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Abstract: Instance segmentation has gained attention in various computer vision fields, such as
autonomous driving, drone control, and sports analysis. Recently, many successful models have been
developed, which can be classified into two categories: accuracy- and speed-focused. Accuracy and
inference time are important for real-time applications of this task. However, these models just present
inference time measured on different hardware, which makes their comparison difficult. This study is
the first to evaluate and compare the performances of state-of-the-art instance segmentation models
by focusing on their inference time in a fixed experimental environment. For precise comparison,
the test hardware and environment should be identical; hence, we present the accuracy and speed
of the models in a fixed hardware environment for quantitative and qualitative analyses. Although
speed-focused models run in real-time on high-end GPUs, there is a trade-off between speed and
accuracy when the computing power is insufficient. The experimental results show that a feature
pyramid network structure may be considered when designing a real-time model, and a balance
between the speed and accuracy must be achieved for real-time application.

Keywords: instance segmentation; image segmentation; object detection; deep learning; convolu-
tional neural networks

1. Introduction

Image segmentation is one of the major tasks in the field of computer vision. Currently,
image segmentation is used in a wide range of fields, such as medical image analysis,
autonomous driving, security, satellites, and aerial photography, and it is expected to be
used in even more fields in the future. Image segmentation is divided into three main
categories, as shown in Figure 1. The first category is semantic segmentation, which predicts
the class of each image pixel but does not distinguish instances within the same class. The
second category, instance segmentation, distinguishes instances within the same class but
does not predict all the image pixels; it predicts one type of object (the foreground) rather
than the others in the background. Lastly, panoptic segmentation [1] combines semantic
and instance segmentation. It predicts the foreground and background in the image while
distinguishing instances of the same class.

Concomitant with increasing interest in the foreground and distinguishing identi-
cal instances within the same class, instance segmentation is actively being researched.
Accuracy-focused models include Dual-Swin-L [2], Segmenting Objects with Transformers
(SOTR) [3], and mask region-based convolutional neural network (Mask R-CNN) [4], and
speed-focused models include CenterMask [5], SOLOv2 [6], BlendMask [7], YOLACT [8],
and YolactEdge [9]. Typically, a performance comparison with other methods is presented
in the paper in which a method is proposed. When only a few or no methods are compared
in the original paper, researchers have to compare the performance of all methods based
on the performance of each method reported in its original paper. This makes comparison
challenging because each method uses different hardware in the inference environment.
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We found no studies comparing the performance of instance segmentation models. This
study addresses this issue by benchmarking state-of-the-art instance segmentation models.

(a) Image (b) Semantic segmentation

(c) Instance segmentation (d) Panoptic segmentation

Figure 1. Types of image segmentation. The mask results were graphically modified, not the actual
inference results (COCO-val2017-000000116068 [10]).

The ultimate aim of our study is to compare performance differences between plat-
forms by mounting models learned on workstations to mobile and analyzing the main fac-
tors contributing to performance differences. Thus, this study investigates state-of-the-art
instance segmentation models, compares their performance in fixed workstation environ-
ments, and estimates their potential in mobile environments as a prior study for future
work. To the best of our knowledge, this is the first instance segmentation benchmarking
study, and we make the following contributions. We compare the average precision (AP)
and inference speed (frames per second; FPS) of each model in a fixed environment using
GTX 1080 Ti and RTX 3090 GPUs. In addition, we analyze the structure of these models to
specify a model that can operate in a real-time environment. We also compare the masked
image and analyze the mask quality according to the AP through the qualitative results.
Finally, we discuss the analysis results and present our findings.

The most important results and findings from our analysis are as follows: (1) All
speed-focused models capable of real-time inference use the feature pyramid network (FPN)
structure. Therefore, from the results on network structures released thus far, an FPN can
be considered when designing a real-time model. (2) There is a trade-off between AP and
FPS. Therefore, an appropriate balance between speed and accuracy should be considered
for real-time use. (3) The higher the GFLOPS, the faster the inference speed, but it does not
increase proportionally. (4) Based on the results of (3), it is difficult to predict the inference
speed on mobile solely with GFLOPS; consequently, subsequent studies are needed to find
and analyze the main factors contributing to performance differences between platforms.
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2. Related Work

The performance of mobile AI accelerators is improving rapidly every year, and thus
attempts to utilize deep learning models on mobile hardware continue to increase. Ignatov
et al. [11] benchmarked the performance of mobile chipsets that support hardware acceler-
ation for AI inference for deep learning models. They selected networks that performed
vision tasks to present the relative inference performance of mobile SoCs in 16-bit floating-
point (fp-16) networks. They also presented the relative inference performance in 32-bit
floating-point (fp-32) networks so that the SoCs performance can be compared with that of
Intel CPUs and NVIDIA GPUs. Finally, they presented the relative performance of SoCs in
8-bit integer-quantized networks.

With the increasing amounts of data available and the rapid improvements in the
computing performance of hardware, deep learning models are achieving many successes
in various areas. Applying deep learning to mobile or embedded devices is gaining
increasing attention, and comparing performances by benchmarking the AI performance
of each device has also been adopted as an important challenge. Luo et al. [12] proposed
the AIoTBench, a benchmark suite for evaluating inference performance on mobile and
embedded devices. They also provide data that compare and rank the performance of five
mobile devices in representative heavy and light networks.

Deep neural networks (DNNs) are achieving remarkable results in many computer
vision tasks. The literature shows that researchers have conducted many studies aimed at
designing efficient and accurate networks. Bianco et al. [13] compared the performance of
more than 40 state-of-the-art DNN architectures for image recognition tasks. They provide
performance indices such as the recognition accuracy, inference speed, and memory usage
of DNNs running on two systems with significant differences in computing power, and
analyze the association between these performance indices.

