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Abstract: Partial domain adaptation (PDA) is a framework for mitigating the covariate shift problem
when target labels are contained in source labels. For this task, adversarial neural network (ANN)
methods proposed in the literature have been proven to be flexible and effective. In this work, we
adapt such methods to tackle the more general problem of open-set domain adaptation (OSDA),
which further allows the existence of target instances with labels outside the source labels. The aim in
OSDA is to mitigate the covariate shift problem and to identify target instances with labels outside
the source label space. We show that the effectiveness of ANN methods utilized in the PDA setting is
hindered by outlier target instances, and we propose an adaptation for effective OSDA.

Keywords: domain adaptation; open-set setting; adversarial neural networks

1. Introduction

Supervised learning techniques work under the assumption that training and testing
datasets are drawn from the same distribution. Thus, traditional techniques require at least
some labeled data for the problem at hand so as to obtain a useful model upon training,
which, in many cases, is not possible. Domain adaptation (DA) [1] is a technique for
generalizing classifiers to different domains. More specifically, given two datasets with the
same label space, with one of them labeled (the source), a DA algorithm may retrieve labels
for the other (the target). Note that this does not make any assumption on the underlying
distributions of data, yet it is still quite restrictive, since it requires the two datasets to have
the same labels.

In practice, we are typically interested in extracting labels from datasets with much
larger label spaces than any specific task dataset [2]. To this end, the partial domain
adaptation (PDA) [2,3] framework was proposed, in which the assumption is that labels
for target data are contained within the larger label space of source data. Of course, the
creation of such general-purpose source datasets, which represent the entire label space
of any given specific task well, is unrealistic. As an example, some of the largest image
datasets currently available [4,5] are comprised of millions of images, but many classes are
under-represented.

To address this issue, open-set domain adaptation (OSDA) was proposed [6], essen-
tially combining open-set recognition (OSR) [7] and DA. The aim in OSDA is to automati-
cally extract the information from the source relevant to the target and to identify target
instances relevant to the source. That is, a non-empty intersection between the target and
source label spaces is assumed, and the goal is to identify source and target instances
with labels in the common label subspace. The advantage of identifying such instances is
two-fold: It allows us to minimize negative transfer (i.e., the inclusion of source-specific
features in the adapted representation) and to identify the subset of target instances that
can be reliably labeled through the source.

Appl. Sci. 2022, 12, 10052. https://doi.org/10.3390/app121910052 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app121910052
https://doi.org/10.3390/app121910052
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app121910052
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app121910052?type=check_update&version=2


Appl. Sci. 2022, 12, 10052 2 of 14

Note that we cannot hope to predict the label of a target instance belonging to a class
not represented in the source label space; however, the advantage of identifying which
instances belong to such classes is two-fold. Firstly, it allows us to minimize negative
transfer (i.e., the inclusion of source-specific features in the adapted representation) during
the adaptation procedure. Secondly, it allows us to identify the subset of target instances
that can be reliably labeled using this source.

In this paper, we propose an algorithm for tackling OSDA, which we term the =Doubly
Importance Weighted Adversarial Network (DIWAN), which was inspired by the distribution
reweighing techniques introduced in [8]. Our algorithm bridges the gap between the
adversarial neural network (ANN) techniques used in PDA and OSDA by taking into
account outlier target instances during adaptation. We prove that our algorithm constructs
a representation in the which source and target distributions of transfer-relevant instances
(TRI) are aligned. Moreover, we empirically demonstrate that in the open-set setting,
DIWAN outperforms non-adapted versions of the DA and PDA algorithms.

The rest of this paper is organized as follows: In Section 2, we present related work
and the contribution of DIWAN. Then, in Section 3, we provide the theoretical background
and the methodology used by DIWAN. Moreover, the theoretical support for this work is
presented in Section 4. An experimental evaluation of DIWAN is presented and discussed
in Section 5, and conclusions are drawn in Section 7.

