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Abstract: Data augmentation is a critical regularization method that contributes to numerous state-
of-the-art results achieved by deep neural networks (DNNs). The visual interpretation method
demonstrates that the DNNs behave like object detectors, focusing on the discriminative regions in
the input image. Many studies have also discovered that the DNNs correctly identify the lesions in
the input, which has been confirmed in the current work. However, for medical images containing
complicated lesions, we observe the DNNs focus on the most prominent abnormalities, neglecting
sub-clinical characteristics that may also help diagnosis. We speculate this bias may hamper the
generalization ability of DNNs, potentially causing false predicted results. Based on this consideration,
a simple yet effective data augmentation method called guided random mask (GRM) is proposed to
discover the lesions with different characteristics. Visual interpretation of the inference result is used
as guidance to generate random-sized masks, forcing the DNNs to learn both the prominent and
subtle lesions. One notable difference between GRM and conventional data augmentation methods is
the association with the training phase of DNNs. The parameters in vanilla augmentation methods
are independent of the training phase, which may limit their effectiveness when the scale and
appearance of region-of-interests vary. Nevertheless, the effectiveness of the proposed GRM method
evolves with the training of DNNs, adaptively regularizing the DNNs to alleviate the over-fitting
problem. Moreover, the GRM is a parameter-free augmentation method that can be incorporated into
DNNs without modifying the architecture. The GRM is empirically verified on multiple datasets
with different modalities, including optical coherence tomography, X-ray, and color fundus images.
Quantitative experimental results show that the proposed GRM method achieves higher classification
accuracy than the commonly used augmentation methods in multiple networks. Visualization
analysis also demonstrates that the GRM can better localize lesions than the vanilla network.

Keywords: deep neural networks; data augmentation; regularization; medical image analysis

1. Introduction

Deep neural networks (DNNs) have revolutionized the field of medical image analysis
by learning to extract high-level abstract features in a data-driven manner, rather than the
conventional hand-crafted ones with limited representative ability. Both the convolutional-
based [1] and Transformer-based [2] networks have achieved enormous breakthroughs
in multiple medical image analysis tasks, such as disease classification, target volume
segmentation, lesion detection, and image reconstruction. Based on DNNs, impressive
results on numerous diseases have been reported, including the retinopathy of prematurity
(ROP) [3], retinal diseases [4,5], breast cancer [6], lung diseases [7], and stomach diseases [8].
These encouraging results demonstrate that DNNs are promising methods to help design
computer-aided diagnosis (CAD) systems.
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Despite the progress achieved by leveraging the DNN model, the interpretability of
the outputted result is a critical aspect that clinicians interested in. A CAD system that
utilizes DNNs may output the classification result (e.g., benign or malignant) based on the
patient’s medical imaging. However, which part of the input image associates with the
output helps explain the classification result. The interpretability may also contribute to
reducing the false positive or false negative samples, preventing the DNNs from failing
silently when the inputs belong to the type of out-of-distribution samples [9,10]. It has
been shown that the DNNs behave as object detectors, even without the supervision of the
location of the object [11]. There exist several well-known visual interpretation methods
that attempt to bridge the object within the input image and the output of DNNs, e.g.,
guided backpropagation [12], class activation mapping (CAM) [13], and gradient-weighted
class activation mapping (Grad-CAM) [14]. Based on these interpretation methods, re-
cent works show that the DNNs indeed localize the potential lesions in recognition of
multiple diseases [3,15].

Figure 1 shows three OCT [4] samples that are diagnosed with CNV, accompanied
by the visualization result of CAM. By observing the example in the first row, it can be
found most of the lesions are located in the center of the image, and the result of CAM
shows that the network accurately locates those abnormalities. Given the masked CAM
shown on the right side of the first row, it is hard to determine the diagnosis since most
lesions are masked. For the second and third examples, the lesions are scattered in the
image, much more complicated than those in the first sample. Moreover, the corresponding
CAM results indicate that the model only identified part of the lesions on the image’s right
side. In the third column, green squares are used to point out the lesions ignored by the
model, and the CAM-localized regions are masked. These visualization results reveal that
the DNNs may bias toward the most distinguishing features in the input, ignoring other
sub-clinical lesions that contain valuable information. We suspect that the above limitation
may constrain the DNNs’ robustness to the variations of the lesions, causing false-negative
predictions when the lesions in the image are not prominent. Ideally, it is preferred for the
DNNs to recognize both the principal and subtle lesions in the input as clinicians do.

Faced with the aforementioned limitation, the core idea of the proposed method is to
leverage the information contained in the CAM as a guide to discover the potential ignored
lesions in the input. The visual interpretation result reveals the areas the DNNs focused
on. Therefore, the rest may contains ignored sub-clinical lesions that we are interested
in. To discover those lesions, a vanilla approach is to fully mask the areas indicated by
the visual interpretation, enforcing the DNNs to give the prediction by utilizing the rest
of the regions. This approach sounds reasonable for the second and third rows shown in
Figure 1, where the DNNs are possible to predict correctly based on the lesions marked by
the green squares. However, it is hard to predict the first sample based on the masked input
in Figure 1, since critical information in the input is not given. A desirable approach is to
moderately mask the potential lesions with the help of visual interpretations without the
complete loss of valuable information. Thus, the DNNs can adapt to the inputs that contain
either simplified or complicated lesions. Based on this consideration, this paper proposes a
simple yet effective data augmentation method called guided random mask (GRM), which
randomly masks the areas indicated by the visual interpretation during the training phase.
The term “guided” in GRM refers to the information provided by the visual interpretation,
and “random mask” implies the stochasticity that produces the effect of regularization.