With the use of CNNs, many studies have progressed on object detection tasks. Al-
though some state-of-the-art object detectors have been shown to be sufficiently fast to
run on mobile devices, it may be difficult for practitioners to determine which architec-
ture is suitable for their purposes. Therefore, Huang et al. [14] conducted experiments
and analyzed the major factors affecting the trade-off between the inference speed and
detection accuracy of modern object detectors. They presented measurements such as the
architecture’s inference speed, detection accuracy, and memory usage, which depend on
variables such as feature extractors, image resolution, and the number of proposals in a
fixed hardware environment.

The training of deep learning models is computation-intensive, and new and better
hardware and software platforms are being proposed to train and deploy more sophisti-
cated models. Thus, Wang et al. [15] introduced ParaDnn, a parameterized benchmark
suite for benchmarking deep learning platforms. They benchmark Google TPU, NVIDIA
GPU, and Intel CPU platforms with six DNN models to compare the execution time for
training according to various specifications of hardware and software.

Many models and algorithms have been proposed in computer vision research, and
the importance of datasets and benchmarks has also been demonstrated as a means of
quantitatively evaluating and comparing them. Ammirato et al. [16] presented a new public
dataset that focuses on robots performing vision tasks in difficult indoor environments.
The dataset contains more than 20,000 RGB-D images and 50,000 object 2D bounding boxes
for instances captured in nine unique scenes. Perazzi et al. [17] presented a new video
object segmentation benchmark dataset, called the Densely Annotated Video Segmentation
(DAVIS), consisting of high-quality sequences at full HD resolution. They compared
state-of-the-art methods with their proposed three metrics using DAVIS, which includes
common situations such as motion blur and occlusion that may arise from video object
segmentation tasks.
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3. Background
3.1. Feature Pyramid Network (FPN)

Detecting objects of various sizes existing in an image is a key issue in the object
detection task. Although various methods have been proposed that can adequately detect
an object regardless of its size, it is being argued that the inference speed of current models
is slow and that they are memory-intensive [18]. To address this issue, a method has been
proposed for detecting objects of various sizes while being less computationally expensive
through the FPN [18] (Figure 2d).

(a) Featurized image pyramid (b) Single feature map

(c) Pyramidal feature hierarchy (d) Feature pyramid network

Figure 2. Methods for extracting feature maps of various scales (COCO-val2017-000000007816 [10]).

The featurized image pyramid method resizes input images to various sizes and
extracts feature maps from each resized image, such that feature maps of various sizes can
detect large and small objects well. However, because a CNN is applied to each resized
image, the method is computation- and time-intensive. The single feature map method
extracts feature maps from an input image and detects objects only with the final feature
map. Its learning and inference are fast because a CNN is applied only once. However,
its performance is poor because only the final feature map with low resolution is used.
The pyramidal feature hierarchy method extracts feature maps from an input image and
performs object detection on each extracted feature map. Although detection is performed
while maintaining information about small objects, the feature map of the already generated
upper level is not reused and does not reflect the low-resolution feature with rich semantic
information. FPN first extracts feature maps of various scales through bottom-up paths.
Then, through the top-down pathway, the low-resolution feature map combines bottom-up
feature maps with lateral connection while increasing the resolution. The authors of [18]
argue that by combining feature maps with rich semantics information in a top-down
manner and feature maps that preserve location information in a bottom-up manner, strong
feature maps can be rapidly generated at various scales.

3.2. Vision Transformer

Self-attention-based structures have been widely used in the field of natural language
processing (NLP). In particular, methods similar to Bidirectional Encoder Representations
from Transformers (BERT) [19] that are pretrained on large text corpora and fine-tuned
on small task-specific datasets are dominant. Although the Transformer [20] structure
has been actively used as the main standard in the NLP field, it has rarely been used in
the vision field. As transformers have been successfully utilized in NLP, many scholars
have attempted to apply them to the vision field as well. In most cases where attention
is used in vision task, it is applied in conjunction with a CNN or used in a way that
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replaces a specific element of the CNN. However, Dosowski et al. [21] developed a vision
transformer (ViT) that could achieve state-of-the-art performance in image classification
tasks, revealing that dependence on these CNNs is not essential and that transformers
can replace them. Researchers have moved away from the existing limited attention
mechanism and replaced most of the CNN structure with a Transformer while designing
the model to be similar to Vaswani’s original transformer [20]. The Transformer receives
a one-dimensional token-embedding sequence as an input. Therefore, the original three-
dimensional image is flattened into one-dimensional patches. The patches are mapped to a
constant latent vector (patch embedding) through trainable linear projection, and position
embedding is applied to maintain location information. In addition, similar to the BERT
[CLS] token [19], one learnable [class] token is added to the front of the embedded patches
to perform classification. When pre-training was conducted with datasets of various sizes
and evaluated on many benchmark cases, the ViT was very efficient in terms of the pre-
training calculation cost, and in most benchmark cases, the performance was similar or
superior to those of the state-of-the-art approaches and the pre-training cost was low.

3.3. Non-Maximum Suppression (NMS)

Most object detection algorithms generate bounding boxes (bboxes) with high scores
around the object’s location. NMS is a technique that removes all bboxes around the
same object except for the bbox with the highest score. NMS is an essential component of
object detection and instance segmentation, and research is being conducted to improve
the speed of traditional NMS. YOLACT’s Fast NMS [8] removes more anchor boxes than
NMS, and hence it causes some performance degradation, but unlike NMS, it performs
matrix operations, and hence it can be calculated more quickly by GPUs. SOLOv2’s matrix
NMS [6] can handle 500 masks with a simple Python implementation in less than 1 ms by
simultaneously solving the problems of hard removal and sequential operations.

3.4. NVIDIA TensorRT

TensorRT [22] is a software development kit that improves the speed of inference in
NVIDIA GPUs by optimizing the trained deep learning model. To ensure optimal inference
performance on NVIDIA platforms, TensorRT automatically applies network compression,
network optimization, and GPU optimization technologies to models trained in most deep
learning frameworks and is widely used in artificial intelligence, autonomous machines,
high-performance computing, and graphics. TensorRT also supports optimal deep learning
model acceleration with quantization, precision calibration, graph optimization, and kernel
auto-tuning.