2. Related Work and Contributions

Our algorithm relies on ANNs for DA, as they were successful in classical DA [9,10]
and PDA [2,3,8,11,12]. Such adversarial schemes for DA typically include a source model,
which is comprised of a classifier and a representer network, a target representer network,
and a domain discriminator. The source and target representer networks are embeddings
of the source and target data, respectively, into some latent space. During the adaptation,
the target representer and the domain discriminator antagonize each other, while the
source representer and classifier are either fixed with pre-trained weights or trained in a
supervised fashion.

At each iteration, the discriminator is presented with data from the source and target
domains embedded in latent space and trained to discriminate between the two. The
target representer is then trained using reversed discriminator gradients. This process can
be shown to minimize the Jensen–Shannon Divergence [13] between the distributions of
source and target data in latent space, mitigating the covariate shift problem. This standard
scheme is typically augmented by other networks to deal with PDA problems. For example,
in [2,3], a collection of domain discriminators were used to reweigh source instances so as
to ignore outlier classes in the source domain. In [8], a second domain discriminator was
used to reweigh source instances in a similar fashion. Moreover, in [11], both a domain
discriminator and classifier information were used to separate outlier source classes. Finally,
in [12], a shared-label classifier was used to re-weight instances, and it was trained using
information from the source classifier.

Contrary to previous works, we reweigh both source and target instances to correct
for target outliers. As in [8,11], we re-weight using a second domain discriminator, but
our scheme may be modified to use any heuristic for TRIs. Moreover, we use the obtained
weights to identify target outlier instances by setting a threshold on the target instance
weights.

In [6], OSDA was introduced and an algorithm was proposed for tackling OSDA
problems based on a constrained integer programming model. A rejection parameter
was used to tune open-space risk tolerance. In [14], the authors introduced a method
that relied on classifying outlier target instances as “unknown”, removing the need for a
rejection parameter but making classification harder. The model training utilized techniques
introduced in [15] for OSR that generated “unknown” target instances.

The main contribution of this work is the adaptation of existing algorithms for PDA to
achieve improved performance in the OSDA setting. Our method mitigates the covariate-
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shift problem only for source and target instances that have labels in the common labels’
subspace. We further show that our algorithm gives rise to a natural heuristic for identi-
fying target instances that are probably transfer relevant. We perform experiments and
empirically validate our approach. In Figure 1, we illustrate the effect of domain adaptation
in the presence of source and target outliers.

Figure 1. Alignment with source and target outliers. (Left): Source and target domain distributions.
The blue dashed line denotes a decision boundary before adaptation. (Right): The effect of adaptation;
common labels align, while source/target outlier instances are mainly ignored. This is best viewed
in color.

3. Theory and Methodology

The upshot of OSDA is the development of methods for partially labeling an unlabeled
dataset by using a model trained on a related dataset. Unlike typical DA, we assume that
there exist target instances with labels that are not contained in the source label space, i.e.,
outlier instances. We are interested in identifying those instances so as to ignore them
during the adaptation procedure. The rest of the instances, i.e., transfer-relevant ones, can
potentially be reliably labeled through the adaptation procedure.

As in typical DA works, we also assume a machine learning problem described by
a domain D = {X , X} and a task T = {Y , Y|X}, where X is a random variable (the
covariates) taking values in X and Y is a random variable (the labels) taking values in Y .
We assume the existence of two problems (DS, TS) and (DT , TT), where (a) XS = XT and
(b) Pr(XS) 6= Pr(XT). In the OSDA setting, we assume that YS ∩ YT 6= ∅ and

P(YS = y | XS = x, y ∈ YS ∩ YT) = Pr(YT = y | XT = x, y ∈ YS ∩ YT) . (1)

