried out on a PC installed with Matlab2019a, Intel Core i7-8750H
CPU, and 16-GB RAM. We adopted the tenfold cross-validation scheme, and the number of
clusters in the k-means clustering was set to the absolute number of classes in the data set.

The parameters used in the comparison schemes were consistent with the correspond-
ing literature and the regularization parameters γ, β, and λ were all tuned in the grid
10−3, 10−2, 10−1, 1, 10, 102, 103 in our experiments.

Moreover, in our experiments, paired-sample t-tests (at the 95% significance level) be-
tween our UFS-ID method and competing UFS methods were adopted in terms of ACC and
NMI. Specifically, the symbols “*” and “**” denote that our UFS-ID method had statistically
significant differences with p < 0.05 and p < 0.001, respectively, in the paired-sample t-tests
at the 95% significance level compared with the other competing UFS methods.
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4.1.2. Dataset

Five real data sets were used in our experiments https://archive.ics.uci.edu/ml/
datasets.php (accessed on 1 January 2021), including CNAE, cifar, connect-4, vehicle, and
USPSt. Detailed information on the data sets is provided in Table 2.

Table 2. Summarization of used data sets.

Dataset Instance Feature Class

CANE 1080 856 9
cifar 60,000 3072 10

connect-4 67,557 126 3
vehicle 78,823 126 3
USPSt 2007 256 10

In this work, we defined the incomplete instance ratio as the percentage of incomplete
instances out of the total number of samples. To determine the incomplete instance ratio,
we randomly marked a portion of the observed information as unobserved information,
setting the incomplete instance ratio within a range of 0% to 90%, increasing at an interval
of 10%.

4.1.3. Comparison Schemes

For convenience, the incomplete data set was divided into two parts, i.e., the incom-
plete set (IS), containing all incomplete instances, and the observed set (OS), containing
all observed instances. To verify the effectiveness of the proposed UFS-ID method, we
compared it with the following competing UFS methods for incomplete data sets:

• For the baseline, we used the k-means clustering algorithm with all features of OS.
• Lapscore [25] is a filter method that evaluates the importance of each feature based on

its Laplacian score. It selects features of the OS.
• GSR [28] is a general framework which unifies a sparse embedding model and feature

selection together. It selects features of the OS.
• RFS [29] is another typical embedded model of feature selection which has proven its

effectiveness in reducing the influence of outliers. It selects features of the OS.
• GSR_mean is an imputation feature selection framework, which uses the mean-value

imputation method [15] on the IS, and selects feature from the union of the IS and OS
using GSR.

• GSR_KNN is imputation feature selection framework, which uses KNN imputation
method [12] on the IS, and selects features from the union of the IS and OS using GSR.

• GSR_missForest [18] is an iterative imputation framework based on random forest on
the IS, which selects features from the union of the IS and OS using GSR.

• GSR_DGM [20] is a probabilistic framework based on deep generative models for
missing value imputation on the IS, which selects features from the union of the IS
and OS using GSR.

• GSR_MIWAE [21] is an importance-weighted autoencoder framework, which max-
imizes a potentially tight lower bound of the log-likelihood on the IS, and selects
features from the union of the IS and OS using GSR.

• HQ-UFS [23] is a framework for incomplete data sets, in which the half-quadratic
minimization technique is used to make the weight of outliers more negligible or
even zero and reducing the influence of outliers. It selects features directly from the
incomplete data set.

4.1.4. Experimental Results

Firstly, we compared our UFS-ID method with three popular types of missing data
values, i.e., completely at random, at random (conditioned on values in another randomly
chosen column, being in a random interval) or not at random (conditioned on values to be

https://archive.ics.uci.edu/ml/datasets.php
https://archive.ics.uci.edu/ml/datasets.php
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missed). In these experiments, we used the CANE data set to evaluate the effectiveness
of different types of data values missed. In Figure 2 the relative ACC is shown in a given
condition. From the figure, we can obviously see that our method worked well in respect to
the three popular types of data values missed, even in the difficult missing-not-at-random
condition. Furthermore, our UFS-ID method with the non-random-type dataachieved better
performance compared to other two types. For convenience, completely random-type data
were adopted for use in the subsequent experiments.
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Figure 2. Comparison of ACC performance across the CANE data set with three varying types of
missing data values.