3.5. Quantization

Most of the interior of the neural network model is composed of weights and activation
functions, and it is represented using 32-bit floating-point numbers to improve the accuracy
of the model. In mobile, AI-device, and embedded environments, inference using deep
learning models is difficult because memory, performance, and storage space are limited.
Therefore, in recent years, many studies related to model weight reduction have been
conducted in deep learning. Quantization refers to the process of converting a floating-
point type into an integer or fixed-point number. Reducing the number of bits by mapping
the 32-bit floating-point data type to a certain range leads to reductions in memory and
model size as well as increases in inference speed and power consumption efficiency. There
are two types of quantization techniques: (1) post-training quantization, which is learning
with a floating-point model and then quantizing the resulting weight values to minimize
quantization errors, and (2) quantization-aware training, which performs quantization
during weight optimization in training. In the post-training quantization method, both
dynamic quantization and fusion quantization are performed. Dynamic quantization
quantizes only the weight of the model and dynamically quantizes activations during
inference, whereas static quantization combines the activation and its layer to reduce the
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context-switching overhead of the model. Quantization-aware training performs clamping
and rounding tasks by placing a fake quantization module in the model during training,
which can be changed to the integrated model with values such as scale and zero points
stored in the module when training is completed.

4. Review Method

We divided the target methods into accuracy-focused and speed-focused models.
Mask R-CNN [4] is the most basic model in the field of instance segmentation. It was
therefore selected as a baseline accuracy-focused model for comparison with the other
models. SOTR [3] and Dual-Swin-L [2] were chosen to represent the accuracy-focused
models because the Transformer structure has been successfully applied in the field of
instance segmentation. CenterMask [5], YOLACT [8], YolactEdge [9], BlendMask [7], and
SOLOv2 [6] were designed for real-time use and provide a trained model; hence, they were
used to exemplify the speed-focused models.

4.1. Accuracy-Focused Models

Mask R-CNN [4] is a model for two-stage instance segmentation. It creates a region
of interest (RoI) candidate in the first step and classifies and segments the RoI in the second
step (Figure 3). As an extension of Faster R-CNN [23], branches for mask prediction in
each RoI are added in parallel to the existing branch for classification and bbox regression.
The structure of the head varies depending on the backbone, and when a ResNet-FPN
backbone is used, the region proposal network (RPN) produces an RoI using a feature
pyramid generated through the pre-processed input image. Faster R-CNN is a model for
object detection, and the RoIPool of the RPN has a significant adverse effect on the pixels of
the prediction mask due to the misalignment between the RoI and feature when quantizing
the RoI into a feature map. To segment the pixel units, the RPN replaces the RoIPool of
the existing Fast R-CNN RPN with RoIAlign, which contains location information using
bilinear interpolation. Feature maps extracted through RoIAlign are delivered to the
classification and bbox regression branches through the fully connected layer to obtain the
final class scores and bbox, and to minimize the loss of spatial information in the mask
branch, a small fully convolutional network [24] is used instead of an fc-layer to improve
the mask performance.

Figure 3. Mask R-CNN architecture. The mask result was graphically modified, not the actual
inference result (COCO-val2017-000000032901 [10]).

SOTR [3] has been proposed as a segmentation model combining an FPN backbone
and a transformer network. SOTR consists of a process that predicts the category of each
instance through a transformer and a process that generates a dynamic segmentation mask
by computing the dynamic convolution kernel produced by the kernel head and features
generated by the multi-level upsampling module (Figure 4). Many instance segmentation
methods based on CNNs have adopted a top-down approach that first detects objects and
then predicts segmentation masks. The authors who presented SOTR [3] noted that this
approach has advantages in terms of translation equivariance and location information,
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but for large objects, the receptive field of a CNN may lead to poor results when connecting
high-level features to instances. They also stated that the performance of the object detector
determines the inference speed and mask quality of the image, which can lead to poor
performance when processing complex images. To overcome these issues, SOTR adopts
a bottom-up approach and dynamically creates masks while learning position-sensitive
features regardless of the location and scale of the bbox and grouping post-processing.

Figure 4. SOTR architecture. “∗” indicates the dynamic convolution operation. The mask result was
graphically modified, not the actual inference result (COCO-val2017-000000032861 [10]).

In the transformer network, to replace the original transformer layer using multi-
head self-attention [20] (Figure 5a), researchers proposed the pure twin transformer layer
and hybrid twin transformer layer, which are based on twin attention and shown in
Figure 5b,c. Transformers receive some feature maps generated by the FPN backbone. After
the transformer, there is a class head for predicting the instance class and a kernel head for
creating the convolution kernel dynamically. The multi-level upsampling module receives
some feature maps from the FPN and the P5 features reconstructed by the transformer to
create a final mask through dynamic convolution operations.

Figure 5. Three transformer layer designs.

Dual-Swin-L [2] is a multi-backbone network that combines two same identical large
Swin transformer networks [25] (Figure 6). It is designed to perform object detection
efficiently by combining high- and low-level features (Figure 7). CBNetV2 [2] is a dense
higher-level composition that efficiently combines high- and low-level features and an
auxiliary supervision to optimize the training process of the model. Therefore, Dual-Swin-L
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not only reduces training time by 6x compared to Swin-L, but it also improves performance
without additional training data through multi-scale testing.

Figure 6. Swin Transformer architecture.

Figure 7. CBNetV2: dual-backbone architecture.

Prior to the proposal of the Swin transformer, which is the main network of Dual-
Swin-L, the original transformer [20] was designed for NLP, but it has been applied in the
vision field as the ViT [21]. However, the authors who presented the Swin transformer
noted that the ViT is not appropriate to use as a backbone for dense vision tasks or when
the image resolution is high, because the global self-attention of the ViT throughout the
patch (which is MSA) is computation intensive when the resolution of the input image is
high and only has single-resolution feature maps.