The proposed GRM is a data augmentation method that can prevent the DNNs
from focusing only on prominent input lesions and can better utilize spatial contextual
information. Notably, the GRM is a parameter-free method that can accommodate lesions
with different scales and complexity. It is known that data augmentation plays a vitally
important role in the training of DNNs to mitigate the problem of over-fitting. One
inspiration of the proposed GRM is the cutout [16], which randomly masks the input with a
fixed size area and helps the DNNs achieve state-of-the-art performance on CIFAR [17] and
SVHN [18] datasets. However, compared with the CIFAR and SVHN with relatively small
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image sizes (32 × 32), it is much harder to apply the cutout to high-resolution medical
images because of the hyper-parameter tuning. The hyper-parameter in the cutout is
the size of the mask, which can be regarded as the strength of regularization in training
DNNs. Its optimal value is task-dependent and requires grid search to achieve the best
performance, which may limit its effectiveness in practice. On the contrary, the proposed
GRM eliminates the difficulty in hyper-parameter tuning by using the guidance provided
by the visual interpretation. Unlike the fixed mask size in cutout, the one in the proposed
GRM is adaptively adjusted along with the training of DNNs, making it applicable to
recognition tasks with varied scales and complexity of lesions.

(a) Sample1

(b) Sample2

(c) Sample3

Figure 1. Three choroidal neovascularization (CNV) samples containing a neovascular membrane.
Each row represents an optical coherence tomography (OCT) sample. The three columns denote the
original OCT image, the visualization result of CAM, and the image with CAM masked, respectively.
For the right-most image in all three rows, the white masks represent the result area of CAM, and the
green squares denote the lesions ignored by DNNs. Detailed illustration of dataset and computation
principle of CAM can be found in Section 3.

The contributions of the paper can be summarized as follows:

(i) We found that the DNNs may bias toward the most prominent features and ignore
the sub-clinical ones when the input image contains complicated lesions.

(ii) A parameter-free data augmentation method called GRM is proposed, which uti-
lizes visual interpretation of the prediction result to regularize the training of
DNNs adaptively.

(iii) Visual interpretation demonstrates that DNNs coupled with GRM can more effec-
tively utilize the contextual information than the vanilla models.
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(iv) Ablation studies on multiple datasets, including OCT, X-ray, and ultrasound images,
empirically show that the GRM substantially surpasses the benchmark method on
various tasks.

The rest of the paper is organized as follows. Section 2 summarizes the related works
about the applications in medical imaging and common augmentation methods used for the
training of DNNs. Section 3 first illustrates the three types of medical imaging datasets used,
followed by a detailed explanation of the proposed method. Section 4 shows the results of
extensive experiments, including the comparison of the baseline model and other well-known
related augmentation methods. Visualization analysis is also used to verify the effectiveness of
the GRM. Finally, Section 5 summarizes and concludes the GRM. The source code is available
at https://github.com/hujunjiescu/GRM, accessed on 1 January 2022.

2. Related Works
2.1. DNNs in Medical Image Analysis

DNNs have become ubiquitous methods in the field of medical image analysis, where
Deep Convolutional Neural Networks (DCNNs) [1,19,20] and the recently emerged Vision
Transformer (ViT) [2] are the two most prevalent paradigms. The following two paragraphs
briefly demonstrate their applications in medical image analysis tasks.

For the DCNNs, starting from 2012 when AlexNet [19] won the ILSVRC-2012 competi-
tion [21], many breakthroughs in vision-related tasks have been achieved using DCNNs.
Several key factors contribute to the success of DCNNs, including massive annotated
high-quality datasets, powerful computation capability by utilizing graphics processing
units (GPUs), and novel architectures. Multiple architectures of DCNNs proposed in the
natural image field have also been successfully applied in medical images. For example,
Inception-V3 [22] has been used to identify the retinal diseases in OCT images [4]. Exper-
imental results demonstrate that DCNNs outperform some human experts and can aid
in expediting the diagnosis in clinical practice. A three-stage DCNNs-based architecture
is proposed in [3] to recognize the existence of ROP based on the fundus images, where
multiple popular architectures including VGG [23], GoogLeNet [20], and ResNet [1] de-
livered promising performance. A novel network architecture called U-Net is proposed
in [24] to accomplish biomedical segmentation tasks in an end-to-end manner, surpassing
the compared methods by a large margin. This tremendous success makes the U-Net a
benchmark in biomedical segmentation tasks. Lots of U-Net’s variations have lately been
proposed by incorporating attention mechanism [15,25,26], residual convolution blocks [27],
etc. Besides the applications in disease diagnoses, DCNNs have also achieved remarkable
progress in image reconstruction [28], denoising [29,30], etc.