Our aim is to align the distributions of instances in the source and target domains with
labels in YS ∩YT . Moreover, we want to identify instances that are probably transfer relevant
with respect to some confidence measure or heuristic. In the following, we describe DIWAN.
Specifically, five neural networks are used: the source and target representer networks
MS, MT , a re-weighting network W , a constrained domain discriminator D, and a source
classifier C. MS and C are pre-trained in a standard supervised way on the source dataset.
The target representer is typically initialized as MS. During training, weights are assigned
to each instance x. These are:

wS(x) :=
1−W(MS(x))

1− E[W(MS(x))]
, wT(x) :=

W(MT(x))
E[W(MT(x))]

, (2)
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for the source and target, respectively. These choices are explained in the next section.
WS, WT denote the collection of weights for a fixed MS, MT andW . The expectation above
is estimated by averages over mini-batches. The objective function used is

min
W
LW = −ExS∼XS [log(W(MS(xS)))]− ExT∼XT [log(1−W(MT(xT))] . (3)

ForW and for MT , D, we have, given WS, WT ,

max
MT

min
D
L = −ExS∼XS [W

S log(D(MS(xS)))]− ExT∼XT [W
T log(1− D(MT(xT))] . (4)

Here, WS(x), WT(x) is used to emphasize that the weights are computed for all
instances before MT is updated. The pseudocode for DIWAN is provided in Algorithm 1.
A visual overview of the five neural networks and the training procedure is illustrated in
Figure 2.

MS

C
DS

DT
D

W

MT

MS

C

DT

W

DMT

DS

Figure 2. Illustration of the five neural networks involved in the DIWAN algorithm. On the top, the
re-weighting network is trained from the source and target representer network representations of
the source and target data, respectively. On the bottom, the domain discriminator is trained using
the weights obtained from the re-weighting network.
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Algorithm 1: Doubly Importance Weighted Adversarial Network (DIWAN).
Input: A source dataset DS, a target dataset DT , a source representer MS, a source
classifier C, and a hyperparameter vector~λ.

Output: A target model C(MT)(·) and a subset TRT ⊆ DT of probable
transfer-relevant target instances.

INITIALIZE():
MT ← MS;W , D ← random_initialization();
TRAIN():
for~λ(MAXITER) do

MT .freeze(); D.unfreeze();
for~λ(W_iter_per_cycle) do
W .train_on_source_batch(d0.5~λ(batch_size)e);
W .train_on_target_batch(b0.5~λ(batch_size)c);

end
WS, WT ← calculate_instance_weights();
for~λ(D_iter_per_cycle) do

D.train_on_source_batch(d0.5~λ(batch_size)e);
D.train_on_target_batch(b0.5~λ(batch_size)c);

end
D.freeze(); MT .unfreeze();
D ◦MT .train_on_target_batch(~λ(batch_size));

end
return: C ◦MT , WT . Alternatively, indices of WT with value
>~λ(cutoff_threshold).

4. Analysis

We now provide theoretical support regarding the design of the proposed algorithm.

Proposition 1. Let p1 and p2 be distributions over some bounded space X ⊆ Rn and let
F : X → R be some real-valued function. We define

L̃[F, p1, p2] = −Ex∼p1 [log(F(x))]− Ex∼p2 [log(1− F(x))] . (5)

Then,

F∗p1,p2
(x) = arg min

F
L̃[F, p1, p2] =

p1(x)
p1(x) + p2(x)

. (6)

Proof. We will use a variational calculus argument. We denote F′ = ∇xF = [∂F/∂x1, . . . ,
∂F/∂xn], define the functional

F̂p1,p2 [F(x), F′(x), x] = −p1(x) log(F(x))− p2(x) log(1− F(x)),

and note that L̃[F, p1, p2] =
∫
X F̂[F(x), F′(x), x] dx. We solve the Euler–Lagrange equations,

yielding

∂F̂
∂F

= 0⇔ p1(x)
F∗(x)

=
p2(x)

1− F∗(x)
⇔ F∗(x) =

p1(x)
p2(x) + p1(x)
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Corollary 1. Let pS, pT have bounded support. Then,

W∗(x) = arg min
W

LW =
pS(x)

pS(x) + pT(x)
(7)

Lemma 1. Let p1, p2 have bounded support. Let w1, w2 be non-negative weight functions that
satisfy E[w1] = E[w2] = 1. Then, L̃[F, w1 p1, w2 p2] is well defined.