Therefore, the Swin transformer [25] network has a structure in which each patch
is divided into windows, and self-attention is performed only within the corresponding
window (W-MSA). However, as the W-MSA module performs self-attention only on fixed
windows, the connectivity between windows is poor, limiting the modeling performance;
hence, the authors proposed shifted window-based self-attention (SW-MSA), which shifts
this window and performs self-attention once more. As W-MSA and SW-MSA perform
self-attention only within the window, unlike MSA, it is possible to reduce the amount of
computation efficiently. As the stages progress, patches merge and use a window consisting
of a larger patch, which is responsible for a larger receptive field in the image (Figure 8).
This means that the network is trained to detect both small and large objects well.
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Figure 8. Shifted window approach for computing self-attention (COCO-val2017-000000548267 [10]).

4.2. Speed-Focused Models

CenterMask [5] was proposed as an anchor-free instance segmentation model. It is
an architecture with a spatial attention-guided mask (SAG-Mask) branch added after the
anchor-free one-stage object detector (FCOS) [26] and uses an FPN backbone (Figure 9).
When CenterMask was proposed, few studies had considered the inference speed, and
the accuracy was lower than that of Mask R-CNN [4]; hence, CenterMask was designed
to improve both accuracy and speed. The authors who presented CenterMask [5] argued
that anchor-box-based object detectors depend strongly on predefined anchors; hence,
when too many anchor boxes are created, they not only cause imbalances between positive
and negative RoI samples, but also increase the computational costs. To overcome the
shortcomings of these anchor boxes, an FCOS is used as an object detector in CenterMask
in the first stage, which is anchor-free. In mask prediction, each RoI pooling operation
should be allocated considering the RoI scale when extracting the features from each RoI.
However, as RoIAlign proposed for Mask R-CNN [4] does not consider the input scale, the
authors [5] designed a scale-adaptive RoI assignment function suitable for an FCOS.

Figure 9. CenterMask architecture. The box and mask results were graphically modified, not the
actual inference result (COCO-val2017-000000015746 [10]).

When CenterMask was proposed, attention methods were widely used for object de-
tection because they can help the model extract more important features while suppressing
unimportant features. Channel attention focuses on what important information is in the
channels of the feature maps, whereas spatial attention focuses on where the important
information is located in the feature maps. The spatial attention module (SAM) inside the
SAG-Mask helps to predict the mask by emphasizing meaningful pixels while reducing
noise in Figure 9. The FCOS receives feature maps from the FPN backbone and predicts
the bboxes. The bboxes received from the FCOS are used to extract features inside the
predicted RoI through the scale-adaptive RoI assignment function, and the final masks
are output through the later SAG-Mask, which consists of convolutional layers, a spatial
attention module, upsampling processes, and other processes.
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YOLACT [8] was proposed as a one-stage instance segmentation model separated
by two parallel subprocesses: (1) the generation of a prototype mask set and (2) the
prediction of mask coefficients per instance (Figure 10). The basic model is a modification
of RetinaNet [27], a one-stage object detection model. In YOLACT, instance segmentation
processes were parallelized with a ProtoNet and a prediction head to add mask branches
without feature localization steps.

Figure 10. YOLACT architecture. The mask result was graphically modified, not the actual inference
result (COCO-val2017-000000021903 [10]).

In the prediction head, the feature maps from the FPN are input and sent to the class,
box, and mask coefficient branches through convolution. ProtoNet receives the deepest
feature map of the FPN, P3, as an input and generates a predefined number of prototype
masks, but each mask does not activate (localize) one specific instance. Therefore, for each
instance that is not erased via Fast-NMS, YOLACT performs a mask assembly that creates
a mask by linearly combining the prototype mask and mask coefficient. The final mask
is generated by cropping outputs of the mask assembly based on the predicted bbox and
by thresholding.

The author of [8] also proposed Fast NMS, which speeds up with slight degradation of
AP, instead of the standard NMS used in Mask R-CNN. The Fast NMS is as follows: when a
reference anchor box is compared to other anchor boxes with higher confidences than itself,
if the compared anchor box with the largest intersection-over-union (IoU) value is less than
the threshold, the reference anchor box is not erased. In standard NMS, when an anchor
box is erased, it is no longer compared to any other anchor box. However, in Fast NMS,
the already erased anchor box continues to be used for comparison to erase other anchor
boxes. Fast NMS has a slightly worse performance because it removes more anchor boxes
than NMS, but matrix operations can be performed using a GPU, resulting in significant
speed improvements.

YolactEdge [9] is a model based on YOLACT [8] that has two fundamental improve-
ments at the system and algorithm levels so that it can perform inferences in real time on
edge devices. The system was improved by using an NVIDIA TensorRT [22] to adjust the
balance between speed and accuracy systematically while quantizing network parameters
to 8-bit integer (int-8) or fp-16, which is the precision of a smaller bit range. A wider
precision range requires more time for calculation and thus is more accurate. In addition, if
the weights of the model components have different precision ranges, the balance between
speed and accuracy depends on the components. Therefore, to maximize FPS without loss
of accuracy, YolactEdge explored the optimal combination of int-8 and fp-16 weights for
each component of the YOLACT by applying TensorRT.

In particular, changing the prediction head to int-8 significantly decreases the segmen-
tation accuracy. Hence, the authors converted all components except the predicted head
and FPN to int-8, quadrupling the speed with the calibration step.
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When YolactEdge was proposed, other real-time instance segmentation methods
dealt with only static images. The authors who presented YolactEdge [9] argued that
real-time applications are much more important in video applications, which require low
latency and real-time inference. Therefore, the model was switched from static image
processing to video processing, and training was performed using the YouTube Video
Instance Segmentation dataset [28]. The improvement at the algorithm level involves using
temporal redundancy when dealing with videos. In the keyframe case, backbone and
pyramid features are computed, but in the non-keyframe case, only some of the backbone
and pyramid features are computed and some of the pyramid features are transformed via
partial feature transform from the nearest previous keyframe in time (Figure 11). Through
this process, the speed of YolactEdge is greatly accelerated because it avoids calculating the
most expensive part of the backbone.