Transformer [31] is an attention-based model that was initially proposed to solve
machine translation tasks. It achieves better performance than the conventional recurrent
models, raising expectations that it may also be applicable to the image field. Many
researchers attempt to bridge the gap between natural language processing (NLP) and
vision, and ViT [2] is one of the well-known Transformer-based models that achieves
promising results on the natural image classification task. In addition to the natural
image-related tasks, Transformer has also been gaining attention in medical image analysis.
Hatamizadeh et al. [32] proposes a Transformer-based segmentation architecture called
UNETR that combines the U-Net [24] with Transformer to accomplish the volumetric
segmentation task. It achieves the state-of-the-art performance on the dataset of Multi-Atlas
Labeling Beyond The Cranial Vault [33] and Medical Segmentation Decathlon (MSD) [34].
A relation Transformer network (RTNet) is proposed in [35] that leverage the Transformer
to exploit and interact with the relationships between the lesions and vessels. TransMed
is proposed in [36] to incorporate the advantages of DCNNs and Transformer to perform
the classification task of multi-model medical image. By combining the feature extraction
ability of DCNNs and the spatial relationship modeling capacity of Transformer, TransMed
achieves better accuracy than conventional DCNNs-based models.

https://github.com/hujunjiescu/GRM
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Even the Transformer delivered competitive performance compared with DCNNs: [37]
recently showed that a pure DCNN can surpass the state-of-the-art Transformer by deliber-
ately designing the DCNN’s component and architecture. It is hard to say which one is
more overwhelming than another since both the DCNNs and Transformers have unique
advantages in object recognition.

2.2. Augmentation Methods for Training DCNNs

A massive annotated dataset is an indispensable factor for the success of DNNs since
both the DCNNs and Transformers typically have millions of parameters, implying the
potential over-fitting problem when the amount of training dataset is limited. During the
training phase, it is common to utilize regularization methods to alleviate the over-fitting
risk, thus improving the generalization ability. Data augmentation, which aims to increase
the diversity of training data, is a frequently used regularization method that contributes
to many state-of-the-art results on both natural and medical image analysis tasks.

Current data augmentation methods mainly focus on the domains of spatial and
intensity. In the spatial domain, the random crop and flip for the CIFAR [17] dataset have
become the standard operations during the training phase [1,16]. U-Net [24] shows that
excessive data augmentation by applying elastic deformation to the training dataset is
critical for biomedical segmentation, particularly when the number of training samples
is limited. For the intensity domain, common augmentation methods include brightness
enhancement [38], color transformation [39], noise injection [40], blurring [41] etc. In addi-
tion to the domains of spatial and intensity, another type of effective augmentation method
is mixup [42], which generates new training samples through the convex combination of
random paired examples and their labels. Mixup and its variant [43] have also been applied
to medical image segmentation tasks.

Perhaps one of the closest works to ours is the cutout approach [16], which augments
the spatial domain by randomly masking squared regions in the input image. Cutout
can be regarded as a variant of dropout [44] that randomly drops neurons during the
training phase to reduce co-adaptations. Instead of dropping neurons in the dropout,
cutout randomly drops squared pixels in the input image. Despite the progress brought by
the cutout, one of its limitations lies in the difficulty of determining the optimal masked
size (suppose is r) in the input image. The target size varies from the task, indicating that
the optimal value of r is task-dependent and can only be determined by trial-and-error. The
main reason behind this issue is the separation between the data augmentation and the
training phase of DNNs. The proposed GRM method eliminates the problem by leveraging
the guidance from the visual interpretation to determine the augmentation parameters,
thus bridging the gap between the data augmentation and the training phase. The proposed
GRM method has two significant advantages over the cutout. First, the GRM can adaptively
adjust the size of the mask with the guidance of visual interpretation without specifying
the hyper-parameter r. Second, the GRM can efficiently utilize the contextual information
and discover the potential sub-clinical lesions by masking the target region. Essentially, the
GRM can be regarded as a regularizer that alleviates the over-fitting problem.

3. Data and Methodology
3.1. Data

Three types of medical imaging datasets are used in the experiments, including OCTs
of retinal diseases, X-rays of pneumonia, and color fundus images of glaucoma. Table 1
summarizes the subset of these three datasets used in the experiments. The retinal diseases
dataset comprises four classes, i.e., normal, choroidal neovascularization (CNV), diabetic
macular edema (DME), and drusen. The pneumonia dataset contains two classes: normal
and pneumonia. Similar to the pneumonia dataset, the glaucoma dataset includes normal
and glaucoma as the two classes. All three datasets are open source. The retinal dis-
eases and pneumonia dataset can be downloaded at https://data.mendeley.com/datasets/
rscbjbr9sj/3, accessed on 1 January 2022, and the glaucoma dataset can be downloaded at

https://data.mendeley.com/datasets/rscbjbr9sj/3
https://data.mendeley.com/datasets/rscbjbr9sj/3
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https://doi.org/10.5281/zenodo.5793241, accessed on 1 January 2022. Illustrations of these
three datasets can be found in Figure 2. Each dataset is manually split into three parts,
including training, validation, and test datasets. The experimental results are reported on
the test dataset by using the model that achieves the best metric on the validation part.

Normal DME

CNVDrusen

(a) Retinal diseases in the modality of OCT.

Normal Pneumonia

(b) Pituitarium in the modality of X-ray.

GlaucomaNo glaucoma

(c) Glaucoma in the modality of color image.

Figure 2. Characteristics of different classes in the three datasets.

Table 1. Statistics of the used three medical imaging datasets.

Part Modality Task Classes Training
Samples

Validation
Samples Test Samples

Retinal
diseases Eyes OCT Classification 4 4000 1000 1000

Pneumonia Chest X-ray Classification 2 4632 600 624

Glaucoma Eyes Color fundus
image Classification 2 5232 744 744

https://doi.org/10.5281/zenodo.5793241
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3.2. Methodology

The proposed GRM is a data augmentation method that bridges the augmentation
characteristics with the training phase of the model to identify the ignored sub-clinical
lesions adaptively. Two problems need to be solved to achieve the adaptive regularization
effect, that is (1) how to discover the region of interest (ROI) that indicates the location
of the potential lesions and (2) how to utilize the information contained in the ROI. The
corresponding solutions to the two problems are demonstrated in the following subsections.