Secondly, we selected features with different incomplete instances ratios (i.e., 0, 10%,
30%, 50%, 70%, 90%) to perform clustering tasks, and the clustering results were obtained,
as shown in Table 3. The best results are denoted in bold in the table.

Based on the results shown in Table 3, we concluded that our UFS-ID approach
achieved the best clustering performance compared to other competing UFS methods
on incomplete data. In addition, the clustering results of our UFS-ID approach were
statistically significantly better than those of all comparison methods in term of ACC and
NMI. In particular, it can easily be verified from the table that the performance of the UFS-
ID approach represented a great improvement in the large and small incomplete data set.
Through further analysis of the experiment results, we can draw the following conclusions.

(1) As the incomplete instance ratio increased, the performance of all schemes dropped
sharply. For instance, on the cifar data set, the ACC of all schemes dropped by 1.31% on
average at a ratio of 0.1, compared with a ratio of 0.9. In addition, on the vehicle data
set, the ACC of all schemes dropped by 5.41% on average at a ratio of 0.1, compared
with a ratio of 0.9. It also can be verified that most of the schemes achieved the best
performance with small ratios, showing that the number of complete instances played
an important role in those feature selection schemes.

(2) The performance of our UFS-ID approach was similar to that of imputation and HQ-
UFS approaches. It achieves better performance compared with other traditional
feature selection approaches on the OSs of incomplete data sets. For example, on
the USPSt data set, the UFS-ID approach achieved around 3.0% and 5.5% improve-
ments at the ratios of 0.1 and 0.9, compared with RFS. This indicates that the more
information is employed for the imputation, the more similar is the performance of
HQ-UFS and UFS-ID.

(3) The performance of GSR_knn, GSR_mean, GSR_missForest, GSR_DGM, GSR_MIWAE,
and HQ-UFS was worse than that of our UFS-ID method. The reason for this is that
UFS-ID utilizes neighbor data reconstruction information to improve the incomplete
data structure for the selection of discriminative features, whereas other approaches
do not add the information derived from neighbor data.
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Table 3. ACC and NMI results for different data sets obtained by all approaches at different instance miss rates. The bold numbers denote the best results for the
entire row for the same evaluation metric. Specifically, the symbols “*” and “**” indicate that our UFS-ID method had significantly different outcomes with p < 0.05
and p < 0.001 on the paired-sample t-test at the 95% significance level, compared with other competing methods.

Dataset Ratio Baseline LapScore GSR RFS GSR_mean GSR_knn GSR_missForest GSR_DGM GSR_MIWAE HQ-UFS UFS-ID

ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI

CNAE

0 48.1 ∗∗

±2.5
41.5 ∗∗

±2.5
49.9 ∗∗

±2.5
41.9 ∗∗

±2.2
48.7 ∗∗

±3.0
42.1 ∗∗

±2.4
54.6 ∗∗

±2.1
46.6 ∗∗

±1.7
46.4 ∗∗

±2.6
40.5 ∗∗

±2.2
49.3 ∗∗

±2.5
41.7 ∗∗

±2.2
51.2 ∗∗

±2.0
43.5 ∗∗

±1.9
52.6 ∗∗

±2.2
44.1 ∗∗

±1.7
54.7 ∗∗

±3.0
48.7 ∗∗

±3.2
55.7 ∗∗

±3.1
48.9 ∗∗

±2.9
58.8
±2.9

54.9
±3.0

0.1 46.4 ∗∗

±3.0
37.7 ∗∗

±2.3
49.1 ∗∗

±3.0
40.6 ∗∗

±2.9
50.3 ∗∗

±2.2
43.3 ∗∗

±2.1
55.7 ∗∗

±2.0
47.4 ∗∗

±2.8
49.4 ∗∗

±1.5
41.4 ∗∗

±2.2
50.7 ∗∗

±2.1
40.9 ∗∗

±2.1
57.2 ∗∗

±2.5
47.2 ∗∗

±1.8
57.5 ∗∗

±1.6
47.1 ∗∗

±1.9
58.7 ∗∗

±2.4
48.2 ∗∗

±2.0
58.1 ∗∗

±1.9
48.3 ∗∗

±2.6
63.1
±2.3

55.8
±2.3

0.3 45.4 ∗∗

±3.0
37.2 ∗∗

±2.2
45.9 ∗∗

±1.9
39.9 ∗∗

±1.9
52.2 ∗∗

±2.0
45.4 ∗∗

±2.1
60.1 ∗∗

±3.2
52.9 ∗∗

±2.8
48.8 ∗∗

±3.6
43.0 ∗∗

±2.8
53.1 ∗∗

±2.8
44.3 ∗∗

±1.5
58.2 ∗∗

±3.1
51.4 ∗∗

±2.8
59.4 ∗∗

±2.3
52.0 ∗∗

±2.9
61.0 ∗∗

±2.2
53.2 ∗∗

±2.5
61.2 ∗∗

±3.5
53.6 ∗∗

±2.6
63.9
±2.6

58.8
±3.3

0.5 37.4 ∗∗

±1.6
30.8 ∗∗

±1.7
52.1 ∗∗

±3.6
44.2 ∗∗

±3.7
49.1 ∗∗

±3.8
42.1 ∗∗

±3.5
55.4 ∗∗

±3.3
47.5 ∗∗

±2.5
42.6 ∗∗

±3.8
35.6 ∗∗

±0.3
45.3 ∗∗

±3.7
37.6 ∗∗

±3.1
55.2 ∗∗

±3.2
46.2 ∗∗

±2.8
55.4 ∗∗

±3.3
47.0 ∗∗

±2.3
56.0 ∗∗

±3.1
47.2 ∗∗

±3.5
56.8 ∗∗

±3.5
48.0 ∗∗

±3.3
57.6
±3.1

51.4
±2.9

0.7 43.2 ∗∗

±3.6
36.3 ∗∗

±3.3
49.8 ∗∗

±2.8
42.5 ∗∗

±2.4
44.1 ∗∗

±3.3
39.5 ∗∗

±3.5
54.4 ∗∗

±3.1
47.8 ∗∗

±3.0
43.4 ∗∗

±0.8
33.6 ∗∗

±0.2
46.1 ∗∗

±1.8
38.1 ∗∗

±0.8
53.2 ∗∗

±3.1
45.2 ∗∗

±1.9
53.4 ∗∗

±2.4
45.5 ∗∗

±3.1
54.0 ∗∗

±3.2
46.2 ∗∗

±2.3
54.2 ∗∗

±4.2
46.8 ∗∗

±3.9
58.9
±3.4

53.5
±3.7

0.9 42.2 ∗∗

±2.1
39.5 ∗∗

±2.0
45.1 ∗∗

±2.0
44.4 ∗∗

±2.1
45.2 ∗∗

±2.9
42.3 ∗∗

±2.6
53.6 ∗∗

±3.2
51.9 ∗∗

±3.0
45.4 ∗∗

±1.1
37.4 ∗∗

±2.8
45.9 ∗∗

±3.0
37.2 ∗∗

±2.9
52.1 ∗∗

±2.1
47.2 ∗∗

±2.5
53.1 ∗∗

±2.1
47.4 ∗∗

±2.1
54.1 ∗∗

±2.2
48.2 ∗∗

±1.9
54.6 ∗∗

±2.2
48.8 ∗∗

±2.1
55.6
±2.3

55.9
±1.7

cifar

0 21.2 ∗∗

±0.2
7.4 ∗∗

±0.1
18.6 ∗∗

±0.2
4.8 ∗∗

±0.1
19.2 ∗∗

±0.3
7.1 ∗∗

±0.1
18.7 ∗∗

±0.2
5.1 ∗∗

±0.1
19.3 ∗∗

±0.1
6.8 ∗∗

±0.3
19.8 ∗∗

±0.2
7.5 ∗∗

±0.1
18.6 ∗∗

±0.1
7.4 ∗∗

±0.2
18.4 ∗∗

±0.1
7.4 ∗∗

±0.1
19.0 ∗∗

±0.2
7.2 ∗∗

±0.1
21.3 ∗∗

±0.4
8.1 ∗∗