Proof. Let P1(x) = w1(x)p1(x) and P2(x) = w2(x)p2(x). Since
∫
X dP1(x) = E[w1] =∫

X dP2(x) = E[w2] = 1 and w1, w2 ≥ 0, these are valid probability densities. Furthermore,
for i = 1, 2, the support of Pi is contained in the support of pi.

Corollary 2. Let pS, pT have bounded support. Let wS, wT be as in (2) and let D∗ be the minimizer
of L for a fixed MT . Then,

D∗(x) =
wS(x)pS(x)

wS(x)pS(x) + wT(x)pT(x)
(8)

Proposition 2.

−min
D
L ≡ −L[D∗] = − log(4) + JSD(PwS ||PwT

) (9)

Proof. We have

−min
D
L = EpS [w

S(x) log(D∗)] + EpT [w
T(x) log(1− D∗)]

(Corrolary1)
=

EPwS [log(
PwS

PwT + PwS )] + EPwT [log(
PwT

PwT + PwS )] =

− log(4) + JDS(PwS ||PwT
) (10)

Essentially, we see that OSDA can be cast as an alternating optimization problem.
Moreover, we see that a heuristic for identifying probable TRIs can define an algorithm for
OSDA by simply normalizing its heuristic scores by using them as weights in L. Intuitively,
we aim to down-weight the outliers in the source and target domains. We use an adapted
heuristic similar to the one used in [8,11] for re-weighting. The idea behind it is that TRIs
will lie near the decision boundary of a “good” domain discriminator, and outlier classes
will be far from it; a good domain discriminator will easily distinguish that an outlier source
(target) instance belongs to the source (target) domain. In particular, source instances xS for
whichW∗(xS) ≈ 1 are likely to be outliers, sinceW∗ can easily tell that they originate from
the source domain. Thus, they should be down-weighted. Similarly, for target instances xT ,
W∗(xT) ≈ 0.

5. Experiments

For the empirical verification of our approach, we performed three different experi-
ments. In the first experiment, our aim was to show that the adversarial neural network
techniques commonly used in DA are prone to negative transfer when applied in settings
with target outlier classes. In particular, we demonstrated that if adaptation is performed
using the ADDA algorithm [9], the accuracy on transfer-relevant instances will be lower
when target outliers are present.

In the second experiment, our goal was to demonstrate that DIWAN mitigated this
negative transfer and to compare the results obtained with ADDA and IWPDA [8]. To
this end, we used only transfer-relevant instances to evaluate the methods. Clearly, target
outlier instances were misclassified by all three methods and were thus ignored. However,
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DIWAN offers a heuristic for identifying transfer-relevant instances, and this was evaluated
in the final experiment.

Lastly, we demonstrated that we could select a threshold for the assigned weights of
target instances after DIWAN was run, such that target instances with weights above this
threshold were very likely to be transfer relevant. In particular, we calculated the accuracy
of the target model obtained through DIWAN over all data instances with weights above
certain thresholds, and we showed that there were threshold choices that could be selected
through cross-validation, yielding high-quality classification.

5.1. Dataset and Task Description

Our experiments were conducted for four different DA tasks for images. These were
image obstruction, rotation, displacement, and re-scaling. The samples used within these
tasks are depicted in Figure 3. Our dataset was comprised of the MNIST [16] and USPS [17]
handwritten digit datasets, as in [8,9]. The former contained 28 × 28 pixel gray-scale
images, while the latter contained 16× 16 pixel gray-scale images. Both datasets contained
10 classes corresponding to each of the 10 digits. The USPS images were padded to obtain a
homogeneous DA problem. That is, we appended zeros on all four edges of each USPS
image so that it became a 28× 28 pixel image, where the original image occupied the central
pixels. In all of our experiments, MNIST was used as a source dataset and USPS was used
to generate a synthetic dataset for each of the tasks.