3.2.1. Localizing Potential Lesions

Consider the C-classes classification task based on DNNs, including the DCNNs and
Transformers. Given the input image x, the DNNs denoted as F(x; W) would output the
prediction result aL after the layer-by-layer forward computation, where L denotes the
number of layers in the DNNs. aL is a vector in the length of C, whose elements indicate
the probability of each class. Generally, the largest component in aL, suppose aL

c , would
be the category assigned to the input x. What we are interested in is which part in the x
contributes to the class c.

There are multiple ways to solve the above problem. Here, the CAM [13] is utilized
for its computational efficiency and simplicity. An essential component in the CAM is
the global average pooling (GAP), which is first proposed in the NIN [45] architecture to
reduce the use of fully connected (FC) layers. The GAP average the feature maps along
the dimension of the channel to reduce the features from a three-dimensional tensor to
a one-dimensional vector. In the modern architecture of DNNs, it is common to use the
GAP in the penultimate layer to get the global representation of the input, followed by
an FC layer whose dimension is C. The core idea of CAM can be regarded as the reverse
computation of the above steps, where the learnable weight in the last FC layer (which can
be considered as the importance of feature per channel) is used to weight the extracted
features to indicate which part in the input is associated with the prediction.

Formally, suppose the features fed into the GAP are denoted as aL−1 in the shape of
[K, W, H] that indicate the number of channels, width, and height, respectively. W L−1 rep-
resents the learnable weight within the last FC layer in the shape of [C, K]. The probability

of class c is then given by the softmax equation aL
c = exp(zL

c )

∑C
i=1 exp(zL

i )
. The scalar variable zL

c is

computed as:

zL
c =

K

∑
k=1

W L−1
c,k ·

W

∑
w=1

H

∑
h=1

aL−1
k,w,h. (1)

The summation on the right side of the above equation represents the GAP, which can
be regarded as the feature’s context representation along the dimension of the channel. The
parameter W L−1 thus indirectly represents the contribution of each channel in the aL−1 to
the predicted score. By leveraging the information contained in W L−1 to integrate aL−1 in
a channel-wise way, it is then possible to highlight the probable areas corresponding to the
predicted class. This computation process can be formulated as:

Mc =
K

∑
k=1

W L−1
c,k · aL−1

k , (2)

where Mc denotes the CAM for class c. Each channel in aL−1 represents a visual pattern
discovered by DNNs. Therefore the CAM can be considered as a weighted summation
of the presence of each visual pattern at different spatial locations. Note that the CAM
represents the visual pattern in the feature-level’s spatial resolution, which is much smaller
than the input image. The CAM is required to be upsampled to the resolution of the input
image in order to identify the image regions corresponding to the predicted category.
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3.2.2. Guided Random Mask

Having identified the possible lesions indicated by the CAM, the next problem to be
tackled is how to utilize it to regularize the training of DNNs. We aim to realize moderate
regularization effectiveness, that is, to avoid entirely masking the lesions that may cause
strong regularization or mask regions with a fixed size that introduce an extra hyper-
parameter. Based on this consideration, we propose mask regions with a random size
guided by CAM. Figure 3 illustrates the overall computation steps of the proposed GRM
method. First, the inference of the input image is required in order to identify its category
and locate the potential lesions, which is indicated by the procedures of 1, 2, 3. The next
step is generating the bounding box of the CAM, which embodies the majority of regions
with high values in CAM. The bounding box of CAM is computed from the binarized CAM,
which is accomplished by using the 90th percentile of the original CAM (i.e., a pixel larger
than the 90th percentile is 1, otherwise it 0). Then we randomly choose the central point in
the bounding box and allocate the width and height with their maximum value the same
as that in the bounding box. The bounding box of CAM and randomly generated mask are
shown as the white and red boxes in Figure 3, respectively. Finally, the random mask is
applied to the raw input by setting the area in the input to 0, later used to train the DNNs.
Note that the GRM method is only used in the training phase, not including the test phase.

Step I. Forward Inference

Normal, 0.1

CNV, 0.2

DME, 0.6

Drusen, 0.1

1. Inference

6. Training

Step II. Guided Random Mask

GAP …
…

Classification-based network

2. Inference result

3. Localize 
potential lesions

4. Generate 
bounding box

5. Apply 
random mask

Figure 3. Computation procedures of the proposed GRM method for the classification task.

The above computation processes are designed for the classification task, where its
application to segmentation tasks is straightforward. The inference computation to compute
CAM can be omitted for the segmentation task since the target is precisely described
in the label. It only requires finding the bounding box of the target and generating a
corresponding random mask within it. The introduced computational cost is negligible
and can be implemented as the preprocessing procedure.

The computational process of the proposed GRM is summarized in Algorithm 1.
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Algorithm 1: Algorithm of the proposed GRM method for the classification task.