Figure 11. YolactEdge architecture. The mask result was graphically modified, not the actual inference
result (YouTube Video Instance Segmentation 2019 version-7a72130f21 [28]).

To transform features quickly, object motion must be efficiently estimated, and thus
FeatFlowNet, a modified network that follows the architecture of existing FlowNetS [29]
(Figure 12a) but reuses the backbone’s features and uses fewer convolution layers, was
proposed (Figure 12b). In the feature transformation process, the flow map between the
previous keyframe and current non-keyframe is estimated through FeatFlowNet; then, the
features are transformed from the previous keyframe to the current non-keyframe through
inverse warping, resulting in much faster calculations and identical performance.

Blendmask [7] was proposed as an instance segmentation model that improves mask
prediction based on an FCOS detector [26] with minimal modifications. The authors who
presented Blendmask [7] argued that high-level features represent semantic information
about instances more effectively than low-level features because the former have larger
receptive fields than the latter, and that low-level features have the advantage of including
more detailed information than high-level features without losing location information.
Hence, the authors mixed the bottom-up and top-down approaches. Blendmask consists
of two blocks: an FCOS detector that predicts the class and bbox of the instance; a mask
branch that predicts the score maps and instance attentions, and then merges the scores
with attentions (Figure 13).
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(a) FlowNetS

(b) FeatFlowNet

Figure 12. Difference between FlowNetS [29] and FeatFlowNet [9] (YouTube Video Instance Segmen-
tation 2019 version-7a72130f21 [28]).

Figure 13. BlendMask architecture The mask result was graphically modified, not the actual inference
result (COCO-val2017-000000561223 [10]).

Detection towers use the feature maps of an FPN to perform classification. Next,
attention maps and bboxes are generated by adding a single convolution layer to each
tower. The bottom module selectively receives the backbone or FPN features to generate
score maps called bases. Chen et al. [7] experimentally found that the AP of FPN features is
higher than that of backbone features. For each instance predicted in the detector module,
the blender module divides the bases with bboxes and linearly combines the attention
maps to output the final mask.

SOLOv2 [6] was proposed as a model for improving the head part and NMS of
segmenting objects by locations (SOLO [30]). SOLO introduced the concept of assigning
categories to pixels inside instances according to the location and size of instances called
instance categories. Before SOLO, a top-down method that first detects objects and then
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segments them and a bottom-up method that first predicts the class of the embedding
vectors and then groups the same instances together were used. The authors who presented
SOLO [30] argued that these two approaches have shortcomings, because they heavily
depend on the detector performance or embedding learning and grouping processing.
Therefore, the SOLO model was designed with the objective of directly segmenting the
instance mask.

SOLO is simply composed of a category branch and mask branch, and when the
center of the object to be predicted enters a specific grid cell, the cell predicts the category
and instance mask of the object (Figure 14). The mask branch uses a CoordConv operator
with two additional channels with information on the x–y coordinates in pixels to increase
spatial variance. In addition, instead of using the existing vanilla head, the decoupled head,
which predicts the x-axis and y-axis separately, is used to further improve performance.
Finally, when the segmentation result corresponding to each grid cell is output, the final
mask is created by removing the duplicate mask via NMS.

Figure 14. SOLO architecture. The mask result was graphically modified, not the actual inference
result (COCO-val2017-000000079565 [10]).

SOLOv2 [6] divides SOLO’s mask branch into a kernel branch that performs kernel
learning and a feature branch that performs feature learning (Figure 15). In the kernel
branch, the mask kernel is dynamically generated for the input. In the feature branch, the
FPN feature maps are all upsampled to 1/4 of the input size. Then, all the features are
added element-wise and 1 × 1 convolution is performed to create unified mask features.
Next, the outputs of the kernel and feature branches are convoluted to obtain an instance
mask. Finally, a matrix NMS, which is an improved version of the standard NMS, is used
to generate the final mask.
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Figure 15. SOLOv2 mask branch. “∗” indicates the dynamic convolution operation. The mask result
was graphically modified, not the actual inference result (COCO-val2017-000000079565 [10]).

5. Experiments

The COCO object detection dataset is a large-scale image dataset designed to advance
state-of-the-art techniques for the object detection task. In our experiments, we used the
MS COCO 2017 instance segmentation dataset [10]. This dataset includes 123K images with
80 class instance labels. The original images in the inference results were obtained from
the val2017 dataset (5K images). To evaluate the performance of the methods, we used the
metrics of COCO [10]. The evaluation metrics were APmask; APbox; APS, APM, and APL
(AP at different scales).

APT = 1
10 ∑IoU∈Thresholds mAP T = box or mask (1)

If T is mask, IoU is the intersection of the mask pixels, and if T is box, IoU is the
intersection of the bounding boxes. Thresholds is the threshold range of the IoU and has a
step size of 0.05 from 0.5 to 0.95

mAP =
1
n ∑

c∈n
APc c = class, n = number of classes (2)

APS = AP for the mask of small objects : area < 322 (3)

APM = AP for the mask of medium objects : 322 < area < 962 (4)

APL = AP for the mask of large objects : area > 962 (5)

Each target method is provided as a trained model using a different backbone [2–9].
When selecting the trained models, we selected those with the highest APmask as the
accuracy-focused models; those with the highest APmask in real-time as the speed-focused
models; and the Mask R-CNN model is from the Detectron2 [31] library. The evaluated
FPS is the result of an average of ten inference runs on a single GPU. The test environment
was divided into two environments according to the type of GPU:

(1) RTX 3090 + Intel i9 10900X + CUDA 11.3 + PyTorch 1.10.1;
(2) GTX 1080 Ti + Intel i9 10900X + CUDA 10.2 + PyTorch 1.10.1.
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5.1. Quantitative Results
5.1.1. Accuracy Rate

The results of the state-of-the-art instance segmentation models on the MS COCO
val2017 dataset are presented in Table 1. They show that the AP results were the same even
when a different inference GPU was used. Among the accuracy-focused models, Dual-
Swin-L achieved the highest AP of 51.0, followed by SOTR (41.5), and Mask R-CNN (38.6).
Among the speed-focused models, CenterMask achieved the highest AP of 36.7, followed
by SOLOv2 (36.4), BlendMask (36.3), YOLACT (30.9), and YolactEdge (29.8). YolactEdge
achieved 29.9 AP when TensorRT optimization was applied. As shown in Figure 16b, the
APS results of all models are lower than those of APmask. In addition, Figure 16c,d show
that APM and APL are higher than those of APmask.