±0.1
24.2
±0.3

11.1
±0.2

0.1 21.3 ∗∗

±0.2
7.5 ∗∗

±0.1
18.5 ∗∗

±0.3
4.7 ∗∗

±0.1
19.8 ∗∗

±0.5
6.7 ∗∗

±0.2
18.5 ∗∗

±0.2
4.9 ∗∗

±0.1
20.9 ∗∗

±0.4
7.2 ∗∗

±0.2
21.3 ∗∗

±0.2
8.1 ∗∗

±0.1
20.3 ∗∗

±0.1
8.2 ∗∗

±0.1
21.5 ∗∗

±0.2
8.4 ∗∗

±0.1
21.6 ∗∗

±0.2
8.5 ∗∗

±0.2
21.7 ∗∗

±0.2
8.4 ∗∗

±0.2
23.4
±0.2

10.1
±0.2

0.3 20.7 ∗∗

±0.1
7.7 ∗∗

±0.1
17.2 ∗∗

±0.2
7.8 ∗∗

±0.1
21.4 ∗∗

±0.1
7.7 ∗∗

±0.1
18.4 ∗∗

±0.2
5.1 ∗∗

±0.1
21.2 ∗∗

±0.1
7.5 ∗∗

±0.1
21.7 ∗∗

±0.4
7.3 ∗∗

±0.1
20.8 ∗∗

±0.1
7.2 ∗∗

±0.2
21.1 ∗∗

±0.1
7.8 ∗∗

±0.1
21.5 ∗∗

±0.2
7.7 ∗∗

±0.1
21.6 ∗∗

±0.2
7.8 ∗∗

±0.2
22.7
±0.1

11.5
±0.2

0.5 20.4 ∗∗

±0.2
7.1 ∗∗

±0.2
17.7 ∗∗

±0.1
4.9 ∗∗

±0.1
21.2 ∗∗

±0.3
7.4 ∗∗

±0.3
17.9 ∗∗

±0.1
6.3 ∗∗

±0.3
20.3 ∗∗

±0.3
7.1 ∗∗

±0.3
20.8 ∗∗

±0.2
7.8 ∗∗

±0.1
20.5 ∗∗

±0.1
7.4 ∗∗

±0.2
20.7 ∗∗

±0.1
7.6 ∗∗

±0.1
21.1 ∗∗

±0.1
7.7 ∗∗

±0.2
21.3 ∗∗

±0.1
7.6 ∗∗

±0.1
22.4
±0.2

12.9
±0.2

0.7 19.9 ∗∗

±0.3
6.1 ∗∗

±0.1
18.3 ∗∗

±0.3
4.2 ∗∗

±0.4
20.1 ∗∗

±0.1
6.5 ∗∗

±0.1
17.4 ∗∗

±0.2
6.2 ∗∗

±0.3
20.3 ∗∗

±0.3
6.2 ∗∗

±0.5
20.5 ∗∗

±0.2
6.7 ∗

±0.4
20.7 ∗∗

±0.1
6.8 ∗∗

±0.2
20.7 ∗∗

±0.2
6.6 ∗∗

±0.2
20.9 ∗∗

±0.1
6.8 ∗∗

±0.1
20.8 ∗∗

±0.4
6.8 ∗∗

±0.3
21.8
±0.1

12.1
±0.3

0.9 18.8
±0.7

5.9 ∗∗

±0.4
17.1 ∗∗

±0.1
3.6 ∗∗

±0.2
19.5 ∗∗

±0.7
6.0 ∗∗

±0.4
17.1 ∗∗

±0.6
4.3 ∗∗

±0.5
20.1 ∗∗

±0.6
6.2 ∗∗

±0.2
20.4 ∗∗

±0.4
6.3 ∗∗

±0.2
19.8 ∗∗

±0.1
6.0
±0.4

20.1 ∗∗

±0.2
6.1
±0.3

19.7 ∗∗

±0.2
6.0
±0.3

20.3 ∗∗

±0.1
6.3 ∗∗

±0.3
21.3
±0.3

11.5
±0.2

connect-4

0 37.6 ∗∗

±0.6
10.1 ∗∗

±0.1
38.5 ∗∗

±1.3
10.4 ∗∗

±0.1
42.2 ∗∗

±1.0
11.6 ∗∗

±0.3
40.6 ∗∗

±1.3
10.8 ∗∗

±0.1
42.4 ∗∗

±2.1
11.5 ∗∗

±0.2
42.4 ∗∗

±1.4
11.2 ∗∗

±0.5
42.6 ∗∗

±1.7
11.3 ∗∗

±0.2
42.3 ∗∗

±1.8
11.6 ∗∗

±0.2
41.9 ∗∗

±1.4
11.6 ∗∗

±0.2
42.8 ∗∗

±1.6
11.5 ∗∗

±0.2
43.0
±1.8

11.7
±0.2

0.1 37.9 ∗∗

±0.7
10.1 ∗∗

±0.1
38.4
±0.9

10.3 ∗∗

±0.1
41.3 ∗∗

±2.9
11.4 ∗∗

±0.2
40.7 ∗∗

±1.3
10.3 ∗∗

±0.1
42.5 ∗∗

±3.1
11.7
±0.1

41.6 ∗∗

±1.7
11.4
±0.5

40.1 ∗∗

±1.3
10.9 ∗∗

±0.1
40.5 ∗∗

±1.2
11.1 ∗∗

±0.2
41.4 ∗∗

±1.2
11.5 ∗∗

±0.3
41.7 ∗∗

±0.8
11.5 ∗∗

±0.2
42.9
±1.5

11.7
±0.1

0.3 37.6 ∗∗

±0.2
10.3 ∗∗

±0.1
38.6
±0.9

10.8 ∗∗

±0.1
42.6 ∗∗