Input : raw input image a0

Output : random masked image
for layer l from 1 to L − 1 do

// forward computation
al = F(al−1; W l−1) ;

end
zL = ∑K

k=1 W L−1
k · ∑W

w=1 ∑H
h=1 aL−1

k,w,h ;
// find the category
c = argmax(zL) ;
// compute and upsample CAM
M̃c = upsample(∑K

k=1 W L−1
c,k · aL−1

k ) ;
// find bounding box
(X, Y, W, H) = BBox(M̃c) ;
// uniform sampling center point
x = uniform(X, X + W) ;
y = uniform(Y, Y + H) ;
// uniform sampling width and height
w = uniform(1, W) ;
h = uniform(1, H) ;
// mask input a0

a0[x − w : x + w, y − h : y + h] = 0

4. Experimental Setup and Results
4.1. Experimental Setup

Multiple modern network architectures including Inception-V3 [22], ResNet-50 [1],
DenseNet-121 [46], and ViT [2] are used to verify the generalization of the GRM method.
The cross-entropy is used as the cost function for the classification tasks. For the CNNs
(ResNet-50, Inception-V3, and DenseNet-121), Adadelta [47] is used as the optimizer to
minimize the cost function, where the learning rate is set to 1.0. For the ViT, AdamW [48] is
used as the optimizer, coupled with a cosine decay learning rate scheduler and 20 epochs
of linear warm-up. The learning rate is set to 0.0001. The size of the image is fixed as 224
for all the experiments.

The number of training epochs is set to 300, which is long enough for the convergence
of training. All networks are implemented by using PyTorch [49]. The experiments are
carried out on a server with Linux OS and CPU Intel Xeon E5-2620 @2.4GHz, four NVIDIA
TITAN RTX GPUs, and 64 GB of RAM.

4.2. Ablation Studies of GRM

To verify the effectiveness of the proposed GRM method, we first quantitatively
compare the network with and without the GRM. Table 2 shows the accuracy of multiple
networks on the three tasks. For the vanilla network, it can be found that the Inception-V3
achieves the highest accuracy among all the tasks. For example, the accuracy of Inception-
V3 on retinal diseases is 94.9, far beyond the 89.9 of the ViT. The inferiority of ViT can be
attributed to the difficulty in hyper-parameter tuning and the limited size of the medical
image dataset, which significantly increase the risk of over-fitting. By comparing the vanilla
network with the one with GRM applied, it can be observed that the accuracy of GRM is
unanimously improved among all the tasks, regardless of the network architecture. The
highest improvement is from 90.0 to 94.2 in the ResNet-50 on the pneumonia task. A
varying degree of improvement is also obtained for the ViT in the three datasets. These
encouraging results illustrate that the proposed GRM is broadly applicable to datasets
composed of varied modalities and class numbers.
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Table 2. Comparison of accuracy (%) between the vanilla networks and the one applied with GRM
on the three medical image analysis tasks.

Task Network Vanilla GRM

Retinal diseases

Inception-V3 94.9 96.7

ResNet-50 93.7 96.3

DenseNet-121 93.6 96.0

ViT 89.9 92.6

Pneumonia

Inception-V3 90.4 92.8

ResNet-50 90.0 94.2

DenseNet-121 88.8 92.1

ViT 90.2 91.8

Glaucoma

Inception-V3 89.2 91.6

ResNet-50 87.5 90.6

DenseNet-121 88.9 90.0

ViT 87.5 88.5

One of the reasons for the effectiveness of GRM is the adaptive regularization, which
helps the network better extract the context information and alleviate the over-fitting issue.
To delve into the training procedure, Figure 4 summarizes the training and validation
loss of ResNet-50 in the three tasks. It can be observed the regularization effectiveness
brought by GRM in the task of retinal diseases in Figure 4a, where the training loss of
GRM (red dotted line) decreases slower than the one in the vanilla network (red solid line),
implying the GRM helps to mitigate over-fitting to the training dataset. On the contrary,
the validation loss of GRM (green dotted line) is distinctly lower than the one of baseline
(green solid line), demonstrating that the GRM increases the network’s generalization
capacity. Similar convergence results can be found in the pneumonia task. The effectiveness
of GRM can also be notably found in the glaucoma task, where the validation loss of the
vanilla ResNet-50 increases rapidly from the 50th epoch, and its ascending speed goes
faster along the training epochs. This convergence behavior can be commonly observed in
the training of networks. By adding GRM to the network, the stability of validation loss is
significantly improved, as shown in the green dotted line in Figure 4c. These convergence
results confirmed the regularization impact brought by the GRM, which helps combat
the over-fitting issue on the training dataset and boosts the generalization ability on the
validation dataset.

4.3. Comparison between GRM with Other Augmentation Methods

To further validate the effectiveness of the GRM, we also compare it with cutout [16]
and mixup [42]. As shown in Table 3, the GRM is superior to the cutout in improving the
diagnosis accuracy. The most significant improvement happens in the Inception network
for retinal diseases, which raises the accuracy from 94.3 to 96.7. For pneumonia and
glaucoma diseases, different degrees of improvement can also be found in various networks.
Experimental results in Table 3 also demonstrate the advantage of GRM over mixup. It
can be observed that the GRM outperforms mixup in most tasks except the ViT of retinal
diseases, where the accuracy of mixup is 92.8, marginally higher than the 92.6 of GRM. One
significant advantage of the GRM and cutout lies in the adaptivity to the inputs. The mask
size in the cutout is fixed, whereas the GRM can adaptively adjust the size and location
of the mask according to the input. For the Mixup, it combines paired inputs and labels
convexly to alleviate the overfitting problem, which can be used together with GRM to
increase the capacity of the networks.
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(a) Retinal diseases (b) Pneumonia

(c) Glaucoma

Figure 4. Convergence comparison between the vanilla ResNet-50 and ResNet-50 applied with the
proposed GRM on the retinal disease, pneumonia, and glaucoma tasks, respectively.

Table 3. Comparison of accuracy (%) between the GRM and related methods on the three medical
image analysis tasks.