Table 1. Benchmark results on MS COCO val2017 (-: when impossible to measure due to network
structure; “*” indicates the FPS results with NVIDIA TensorRT optimization [22]).

Method Model Reference GPU Tested GPU Tested FPS APmask APbox APS APM APL

Dual-Swin-L DB-Swin-L [32] NVIDIA V100 [2]
RTX 3090 1.9

51.0 59.1 32.2 54.3 69.0
GTX 1080 Ti 0.8

SOTR SOTR_R101_DCN [33] NVIDIA V100 [3]
RTX 3090 8.1

41.5 - 20.2 45.4 61.7
GTX 1080 Ti 4.1

Mask R-CNN R101-FPN [34] NVIDIA V100
(17.8 FPS) [34]

RTX 3090 23.2
38.6 42.9 19.4 41.3 55.3

GTX 1080 Ti 11.7

Centermask centermask2-lite-V-39-eSE-
FPN-ms-4x [35]

NVIDIA Titan Xp
(35.7 FPS) [35]

RTX 3090 45.2
36.7 40.9 17.2 39.8 53.4

GTX 1080 Ti 30.8

SOLOv2 SOLOv2_Light_512_DCN_
R50_3x [36]

NVIDIA V100
(29.4 FPS) [36]

RTX 3090 37.0
36.4 - 13.1 40.1 57.8

GTX 1080 Ti 26.6

Blendmask DLA_34_4x [37] GTX 1080 Ti
(32.1 FPS) [37]

RTX 3090 52.2
36.3 40.8 16.0 39.6 53.9

GTX 1080 Ti 37.8

YOLACT yolact_im700_54_800000 [38] NVIDIA Titan Xp [8]
RTX 3090 41.0

30.9 33.4 12.0 34.3 48.9
GTX 1080 Ti 21.5

YolactEdge yolact_edge_54_800000 [39] RTX 2080 Ti [9]
RTX 3090 53.5/177.3 *

29.8/29.9 * 32.5/32.4 * 10.1/9.9 * 32.3/31.9 * 50.2/50.4 *
GTX 1080 Ti 32.6/81.6 *

5.1.2. Inference Speed

As shown in Table 2, the speed of the accuracy-focused models in the RTX 3090 en-
vironment was 1.9 FPS for Dual-Swin-L and 8.1 FPS for SOTR, both of which are slower
than the 23.2 FPS result of Mask R-CNN. Additionally, in the GTX 1080 Ti environment, the
speed was 0.8 FPS for Dual-win-L and 4.1 FPS for SOTR, whereas the speed of Mask R-CNN
was estimated to be 11.7 FPS. The speeds of the speed-focused models in RTX 3090 envi-
ronment were 53.5 FPS for YolactEdge, 52.2 FPS for BlendMask, 45.2 FPS for CenterMask,
41 FPS for YOLACT, and 37 FPS for SOLOv2, all of which were faster than the 23.2 FPS of
Mask R-CNN. YolactEdge was estimated to run at 177.3 FPS when TensorRT optimization
was applied. Additionally, in the GTX 1080 Ti environment, the speeds were 37.8 FPS
for BlendMask, 32.6 FPS for YolactEdge, 30.8 FPS for CenterMask, 26.6 FPS for SOLOv2,
and 21.5 FPS for YOLACT, all of which were faster than the 11.7 FPS of Mask R-CNN.
YolactEdge was estimated to run at 81.6 FPS when TensorRT optimization was applied.
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(a) (b)

(c) (d)

Figure 16. AP and FPS results for various instance segmentation methods on COCO-val2017: (a) RTX
3090 vs GTX 1080 Ti APmask results for FPS; (b) APmask and APS results on the RTX 3090 and GTX
1080Ti; (c) APmask, APM results on the RTX 3090 and GTX 1080 Ti; (d) APmask, APL results on the RTX
3090 and GTX 1080 Ti.

Table 2. Frames per second on the RTX 3090 and GTX 1080 Ti. The SD and meidan are the standard
deviation and the mean of two middle values, respectively (“*” indicates the FPS results with NVIDIA
TensorRT optimization [22]).

Method Tested GPU Mean SD Min Max Median

YolactEdge
RTX 3090 53.5/177.3 * 0.929/0.653 * 51.9/176.2 * 54.7/178.2 * 53.9/177.5 *

GTX 1080TI 32.6/81.6 * 0.179/0.331 * 32.4/80.8 * 32.9/81.9 * 32.6/81.8 *

Blendmask
RTX 3090 52.2 0.231 51.9 52.6 52.2

GTX 1080TI 37.8 0.069 37.7 37.9 37.9

Centermask
RTX 3090 45.2 0.134 45.0 45.4 45.2

GTX 1080TI 30.8 0.035 30.8 30.9 30.8

YOLACT
RTX 3090 41.0 0.658 39.6 41.4 41.3

GTX 1080TI 21.5 0.205 21.1 21.7 21.6

SOLOv2
RTX 3090 37.0 0.187 36.8 37.4 37.0

GTX 1080TI 26.6 0.064 26.5 26.7 26.6
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Table 2. Cont.