Figure 3. Sample images from the obstruction, rotation, rescaling, and displacement tasks with
different parameters.

For the obstruction task, we set a 14 pixel area starting from the top-left corner in each
image in the USPS dataset to have an intensity of 1. Similarly, each image in USPS was
rotated counter-clockwise by 40◦ for the rotation task. For the re-scaling task, the image
was shrunk by a factor of 0.6 on both the vertical and horizontal axes, and then it was
re-centered. Finally, for the displacement task, each image was displaced by five pixels
to the left and three pixels upwards. The covariate shift introduced in all four tasks was
systematic; the same transformation was applied on all USPS images.
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5.2. Experiments and Methodology

We started by running experiments to test whether outlier target labels were a source
of negative transfer in DA. ADDA was run for each task for 50 trials on a full DA scenario
with five source labels. The labels were chosen randomly for each task and trial. We
then repeated for a scenario where there were 10 target labels and five source labels, and
the accuracy was only measured on transfer-relevant instances. The source network was
kept the same for each scenario, and the hyperparameters were tuned to optimize the
performance for each task. A convolutional architecture was used for the source representer
network. We performed this experiment for all four tasks and plotted average accuracies
±2σ against the number of iterations.

For the second experiment, for each task, we varied the number of outlier instances
in both the source and target domains, and for each combination, we reported the mean
results of four algorithms on ten trials. The algorithms that we used were ADDA, IWPDA,
DIWAN, and the source model (without any adaptations). For each trial, the target and
source labels were selected randomly. Note also that the number of source labels was
always equal to 5.

For our final experiment, recall that once training was finished, we could useW∗ to
calculate (2), where the expectation was replaced by the empirical average over the entire
target dataset. We present histograms of weights for each task, where representative setups
of labels are chosen. Our aim was to illustrate that the weights tended to be larger for
transfer-relevant instances. We then went on to compute the adapted model accuracies
after a threshold was imposed. We kept the models from experiment 2 for the case in which
there were 10 target labels. The average over the ten trials is presented for each threshold.

For each task, we used four different thresholds, and for each, we computed the
accuracy of our model on the subset of the target dataset that we obtained after the cut-off
procedure. We further gave the percentage of total transfer-relevant target instances that
remained in the dataset after applying the threshold and the percentage of transfer-relevant
instances in the remaining dataset.

6. Results and Discussion
6.1. Evidence for Negative Transfer

There was a clear indication that the target outlier classes had a negative impact on the
adaptation procedure and could have led to higher instability during training, as indicated
by the higher variance obtained for the displacement and re-scaling tasks. The results are
presented in Figure 4.

6.2. Effectiveness of DIWAN

The results for our second experiment indicated that full DA would often fail in the
OSDA setting. This was observed across all tasks. The PDA model performed better
than ADDA, but still performed worse than DIWAN. The results are summarized in
Tables 1 and 2. We further noted that in the partial DA setting (when the target labels were
all common labels), DIWAN performed comparably well with respect to IWPDA, while
ADDA could completely fail if there were too many outlier source labels.
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Figure 4. From top to bottom: Plots of accuracy vs. number of iterations for the obstruction,
displacement, rotation, and re-scaling tasks. The mean over 50 trials is drawn with the shaded region,
representing ±2σ calculated empirically. The source domain included five random classes from
the source domain, which were different for each trial. The red-shaded region illustrates the mean
accuracy for the experiment where no target outliers were present. The blue-shaded region illustrates
the mean accuracy when five outlier labels were added to the target domain. The figure is best viewed
in color.