Task Network GRM Cutout Mixup

Retinal diseases

Inception-V3 96.7 94.3 95.8

ResNet-50 96.3 94.1 92.8

DenseNet-121 96.0 95.1 95.6

ViT 92.6 92.0 92.8

Pneumonia

Inception-V3 92.8 89.2 91.2

ResNet-50 94.2 89.7 91.5

DenseNet-121 92.1 92.0 91.0

ViT 91.8 91.1 89.1

Glaucoma

Inception-V3 91.6 89.0 91.4

ResNet-50 90.6 87.3 89.4

DenseNet-121 90.0 89.6 88.8

ViT 88.5 86.2 86.1

4.4. Visualization Analysis

The motivation of GRM roots in the potential bias of the vanilla network, which attempts
to capture the most prominent characteristics of lesions and may ignore the sub-clinical ones. To
demonstrate whether the GRM can remit the issue or not, Figure 5 compares the visualization
results between the vanilla network and the one applied with GRM on five retinal diseases
cases. The first row represents a relatively simple sample that contains abnormals in the center
of the image. It can be found that both of the two networks have precisely identified the lesions.
For the sample shown in the second row, it can be seen that the vanilla network biases to the
right-most lesions and neglects the abnormals located in the center. On the contrary, the GRM
has accurately discovered most of the lesions. Similar results can be observed in the third
sample. For the fourth sample containing complicated lesions, the vanilla network biases the
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right-bottom areas, while the GRM has precisely identified intricate lesions. In the fifth sample,
both networks found the most distinguished lesion on the right side, whereas only the GRM
has identified the nearby subtle lesions.

These visualization results demonstrate two points. First, the DNNs are object de-
tectors that attempt to discover the abnormalities in the input image. It performs well in
those images that contain prominent characteristics, such as the sample shown in the first
row in Figure 5. Second, the vanilla DNNs may fail to capture the prominent and subtle
lesions simultaneously for the image comprised of complicated features. With the help
of GRM, the DNNs can efficiently utilize the context information and show much better
performance than the vanilla network.

Raw input Vanilla GRM

Figure 5. Qualitative comparison between the vanilla ResNet-50 and the ResNet-50 applied with the
proposed GRM on five retinal disease cases. Each row denotes a case.
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5. Conclusions

This paper proposes a simple yet effective data augmentation method named GRM
that aims to discover the potential sub-clinical lesions ignored by the DNNs. The visual
interpretation results are used as guidance to help locate the ROIs. Random masking of
those ROIs enforces the DNNs to better utilize the context information. Moreover, it also
increases the DNNs’ robustness to the input since the model is required to predict the
category from the incomplete input. Conventional data augmentation method (e.g., cutout)
requires to specify the size of the mask, which increases the difficulty during practice when
the size of the target varies. On the contrary, the proposed GRM adaptively changes the
size and location of the mask according to the characteristics of the target.

Ablation experiments on multiple network architectures are carried out to validate
the effectiveness of GRM. The GRM can substantially increase the networks’ recognition
accuracy on different tasks compared to the vanilla network. The network applied with
GRM exhibits evident lower loss on the validation dataset, implying that the GRM helps to
increase the networks’ generalization capacity. Visualization experiments further demon-
strate that the GRM contributes to exploit the sub-clinical lesions and helps reduce the
false predictions during practice. In the training phase, the GRM leverages the CAM of
the inference result as guidance to randomly mask the input, which is later used to train
the network. From a more general point of view, the GRM can be applied iteratively, i.e.,
the inference and training of the sample can be repeated multiple times till the stability of
CAM is achieved. The iterative method may contribute to the learning process of the net-
work because of the enhanced regularization effectiveness. The exploration of the iterative
version of GRM is left as a future work.

Author Contributions: Methodology, J.H.; writing—original draft, X.Y.; writing—review and editing,
S.W. and J.H. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China under
Grant 62106162, China Postdoctoral Science Foundation under Grant 2021M692269, and Sichuan
University Postdoctoral Science Foundation under Grant 2022SCU12080.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
2. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;

Gelly, S.; et al. An Image is Worth 16 × 16 Words: Transformers for Image Recognition at Scale. In Proceedings of the International
Conference on Learning Representations, Virtual, 26 April–1 May 2020.

3. Hu, J.; Chen, Y.; Zhong, J.; Ju, R.; Yi, Z. Automated analysis for retinopathy of prematurity by deep neural networks. IEEE Trans.
Med. Imaging 2018, 38, 269–279. [CrossRef] [PubMed]

4. Kermany, D.S.; Goldbaum, M.; Cai, W.; Valentim, C.C.; Liang, H.; Baxter, S.L.; McKeown, A.; Yang, G.; Wu, X.; Yan, F.; et al.
Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 2018, 172, 1122–1131. [CrossRef]
[PubMed]

5. Hu, J.; Chen, Y.; Yi, Z. Automated segmentation of macular edema in OCT using deep neural networks. Med. Image Anal. 2019,
55, 216–227. [CrossRef] [PubMed]

6. Wang, Z.; Zhang, L.; Shu, X.; Lv, Q.; Yi, Z. An end-to-end mammogram diagnosis: A new multi-instance and multiscale method
based on single-image feature. IEEE Trans. Cogn. Dev. Syst. 2020, 13, 535–545. [CrossRef]

7. Anthimopoulos, M.; Christodoulidis, S.; Ebner, L.; Christe, A.; Mougiakakou, S. Lung pattern classification for interstitial lung
diseases using a deep convolutional neural network. IEEE Trans. Med. Imaging 2016, 35, 1207–1216. [CrossRef]