±0.8
11.2
±0.2

35.9 ∗∗

±0.5
10.2 ∗∗

±0.1
42.4 ∗∗

±2.8
11.4 ∗∗

±0.2
41.5
±2.9

11.7 ∗∗

±0.3
41.6 ∗∗

±1.3
11.0 ∗∗

±0.1
41.6 ∗∗

±1.3
11.2 ∗∗

±0.2
41.7 ∗∗

±1.2
11.5 ∗∗

±0.2
41.4 ∗∗

±1.4
11.8 ∗∗

±0.3
42.8
±1.3

11.6
±0.2
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Table 3. Cont.

Dataset Ratio Baseline LapScore GSR RFS GSR_mean GSR_knn GSR_missForest GSR_DGM GSR_MIWAE HQ-UFS UFS-ID

ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI

connect-4

0.5 38.9 ∗∗

±1.5
10.4 ∗∗

±0.1
37.8 ∗∗

±0.6
10.4 ∗∗

±0.1
41.1 ∗∗

±2.6
12.1 ∗∗

±0.4
35.6 ∗∗

±0.4
10.3 ∗∗

±0.1
41.5 ∗∗
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11.2 ∗∗
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0 54.1 ∗∗

±1.2
17.3 ∗∗

±0.5
57.3 ∗∗

±0.3
15.7 ∗∗

±0.1
55.8 ∗∗

±2.7
15.1 ∗∗

±0.9
55.3 ∗∗

±1.4
15.2 ∗∗

±1.1
55.9 ∗∗
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57.5 ∗∗
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±2.5
15.3 ∗
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15.3 ∗

±0.5
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15.3 ∗∗
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54.3 ∗∗

±1.5
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±1.1

54.3 ∗∗

±3.2
16.3 ∗∗
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16.3 ∗∗

±0.4
56.1 ∗∗
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16.4 ∗∗
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56.3 ∗∗
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14.3 ∗∗
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57.8
±1.7

15.7
±0.3

0.7 55.1 ∗∗

±1.3
14.5 ∗∗

±0.8
50.1 ∗∗
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11.3 ∗∗

±2.3
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52.2 ∗
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52.6 ∗∗

±1.5
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53.1 ∗∗

±1.5
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±1.7

15.4
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12.7 ∗∗
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±0.2
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±1.5
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±0.7