Table 1. The results of Experiment 2 for the obstruction and displacement cases. “T” is the number of
target labels and “C” is the number of target labels common to the source. “A” is the performance
of ADDA [9], “I” is the performance of IWPDA [8], “D” is the performance of DIWAN, and “S” is
the performance of the source model without adaptations. The results are the average accuracy
percentages over 10 trials. Best accuracy indicated in bold.

Obstruction Displacement

T C A I D S A I D S

3 3 90.1 93.2 91.4 34.8 59.8 85.7 84.6 80.6
4 4 80.1 83.0 78.6 53.2 74.0 85.3 85.1 66.1
4 2 57.3 85.6 87.8 57.4 60.2 60.0 65.2 56.4
5 2 3.5 70.7 88.4 7.8 55.3 60.1 78.9 72.2
6 2 60.9 78.5 80.1 49.2 79.9 79.2 90.5 59.2
4 3 33.6 63.9 64.5 29.3 83.6 88.3 92.7 69.9
5 3 38.9 74.9 74.8 41.5 34.6 35.2 55.8 35.3
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Table 1. Cont.

Obstruction Displacement

T C A I D S A I D S

6 3 67.7 69.5 70.9 61.6 39.0 41.4 59.8 39.0
7 3 70.2 74.6 90.0 68.6 34.0 36.1 42.6 35.3
5 4 75.2 77.3 85.6 53.2 79.2 81.3 82.0 74.4
6 4 79.9 77.5 81.8 69.7 39.7 41.6 66.8 38.7
10 5 63.1 67.3 76.2 57.0 66.6 73.1 82.3 70.7

Table 2. Results of Experiment 2 for the rotation and rescaling cases. “T” is the number of target labels
and “C” is the number of target labels common to the source. “A” is the performance of ADDA [9],
“I” is the performance of IWPDA [8], “D” is the performance of DIWAN, and “S” is the performance
of the source model without adaptation. The results are the average accuracy percentages over 10
trials. Best accuracy indicated in bold.

Rotation Rescaling

T C A I D S A I D S

3 3 66.9 66.7 64.8 62.1 77.3 81.3 81.0 60.6
4 4 73.3 74.9 73.9 68.8 77.3 79.4 77.9 62.5
4 2 70.0 65.1 68.9 65.0 55.8 67.5 82.7 69.1
5 2 74.0 73.8 74.5 72.8 81.0 74.5 85.3 65.1
6 2 66.1 60.1 67.2 49.3 72.3 83.7 94.6 83.4
4 3 76.3 77.0 77.8 73.6 66.0 85.2 90.0 79.2
5 3 71.2 68.4 71.7 62.2 59.0 87.9 93.8 79.2
6 3 84.8 83.2 84.9 73.3 44.7 47.0 53.3 46.5
7 3 75.4 77.2 81.5 62.8 49.1 56.4 58.1 54.1
5 4 70.2 70.4 70.8 69.1 53.0 55.0 56.8 55.2
6 4 75.6 77.0 78.9 68.8 70.1 76.2 83.0 74.6
10 5 61.3 65.8 67.0 65.8 74.2 77.8 84.5 68.6

6.3. Testing Cut-Off Thresholds

Finally, we present our results for using thresholds on the obtained weights to iden-
tify probable transfer-relevant instances. Histograms of the weights are presented in
Figures 5–8. The histograms suggest that the heuristic that we utilized was useful; the
transfer-relevant instances (depicted in red) tended to have above-average weights, while
the outlier instances (in blue) tended to have below-average weights. The separation was
much more apparent in certain tasks (e.g., obstruction). We then demonstrated that a
threshold on target weights could be used to select only instances that could be reliably
classified from the adapted model. In practice, the threshold should be selected by using
cross-validation to fit the needs of the problem at hand; in some cases, we may not mind
a few mistakes if we can label more instances correctly, and in other cases, we may only
want to produce labels with very high certainty.