8. Lu, Y.; Chen, Y.; Zhao, D.; Liu, B.; Lai, Z.; Chen, J. CNN-G: Convolutional neural network combined with graph for image
segmentation with theoretical analysis. IEEE Trans. Cogn. Dev. Syst. 2020, 13, 631–644. [CrossRef]

9. DeVries, T.; Taylor, G.W. Learning confidence for out-of-distribution detection in neural networks. arXiv 2018, arXiv:1802.04865.
10. Jiang, H.; Kim, B.; Guan, M.; Gupta, M. To trust or not to trust a classifier. In Advances in Neural Information Processing Systems;

The MIT Press: Cambridge, MA, USA, 2018; pp. 5541–5552.
11. Zhou, B.; Khosla, A.; Lapedriza, A.; Oliva, A.; Torralba, A. Object detectors emerge in deep scene cnns. arXiv 2014, arXiv:1412.6856.
12. Springenberg, J.T.; Dosovitskiy, A.; Brox, T.; Riedmiller, M. Striving for simplicity: The all convolutional net. arXiv 2014,

arXiv:1412.6806.

http://doi.org/10.1109/TMI.2018.2863562
http://www.ncbi.nlm.nih.gov/pubmed/30080144
http://dx.doi.org/10.1016/j.cell.2018.02.010
http://www.ncbi.nlm.nih.gov/pubmed/29474911
http://dx.doi.org/10.1016/j.media.2019.05.002
http://www.ncbi.nlm.nih.gov/pubmed/31096135
http://dx.doi.org/10.1109/TCDS.2019.2963682
http://dx.doi.org/10.1109/TMI.2016.2535865
http://dx.doi.org/10.1109/TCDS.2020.2998497


Appl. Sci. 2022, 12, 9099 14 of 15

13. Zhou, B.; Khosla, A.; Lapedriza, A.; Oliva, A.; Torralba, A. Learning deep features for discriminative localization. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2921–2929.

14. Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-cam: Visual explanations from deep networks
via gradient-based localization. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy,
27–29 October 2017; pp. 618–626.

15. Yang, H.; Kim, J.Y.; Kim, H.; Adhikari, S.P. Guided soft attention network for classification of breast cancer histopathology images.
IEEE Trans. Med. Imaging 2019, 39, 1306–1315. [CrossRef]

16. DeVries, T.; Taylor, G.W. Improved regularization of convolutional neural networks with cutout. arXiv 2017, arXiv:1708.04552.
17. Krizhevsky, A.; Hinton, G. Learning Multiple Layers of Features from Tiny Images; Citeseer: State College, PA, USA, 2009.
18. Netzer, Y.; Wang, T.; Coates, A.; Bissacco, A.; Wu, B.; Ng, A.Y. Reading digits in natural images with unsupervised feature learning.

In Proceedings of the NIPS Workshop on Deep Learning and Unsupervised Feature Learning, Granada, Spain, 16 December 2011.
19. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Advances in Neural

Information Processing Systems; The MIT Press: Cambridge, MA, USA, 2012; pp. 1097–1105.
20. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper

with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA,
7–12 June 2015; pp. 1–9.

21. Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Li, F.F. ImageNet: A large-scale hierarchical image database. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255.

22. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826.

23. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
24. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the

International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October
2015; Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241.

25. Oktay, O.; Schlemper, J.; Folgoc, L.L.; Lee, M.; Heinrich, M.; Misawa, K.; Mori, K.; McDonagh, S.; Hammerla, N.Y.; Kainz, B.; et al.
Attention u-net: Learning where to look for the pancreas. arXiv 2018, arXiv:1804.03999.

26. Roy, A.G.; Navab, N.; Wachinger, C. Concurrent spatial and channel ‘squeeze & excitation’ in fully convolutional networks. In
Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Granada, Spain,
16–20 September 2018; Springer: Berlin/Heidelberg, Germany, 2018; pp. 421–429.

27. Alom, M.Z.; Hasan, M.; Yakopcic, C.; Taha, T.M.; Asari, V.K. Recurrent residual convolutional neural network based on u-net
(r2u-net) for medical image segmentation. arXiv 2018, arXiv:1802.06955.

28. Shan, H.; Padole, A.; Homayounieh, F.; Kruger, U.; Khera, R.D.; Nitiwarangkul, C.; Kalra, M.K.; Wang, G. Competitive
performance of a modularized deep neural network compared to commercial algorithms for low-dose CT image reconstruction.
Nat. Mach. Intell. 2019, 1, 269–276. [CrossRef]

29. Yang, Q.; Yan, P.; Zhang, Y.; Yu, H.; Shi, Y.; Mou, X.; Kalra, M.K.; Zhang, Y.; Sun, L.; Wang, G. Low-dose CT image denoising using
a generative adversarial network with Wasserstein distance and perceptual loss. IEEE Trans. Med. Imaging 2018, 37, 1348–1357.
[CrossRef]

30. Shan, H.; Zhang, Y.; Yang, Q.; Kruger, U.; Kalra, M.K.; Sun, L.; Cong, W.; Wang, G. 3-D convolutional encoder-decoder network
for low-dose CT via transfer learning from a 2-D trained network. IEEE Trans. Med. Imaging 2018, 37, 1522–1534. [CrossRef]

31. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In
Advances in Neural Information Processing Systems; The MIT Press: Cambridge, MA, USA, 2017; Volume 30.