50.4 ∗∗

±0.7
13.5 ∗∗

±0.2
49.6 ∗∗

±1.2
10.8 ∗∗

±0.8
48.5 ∗∗

±2.3
11.9 ∗

±3.0
52.5 ∗∗

±0.9
11.2 ∗∗

±0.4
51.4 ∗∗

±2.0
11.6 ∗∗

±1.1
52.9 ∗∗

±1.9
11.7 ∗∗

±1.6
51.5 ∗∗

±1.8
11.8 ∗∗

±1.5
53.1
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12.4
±1.3
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±1.2
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±0.7
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57.2 ∗∗
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±1.9
58.6 ∗∗
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64.1 ∗∗

±1.1
58.2 ∗∗
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62.4 ∗∗

±2.3
58.2 ∗∗

±0.9
64.3 ∗∗

±1.9
58.6 ∗∗

±0.9
65.7 ∗∗

±1.9
58.5 ∗∗

±1.0
66.0 ∗∗

±2.0
58.9 ∗∗

±0.9
66.2 ∗∗

±1.9
59.1 ∗∗

±0.7
67.7 ∗∗

±2.2
60.9 ∗∗

±0.8
68.1
±2.1

61.4
±0.9

0.1 60.9 ∗∗

±1.9
58.1 ∗∗

±1.0
59.2 ∗∗

±1.9
56.9 ∗∗

±1.0
64.7 ∗∗

±1.8
59.1 ∗∗

±1.3
64.6 ∗∗

±1.6
58.7
±0.7

65.1 ∗∗

±2.2
58.3 ∗∗

±0.5
67.5 ∗∗

±3.4
59.3
±2.1

66.1 ∗∗

±0.9
58.6 ∗∗

±1.1
66.2 ∗∗

±1.0
58.8 ∗∗

±0.8
66.4 ∗∗

±1.5
59.1 ∗∗

±0.8
67.0 ∗∗

±0.8
59.4 ∗∗

±0.7
67.6
±0.9

60.4
±0.7

0.3 62.0 ∗∗

±1.9
57.9 ∗∗

±0.9
58.7 ∗∗

±2.1
56.7 ∗∗

±0.9
61.9 ∗∗

±1.9
55.5 ∗∗

±1.2
65.5 ∗∗

±1.1
57.6 ∗∗

±0.8
63.9 ∗∗

±3.1
61.3 ∗∗

±0.7
63.0 ∗∗

±2.2
58.2 ∗∗

±1.6
66.0 ∗∗

±0.8
63.1 ∗∗

±0.4
66.1 ∗∗

±0.8
63.0 ∗∗

±0.4
66.5 ∗∗

±1.2
63.3 ∗∗

±0.4
67.9 ∗∗

±0.7
56.7 ∗∗

±0.2
67.9
±0.8

58.8
±0.4

0.5 61.0 ∗∗

±1.5
59.8 ∗∗

±0.7
59.0 ∗∗

±2.1
58.7 ∗∗

±1.1
56.5 ∗∗

±1.3
53.6 ∗∗

±0.8
65.5 ∗∗

±1.8
61.2 ∗∗

±0.5
61.4 ∗∗

±2.1
57.8 ∗∗

±2.0
57.6 ∗∗

±1.3
54.7 ∗∗

±1.0
65.0 ∗∗

±1.7
59.1 ∗∗

±1.4
65.2 ∗∗

±1.8
59.6 ∗∗

±1.1
66.0 ∗∗

±2.0
60.2 ∗∗

±0.9
65.9 ∗∗

±1.8
61.1 ∗∗

±0.6
68.3
±1.9

61.1
±0.7

0.7 61.4 ∗∗

±1.8
58.8 ∗∗

±0.7
59.4 ∗∗

±1.0
58.7 ∗∗

±0.7
59.4 ∗∗

±2.1
56.6 ∗∗

±1.5
67.8 ∗∗

±1.1
60.0 ∗∗

±0.6
65.4 ∗∗

±2.5
58.8 ∗∗

±1.2
63.8 ∗∗

±3.2
57.6 ∗∗

±1.7
65.1 ∗∗

±1.8
58.7 ∗∗

±1.2
65.7 ∗∗

±1.4
59.0 ∗∗

±1.2
65.8 ∗∗

±1.7
59.6 ∗∗

±1.3
68.1 ∗∗

±2.3
61.0 ∗∗

±1.0
69.1
±2.0

61.2
±0.8

0.9 61.1 ∗∗

±2.0
59.4 ∗∗

±0.9
58.1 ∗∗

±2.3
59.4 ∗∗

±1.2
58.6 ∗∗

±2.3
59.3 ∗∗

±1.4
62.0 ∗∗

±1.3
61.9
±0.5

61.6 ∗∗

±1.9
57.6 ∗∗

±1.4
64.3 ∗∗

±2.8
59.4 ∗∗

±2.6
64.4 ∗∗

±1.6
58.5 ∗∗

±1.5
64.9 ∗∗

±1.3
59.6 ∗∗

±1.5
65.1 ∗∗

±1.9
59.8 ∗∗

±1.5
66.7 ∗∗

±1.5
61.9 ∗∗

±0.7
67.5
±1.7

62.5
±0.9
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Finally, in Section 3.2, the convergence of the proposed algorithm in solving the
objective function, namely, (6), is theoretically proven. Figure 3 shows the variation of the
objective function value on the Iris data set with the number of iterations; it displays the
convergence curve of the proposed UFS-ID approach, which showed a fast convergence.
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The value of the objective function varies with the number of iterations

Figure 3. Convergence curve of the proposed UFS-ID approach.

4.2. Supervised Feature Selection
4.2.1. Dataset

To evaluate the effectiveness of Algorithm 2, we conducted experiments on synthetic