Method Tested GPU Mean SD Min Max Median

Mask R-CNN
RTX 3090 23.2 0.024 23.1 23.2 23.2

GTX 1080TI 11.7 0.011 11.7 11.7 11.7

SOTR
RTX 3090 8.1 0.017 8.0 8.1 8.1

GTX 1080TI 4.1 0.008 4.1 4.2 4.1

Dual-Swin-L
RTX 3090 1.9 0.030 1.9 2.0 1.9

GTX 1080TI 0.8 0.030 0.7 0.8 0.8

5.1.3. Accuracy Rate versus Inference Speed

As shown in Figure 17, the APmask decreases as the FPS increases and vice versa in
RTX 3090 and GTX 1080 Ti, respectively. This tendency is represented as an inversely
proportional curve, so it can be confirmed that AP and FPS have a trade-off relationship.

(a) (b)

Figure 17. Speed–accuracy trade-off for various instance segmentation methods on COCO-val2017:
(a) RTX 3090 speed–accuracy trade-off; (b) GTX 1080 Ti speed–accuracy trade-off.

5.1.4. RTX 3090 versus GTX 1080 Ti

As shown in Table 3 and Figure 18, different GPU environments lead to a difference
in the inference speed, and the relative performance for each model varies according to
the GPU. The relative performance in Table 3 indicates the speed of RTX 3090 relative to
GTX 1080 Ti.
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Figure 18. Comparison of GFLOPS according to speed for each inference GPU.

Table 3. MS COCO results on the RTX 3090 and GTX 1080 Ti. The relative performance on the RTX
3090 was quantified with respect to the FPS of the GTX 1080 Ti for each model (“*” indicates the FPS
results with NVIDIA TensorRT [22] optimization).

Method Tested GPU Tested FPS Relative Performance (%)
RTX 3090/GTX 1080 Ti

YolactEdge
RTX 3090 53.5/177.3 *

164/217 *
GTX 1080 Ti 32.6/81.6 *

Blendmask
RTX 3090 52.2

138
GTX 1080 Ti 37.8

Centermask
RTX 3090 45.2

147
GTX 1080 Ti 30.8

YOLACT
RTX 3090 41

191
GTX 1080 Ti 21.5

SOLOv2
RTX 3090 37

139
GTX 1080 Ti 26.6

Mask R-CNN
RTX 3090 23.2

198
GTX 1080 Ti 11.7

SOTR
RTX 3090 8.1

198
GTX 1080 Ti 4.1

Dual-Swin-L
RTX 3090 1.9

238
GTX 1080 Ti 0.8

5.1.5. GPU GFLOPS versus Inference Speed

Additionally, we investigated the GFLOPS of the basic model of the workstation GPU
in Table 4; Figure 18 compares the GFLOPS and speed of each method. We confirmed that
the speed is proportional to the GFLOPS, but the increase is not as significant.
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Table 4. Comparison of the GFLOPS of recent workstation GPU and mobile SoCs. The GPU
clock is based on the boost clock; the GFLOPS calculation of the workstation GPU is as follows:
GPU clock × cores × 2 (operation/cycle); the relative GFLOPS of the workstation and mobile GPUs
are presented relative to the performance of the GTX 1080 Ti.

Device GPU Clock
(GHz)

GFLOPS
(FP32)

Relative GFLOPS
(%)

RTX 3090 [40] 1695 35,581 313.7

Tesla V100 [41,42] 1380 14,131 124.6

RTX 2080 Ti [43] 1545 13,447 118.5

Titan Xp [44] 1582 12,149 107.1

GTX 1080 Ti [45] 1582 11,339 100

HiSilicon Kirin 9000 [46]
(ARM Mali-G78 MP24)

760 2332 20.5

Snapdragon8 gen 1 [47]
(Qualcomm Adreno 730)

820 2236 19.7

Google Tensor [48]
(ARM Mali-G78 MP20)

760 1943 17.1

Snapdragon 888 [49]
(Qualcomm Adreno 660)

840 1720 15.1

Snapdragon 870 [50]
(Qualcomm Adreno 650)

670 1418 12.5

Samsung Exynos 2100 [51]
(ARM Mali-G78 MP14)

760 1360 11.9

5.2. Qualitative Results

The segmentation performance results for human instances were similar, but Yolact-
Edge performed worse than the other models, as shown in Figures 19–21.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 19. Visualization of instance segmentation results (COCO-val2017-000000171190 [10]).
(a) Dual-Swin-L; (b) SOTR; (c) Mask R-CNN; (d) BlendMask; (e) CenterMask; (f) SOLOv2;
(g) YOLACT; (h) YolactEdge.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 20. Visualization of instance segmentation results (COCO-val2017-000000380913 [10]).
(a) Dual-Swin-L; (b) SOTR; (c) Mask R-CNN; (d) BlendMask; (e) CenterMask; (f) SOLOv2;
(g) YOLACT; (h) YolactEdge.

Figure 19 shows that, the accuracy-focused models segmented most of the objects on
the central dining table. The speed-focused models segmented fewer objects on the dining
table; however, CenterMask is the only model that recognized the knife on the dining
table, and it obtained segmentation results that are similar to those of the accuracy-focused
models. Among the speed-focused models, YOLACT recognized only one object on the
dining table and YolactEdge did not recognize any.

(a) (b) (c) (d)

Figure 21. Cont.
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(e) (f) (g) (h)

Figure 21. Visualization of instance segmentation results (COCO-val2017-000000329323 [10]).
(a) Dual-Swin-L; (b) SOTR; (c) Mask R-CNN; (d) BlendMask; (e) CenterMask; (f) SOLOv2;
(g) YOLACT; (h) YolactEdge.

Figure 20 shows that, Dual-Swin-L and CenterMask segmented the inner side of the
subway train. All models except for BlendMask segmented at least one cell phone object
held by people. It can be confirmed that the mask areas of different objects overlap in the
Dual-Swin-L, CenterMask, and YOLACT results.