32. Hatamizadeh, A.; Tang, Y.; Nath, V.; Yang, D.; Myronenko, A.; Landman, B.; Roth, H.R.; Xu, D. UNETR: Transformers for 3D
Medical Image Segmentation. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa,
HI, USA, 4–8 January 2022; pp. 574–584.

33. Landman, B.; Xu, Z.; Igelsias, J.; Styner, M.; Langerak, T.; Klein, A. MICCAI multi-atlas labeling beyond the cranial vault–
workshop and challenge. In Proceedings of the MICCAI Multi-Atlas Labeling Beyond Cranial Vaul—Workshop Challenge,
Munich, Germany, 5–9 October 2015; Volume 5, p. 12.

34. Simpson, A.L.; Antonelli, M.; Bakas, S.; Bilello, M.; Farahani, K.; Van Ginneken, B.; Kopp-Schneider, A.; Landman, B.A.; Litjens, G.;
Menze, B.; et al. A large annotated medical image dataset for the development and evaluation of segmentation algorithms. arXiv
2019, arXiv:1902.09063.

35. Huang, S.; Li, J.; Xiao, Y.; Shen, N.; Xu, T. RTNet: Relation Transformer Network for Diabetic Retinopathy Multi-lesion
Segmentation. IEEE Trans. Med. Imaging 2022, 41, 1596–1607. [CrossRef]

36. Dai, Y.; Gao, Y.; Liu, F. Transmed: Transformers advance multi-modal medical image classification. Diagnostics 2021, 11, 1384.
[CrossRef]

37. Liu, Z.; Mao, H.; Wu, C.Y.; Feichtenhofer, C.; Darrell, T.; Xie, S. A ConvNet for the 2020s. arXiv 2022, arXiv:2201.03545.
38. Dong, H.; Yang, G.; Liu, F.; Mo, Y.; Guo, Y. Automatic brain tumor detection and segmentation using u-net based fully

convolutional networks. In Proceedings of the Annual Conference on Medical Image Understanding and Analysis, Edinburgh,
UK, 11–13 July 2017; Springer: Berlin/Heidelberg, Germany, 2017; pp. 506–517.

http://dx.doi.org/10.1109/TMI.2019.2948026
http://dx.doi.org/10.1038/s42256-019-0057-9
http://dx.doi.org/10.1109/TMI.2018.2827462
http://dx.doi.org/10.1109/TMI.2018.2832217
http://dx.doi.org/10.1109/TMI.2022.3143833
http://dx.doi.org/10.3390/diagnostics11081384


Appl. Sci. 2022, 12, 9099 15 of 15

39. Liskowski, P.; Krawiec, K. Segmenting retinal blood vessels with deep neural networks. IEEE Trans. Med. Imaging 2016,
35, 2369–2380. [CrossRef] [PubMed]

40. Christ, P.F.; Elshaer, M.E.A.; Ettlinger, F.; Tatavarty, S.; Bickel, M.; Bilic, P.; Rempfler, M.; Armbruster, M.; Hofmann, F.;
D’Anastasi, M.; et al. Automatic liver and lesion segmentation in CT using cascaded fully convolutional neural networks and 3D
conditional random fields. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted
Intervention, Athens, Greece, 17–21 October 2016, Springer: Berlin/Heidelberg, Germany, 2016; pp. 415–423.

41. Sirinukunwattana, K.; Pluim, J.P.; Chen, H.; Qi, X.; Heng, P.A.; Guo, Y.B.; Wang, L.Y.; Matuszewski, B.J.; Bruni, E.; Sanchez, U.; et al.
Gland segmentation in colon histology images: The glas challenge contest. Med. Image Anal. 2017, 35, 489–502. [CrossRef]

42. Zhang, H.; Cisse, M.; Dauphin, Y.N.; Lopez-Paz, D. mixup: Beyond empirical risk minimization. arXiv 2017, arXiv:1710.09412.
43. Bdair, T.; Navab, N.; Albarqouni, S. ROAM: Random Layer Mixup for Semi-Supervised Learning in Medical Imaging. arXiv

2020, arXiv:2003.09439.
44. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks

from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.
45. Lin, M.; Chen, Q.; Yan, S. Network in network. In Proceedings of the International Conference on Learning Representations,

Scottsdale, AZ, USA, 2–4 May 2013.
46. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708.
47. Kingma, D.; Ba, J. ADADELTA: An Adaptive Learning Rate Method. arXiv 2012, arXiv:1212.5701.
48. Loshchilov, I.; Hutter, F. Decoupled Weight Decay Regularization. In Proceedings of the International Conference on Learning

Representations, Vancouver, BC, Canada, 30 April–3 May 2018.
49. Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.; DeVito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.; Lerer, A. Automatic

differentiation in PyTorch. In Proceedings of the 31st Conference of Advances in Neural Information Processing Systems, Long
Beach, CA, USA, 4–9 December 2017. Avialble online: ttps://openreview.net/forum?id=BJJsrmfCZ (accessed on 30 July 2022).

http://dx.doi.org/10.1109/TMI.2016.2546227
http://www.ncbi.nlm.nih.gov/pubmed/27046869
http://dx.doi.org/10.1016/j.media.2016.08.008
ttps://openreview.net/forum?id=BJJsrmfCZ

	Introduction
	Related Works
	DNNs in Medical Image Analysis
	Augmentation Methods for Training DCNNs

	Data and Methodology
	Data
	Methodology
	Localizing Potential Lesions
	Guided Random Mask


	Experimental Setup and Results
	Experimental Setup
	Ablation Studies of GRM
	Comparison between GRM with Other Augmentation Methods
	Visualization Analysis

	Conclusions
	References