data sets and real data sets, respectively.

The synthetic data set contained 500 instances and 100-dimensional features. Five-
hundred instances in 100-dimensional space were generated, in which two features defined
an XOR function, whereas the remaining 98 features were irrelevant, sampled indepen-
dently from a zero-mean and one-standard-deviation normal distribution.

We also present the results obtained on six real data sets, called DLBCL, Mnist, Splice,
Wpbc, USPS, and Arcene. Since the Splice and Wpbc datasets had fewer features, we
artificially added 2000 irrelevant features to them, and the feature values of the irrelevant
features were all obtained by sampling from the normal distribution N(0, 1). The detailed
information on the data sets is shown in Table 4.

Table 4. Summary of data sets used.

Dataset Instance Feature Class

DLBCL 141 661 3
MNIST 5000 780 10
Splice 1000 60 + 2000 2
wpbc 198 33 + 2000 2
USPS 9298 256 10

Arcene 200 10,000 2

4.2.2. Comparison Methods and Experimental Settings

To verify the effectiveness of the proposed SFS-ID method with the synthetic data
sets, we compared it with four competing SFS methods designed for use on incomplete
data sets, including:

• The SID method [13], a framework in which the objective function takes into account
the uncertainty of instances due to the missing values and which solves the revised
optimization problem using an EM algorithm;
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• KNN, an imputation feature selection framework which uses the KNN imputation
method [12] on the IS and selects feature from the union of the IS and OS using
RFS [29];

• Mean, an imputation feature selection framework, which uses the mean-value imputa-
tion method [15] on the IS, and which selects features from the union of the IS and OS
using RFS;

• EM, an imputation feature selection framework, which uses the EM imputation
method [16] on the IS and which selects feature from the union of the IS and OS
using RFS;

• missForest [18], an iterative imputation framework based on a random forest on the
IS, which selects features from the union of the IS and OS using RFS;

• DGM [20], a probabilistic framework based on the use of deep generative models for
missing value imputation on the IS, and which selects feature from the union of the IS
and OS using RFS; and

• MIWAE [21], an importance-weighted autoencoder framework, which maximizes a
potentially tight lower bound of the log-likelihood on the IS and selects features from
the union of the IS and OS using RFS.

Unlike the synthetic data, in the experiments on real data sets, the optimal features
are unknown as there might be some uncorrelated and weakly correlated features in
incomplete data sets. We trained an SVM classifier on the features selected using different
methods, and the classification error value was reported. For the SVM classifier, we
adopted a Gaussian kernel and its width was set as the median distance between points in
the instance. Ten cross-validations on data sets were are conducted in this experiment.