In addition, note that, especially when increasing the threshold above 1.0, many
transfer-relevant instances were removed from the dataset, as it may be seen in Table 3.
These, however, were transfer-relevant instances that did not benefit much from the adap-
tation. This was seen because the accuracies on subsets resulting from higher thresholds
were better than the overall accuracy on transfer-relevant instances.

For example, for the obstruction task, the adapted model had an accuracy of 76.22%
on transfer-relevant instances, but after a threshold of 1.5 was imposed, the accuracy went
up to 99.22%. For the rescaling task, the accuracy on the dataset with a threshold of 1.5
reaches 100%. To sum up, using our heuristic not only yielded transfer-relevant instances,
but also yielded the “best” transfer-relevant instances in the sense that they were more
likely to have benefited from the adaptation. This was not observed for the rotation task,
which raises an interesting question that may be investigated in future work.
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Figure 5. Obstruction task: Transfer-relevant (outlier) target instance histograms are depicted in red
(blue). The figure is best viewed in color.

Figure 6. Rotation task: Transfer-relevant (outlier) target instance histograms are depicted in red
(blue). The figure is best viewed in color.
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Figure 7. Rescaling task: Transfer-relevant (outlier) target instance histograms are depicted in red
(blue). The figure is best viewed in color.

Figure 8. Displacement task: Transfer-relevant (outlier) target instance histograms are depicted in
red (blue). The figure is best viewed in color.
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Table 3. TTR denotes the percentage of total transfer-relevant instances captured by the threshold.
TR denotes the percentage of TRIs in the dataset after the threshold is applied.

Case Threshold TTR TR #Target
Instances Accuracy

Obstruction

0 100.00 47.10 4142 36.12
0.5 100.00 62.53 3120 47.95
1 97.54 80.13 2375 62.95

1.5 32.39 99.22 637 98.43

Rescaling

0 100.00 58.42 4455 37.15
1 53.51 78.39 1777 67.36

1.25 32.85 98.16 871 92.66
1.5 20.86 100.00 543 100.00

Rotation

0 100.00 42.96 3247 42.22
1 55.84 59.19 1316 38.98

1.25 21.57 86.24 349 50.43
1.5 5.96 98.96 97 35.16

Displacement

0 100.00 43.37 6002 49.92
1 61.93 65.90 2446 60.95

1.25 30.43 92.63 855 84.21
1.5 7.99 96.74 216 91.16

7. Conclusions

We have extended the popular ANN algorithms used in the DA and PDA settings to
work on the OSDA setting. We showed how to utilize heuristics for transfer relevance in
order to obtain algorithms for the constrained latent distribution alignment problem and
cut-off thresholds for identifying subsets of the target dataset that can be reliably labeled. In
particular, we introduced the DIWAN algorithm, which uses an adapted popular heuristic
from the literature. Extensive experimentation illustrated the benefits of our method in the
OSDA setting. This methodology can be very effective for improving the applicability of
machine learning models to real-world data. It could be used for image processing that is
generated in an online manner in uncontrolled environments to detect objects or events
of interest. Examples include social media content, assisted living, surveillance data, and
traffic monitoring. The proposed methodology can also be extended in the future to utilize
other weighting methods for target domain classes.
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Abbreviations
The following abbreviations are used in this manuscript:

ADDA Adversarial Discriminative Domain Adaptation
ANN Adversarial Neural Networks
DA Domain Adaptation
DIWAN Doubly Importance Weighted Adversarial Network
IWPDA Importance Weighted Partial Domain Adaptation
MNIST dataset Modified National Institute of Standards and Technology dataset
OSDA Open-Set Domain Adaptation
OSR Open-Set Recognition
PDA Partial Domain Adaptation
TRI Transfer-Relevant Instance
USPS dataset United States Postal Service dataset
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