Figure 21 shows that, Mask R-CNN, CenterMask, and SOLOv2 segmented the necktie
object from a human that was wearing one. Again, the mask regions of different objects
overlap in the results of Mask R-CNN, CenterMask, YOLACT, and YolactEdge. In the
results of CenterMask, YOLACT, and YolactEdge, there are empty spaces inside the mask
regions and several disconnected mask areas.

6. Discussion

We categorized the experimental methods as accuracy-focused and speed-focused
models, presented an overview of each model, and summarized their contribution. In
addition, we ran an inference with MS COCO val2017 dataset [10] in a fixed test environ-
ment based on a GPU (RTX 3090 or GTX 1080 Ti) and compared the AP and FPS results of
each model.

As shown in Table 1 and Figure 16a, the accuracy-focused models obtained relatively
higher AP scores and relatively lower inference speed than the speed-focused models.
Dual-Swin-L and SOTR outperformed Mask R-CNN in terms of AP. Furthermore, Dual-
Swin-L has a noticeably higher AP than other models. We can infer from these results that
the Transformer structure is an effective approach not only in the NLP field but also in
computer vison. Although speed-focused models obtained lower AP scores than Mask
R-CNN, all models run at real-time speed in the RTX 3090. Blendmask, Centermask, and
YolactEdge also run at real-time speed in the GTX 1080 Ti, however, SOLOv2 and YOLACT
do not run in real-time in the GTX 1080 Ti. In addition, we can confirm that AP and FPS
have a trade-off relationship in Figure 17. Therefore, it seems that an appropriate trade-off
between speed and accuracy should be considered for real-time use.

As stated above, speed-focused models have a faster inference speed than accuracy-
focused models. Speed-focused models using the FPN structure have a speed of over
30 FPS in RTX 3090. Conversely, Dual-Swin-L [2] and SOTR [3], which use the Transformer
structure, have a speed below 10 FPS. Mask R-CNN [4] was categorized as an accuracy-
focused model, but because it uses an FPN structure, it has a relatively fast speed of
23.2 FPS in the RTX 3090 environment. Although they were not tested in this study,
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SipMask [52] and OrienMask [53], which can be categorized as speed-focused models, also
used an FPN structure. OrienMask [53], which uses a Darknet-53 backbone, has reportedly
achieved an AP of 34.5 and speed of 41.9 FPS on the COCO val2017 dataset in an RTX2080
Ti environment. SipMask [52], which uses a ResNet101-FPN backbone, has reportedly
achieved an AP of 32.8 and speed of 31.2 FPS on the COCO test-dev dataset in a Titan Xp
environment. Therefore, from the results on network structures released thus far, an FPN
can be considered when designing a real-time model.

As shown in Table 2, when TensorRT optimization [22] was used for YolactEdge [9],
the speed increased 2.5 times or more in the GTX 1080 Ti environment and 3.3 times or more
in the RTX 3090 environment. However, no significant differences were observed in AP
results. Therefore, we can expect a meaningful speed improvement by applying TensorRT
to processing units that support CUDA. Furthermore, the recently unveiled NVIDIA Jetson
AGX Orin [54] reportedly performed up to eight times faster than NVIDIA Jetson AGX
Xavier [55]. Given that YOLACT achieved a 27.3 FPS in the NVIDIA Jetson AGX Xavier [39],
high complexity models will be able to meet real-time requirements through TensorRT
optimization in the NVIDIA Jetson product line, including the Jetson AGX Orin.

As shown in Table 1, different GPU environments lead to a difference in the inference
speed but yield the same AP scores. Table 3 shows that comparison of the speeds of
the methods in an RTX 3090 environment relative to that in a GTX 1080 Ti environment
confirms that the improvements in speeds differ. Figure 18 also compares the GFLOPS and
speed of each method. From these experimental results, we can confirm that the speed is
proportional to the GFLOPS; however, the increase is not as significant.

Ignatov et al. [11] presented the performance of mobile SoCs in the fp-16 network and
compared the performance of Intel CPUs and NVIDIA GPUs in the fp-32 network. The
GPUs of mobile SoCs have a significant performance difference compared with worksta-
tion GPUs. Furthermore, even when the GPUs are the same, there is a difference in the
performance depending on mobile SoCs. To explore the feasibility of using the comparison
models in a mobile environment, we analyzed the correlation between workstation and
mobile GPUs in Table 4, which shows the indicator of the comparative analysis including
the GFLOPS of mobile chip and workstation GPUs. Although it is difficult to predict the
mobile performance of the models we tested, it can provide some guidance for our future
work. We will convert the models into mobile models to verify their performance.

7. Conclusions

Instance segmentation has gained attention in various areas of computer vision, lead-
ing to the development of many successful models. In this study, we tested and analyzed
state-of-the-art instance segmentation models. We categorized the target methods as
accuracy- and speed-focused models. We described the main contribution of each model
and summarized its algorithm and method. We performed an inference experiment in a
fixed environment with different GPUs to precisely compare and analyze these models
and discussed the results obtained through quantitative and qualitative analyses. All
speed-focused models run at real-time speed in the RTX 3090. Furthermore, Blendmask,
Centermask, and YolactEdge also run at real-time speed in the GTX 1080 Ti, however,
SOLOv2 and YOLACT do not run in real-time in the GTX 1080 Ti. Owing to the trade-off
between speed and accuracy, a balance between them should be maintained for real-time
use. Our experimental results show that using an FPN structure when designing a real-time
model is a potential solution. In on-device AI, real-time use is crucial, making inference
speed the most important factor. Although the performance of on-device AI chips is improv-
ing continuously, it is still inferior to that of workstation chips. Therefore, we investigated
state-of-the-art models to understand the relationship between platforms and estimated
the feasibility of on-device AI. However, it was difficult to predict the inference speed of
on-device AI because of the lack of prior research. Therefore, we will convert and validate
the model for on-device AI in future works; further, we will identify and analyze the factors
affecting the inference speed of mobile.
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