We compared the results of our method with those of the following competing SFS
methods on incomplete data sets: KNN + RFS, KNN + Simba, KNN + Relief, mean +
RFS, mean + Simba, mean + Relief, EM + RFS, EM + Simba, EM + Relief, missForest +
RFS, missForest + Simba, missForest + Relief, DGM + RFS, DGM + Simba, DGM + Relief,
MIWAE + RFS, MIWAE + Simba, MIWAE + Relief, and SID.

The parameters in the comparison schemes were consistent with the corresponding
literature and the regularization parameters γ and λ in our proposed method were all
tuned in the grid {10−3, 10−2, 10−1, 1, 10, 102, 103}.

4.2.3. Experimental Results

(1) Experiments on Synthetic Data Sets
We used the number of irrelevant features, selected by means of SFS-ID and other

state-of-the-art approaches, as a performance index in the experiments on synthetic data.
The results are shown in Figure 4.

Based on the results shown in Figure 4, we concluded that the proposed SFS-ID
approach clearly outperformed other state-of-the-art SFS approaches. In particular, with the
increase in the missing ratio, the number of irrelevant features of all methods increased,
but SFS-ID was still able to select the only two relevant features in the presence of 55%
of missing values. Hence, if the missing ratio is excessively large, our SFS-ID can choose
relevant features and thus improve the classification performance.

(2) Experiments on Real Data Sets
We used the features selected by the feature to build an SVM classification model.

As an evaluation metric, classification accuracy (Acc) was used to measure the performance
of different approaches.

We selected the features with different missing instance ratios to perform classification
tasks, and the classification results are shown in Figures 5–7.
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Figure 4. The number of irrelevant features selected, together with two relevant features.
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Figure 5. Accuracy under different missing ratios for DLBCL and Mnist datasets. (a) DLBCL.
(b) Mnist.
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Figure 6. Accuracy under different missing ratios for Splice and Wpbc datasets. (a) Splice. (b) Wpbc.
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Figure 7. Accuracy under different missing ratios for USPS and Arcene datasets. (a) USPS. (b) Arcene.

Based on the results shown in Figures 5–7, we concluded that our SFS-ID approach
achieved the best classification performance compared to other competing SFS methods
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on incomplete data. In addition, the classification results of our SFS-ID approach were
statistically significantly better than those of all comparison methods in terms of ACC.
In particular, it can easily be verified from the figure that the performance of the SFS-ID
approach showed a great improvement in the large and small incomplete data sets. Through
further analysis of the other experimental results, we drew the following conclusions.

First, as the incomplete instances ratio increased, the performance of all schemes
sharply dropped. For instance, on the Mnist data set, the ACC of all schemes dropped
by 6.9% on average at a ratio of 0.45, compared with a ratio of 0.65. In addition, on the
USPS data set, the ACC of all schemes dropped on average by 5.78% at a ratio of 0.25,
compared with a ratio of 0.65. It also can be verified that most of schemes achieved the best
performance with a small ratio, which shows that the number of complete instances played
an important role in those feature selection schemes.

Second, compared with those of other approaches, the ACC of our SFS-ID method
decreased more slowly with the missing ratio. For example, on the Mnist data set, the perfor-
mance of SFS-ID approach decreased by around 1.0% at the missing ratio of 0.45, compared
to the ratio of 0.65, whereas the performance of SID, KNN+RFS, and MIWAE+RFS de-
creased by 7.49%, 8.7%, and 4.76%, respectively. The reason for this is that SFS-ID utilized
neighbor data reconstruction information to improve the incomplete data structure for
the selection of discriminative features, whereas other approaches do not incorporate
information from neighbor data.

5. Conclusions

In this paper, we have proposed novel unsupervised and supervised feature selection
approaches (UFS-ID and SFS-ID), which integrate the reconstruction error and L2,1-norm
minimization for feature selection. By using prior knowledge of incomplete data, not only
can the data reconstruction be made more representative, but the L2,1-norm minimization-
sparse modelcan select robustly important features as well. Alternative iterative algorithms
to effectively optimize the proposed objective functions were designed and the convergence
of the proposed algorithms was proven theoretically. Eventually, we will performextensive
experiments on both real and synthetic incomplete data sets to verify the effectiveness and
superiority of the proposed approaches.
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