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Abstract: This study is focused on the analysis of pore space connectivity in reservoir rocks. This
parameter is of vital importance for the oil and gas industry since it controls hydraulic permeability.
Five methods of rock physics are used for this goal. Three of these methods (self-consistent version
of generalized singular approximation, Berryman self-consistent method, and differential scheme)
take into account the pore space connectivity implicitly. The other two methods, the f -model of the
generalized singular approximation and a similar modification of the Berryman method suggested in
this work, allow for quantifying the connectivity via a special parameter (f -parameter). In order to
reveal a physical meaning of this parameter, two simple models of carbonate rock (porous-cracked
limestone) are considered. The first model is a double porosity model containing spherical pores
and cracks. The second model contains only spherical pores, and their connectivity is expressed via
the f -parameter. The pores and cracks are filled with brine and gas. Application of the two groups
of methods for modeling the effective elastic properties of the carbonate rock gives a possibility of
relating the f -parameter to the characteristics of the cracks and pores. The f -parameter is shown to
be controlled by the relative crack volume in the total pore space. An increase in crack porosity and
crack density leads to an increase in the f -parameter. A good correlation of the f -parameter with
crack density is demonstrated. It is shown that for the porosity range 2–20%, a relationship between
the f -parameter and crack density ε, in general, has the form f = a log10 (ε)

2 + b log10 (ε) + c for
ε ≤ εmin. For the crack density less than εmin the f -parameter can be approximated by a constant
value fmin. The values of εmin and fmin and coefficients a, b, and c depend on the porosity of spherical
pores, saturation type, and pair of methods used for finding the link. These results give f -models an
advantage in searching zones of the enhanced permeability and quantifying the ability of these zones
to filtrate fluids.

Keywords: effective elastic properties; rock physics modeling; self-consistent method; connectivity;
permeability

1. Introduction

The permeability of sedimentary rocks is of great importance in controlling oil and
gas production, hydrology, and the storage of carbon dioxide and radioactive waste in
geologic formations. The hydraulic properties of porous rocks depend on the lithology,
pressure, and pore network structure, which is controlled by pore sizes, length, aspect ratio,
and connectivity [1,2]. The degree of connectivity between the pores highly affects the
permeability of the rock [3–6]. Low-porosity rocks with well-connected voids may have a
high permeability, in contrast with high-porosity rocks with poor-connected pore spaces
such as micritic limestone or clays.

The notion of connectivity is very intuitive (the ability to be connective or connected);
however, the qualitative definitions may vary depending on the area of research. In mathe-
matics, we could specify the term “connectivity” or “connectedness” as a characteristic of
topological space or as a term of graph theory where connectivity is defined by the number
of ways that points are connected.
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Imaging techniques such as X-ray microtomography allow us to visualize how pore
space is arranged in a material. The quantitative analysis of these images gives detailed
information about the basic textural properties, distribution, arrangement, and connec-
tivity of the pores. For instance, Qian et al. [7] provided the investigation of shale pore
structure characteristics by applying field emission or focused ion beam scanning elec-
tron microscopy (FE-/FIB-SEM). The integration of this microstructure data with other
techniques is also beneficial for assessing the pore structure influence on flow properties.
Combining computer tomography (CT) scanning and microscopic seepage simulation
allowed authors to evaluate quantitatively the effectiveness of fractures [8]. Yang et al. [9]
performed flow simulation on digital rock models obtained from CT data to investigate the
effect of the adsorption boundary layer on the fluid flow. Jia and Xian [10] explored the
permeability of shale by simulating pulse-decay experiments on a discrete fracture model
based on 3D scanner results.

Arzilli et al. [11] proposed a methodology for estimating the pore connectivity in
carbonate granular media using the number and size of the backbones (parts of the con-
nected pore network) and the “cluster multiple labeling” techniques according to which
connectivity is a ratio of the volume of the largest backbones of pores to the volume of all
pores in the sample.

For carbonate grainstones, Zambrano et al. [12] provided an assessment of pore
connectivity through the following parameters—connected porosity, specific surface, and
connectivity density. Koestel et al. [13] considered connectivity measures such as the
connection probability, the Euler density, and the critical pore diameter for soil samples.

Due to the limited resolution of the imaging technique and ambiguity in the identifica-
tion of individual phases (segmentation problem) and in the definition of representative
elementary volume, these quantitative characteristics may be difficult to identify in rocks
containing microporosity, hence these connectivity measures are not reliable enough.

Owing to real porous space complexity for analyses of pore network morphologies,
researchers usually apply some simplifications representing pore space as morphological
(pore-throat) networks, consisting of spherical pores and cylindrical throats, or random
networks. In this case, coordination number or mean coordination number and radius of
the pore provide information about the pore connectivity [14–17]. The coordination number
is the number of throats (channels) connected to a nodal pore, but connectivity metrics
from percolation theory are also widely used. They are the percolation probability [18,19],
the connected porosity [20], and the percolation threshold [19,21].

Glover [22] uses Archie’s laws to propose a measure of connectivity. He defines con-
nectedness as the inverse of the formation resistivity factor and shows that connectedness is
the product of porosity and connectivity. The connectivity itself depends upon the porosity
and the cementation exponent from Archie’s law.

Montaron [23] associates the connectivity of a random network with the conductivity
equations obtained from percolation and effective medium theory [24]. The author presents
the connectivity equation with two parameters—a conductivity exponent and a water
connectivity index. The combination of this equation with modified mixing law allows to
account for variations of water connectivity within the rocks. Montaron [23] successfully
applied his theory to obtain analytical conductivity models of shale sands, oil-wet rocks,
and mixed-wet micritic carbonates.

Trinchero et al. [25] considered a groundwater flow through an aquifer and adopted
the hydraulic response time between two points in a pumping test as a flow connectiv-
ity indicator.

Since permeability is a scale-dependent property, the main factor controlling the pore
connectivity also should be considered to be dependent on the scale.

Effective medium methods are among the most powerful tools in the rock physics
field. These methods allow to connect the rock microstructure parameters with its macro-
scopic physical properties. The design of a mathematical model of effective physical
properties consists of three main steps: (1) construction of so-called “conceptual model”
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that mimics specific features of the rock microstructure; (2) the parametrization of the
model; (3) the choice of the rock-physics method, which relates the model parameters to
the physical properties.

It is known that effective medium methods allow to predict the effective permeabil-
ity for isotropic models via, for example, Bruggeman’s approximation [26] proposed by
Kirkpatrick [24,27] or anisotropic models via more advanced methods like the GSA [28,29]
and T-matrix [30].

An example of application of effective medium theory (EMT) for the permeability
estimation with the parameter f could be found in [31]. The authors applied the EMT (GSA
method) for the effective permeability modeling for Barnett shale. They showed that for
this modeling, the permeability of fluid-saturated zones should be dependent on the rock
type and also specified (or inverted from the permeability measurements). Additionally, it
was demonstrated that the f -parameter inverted from measured permeability has values
similar to that inverted from the elastic wave velocities. In [32], the authors showed that
the permeability of fluid-saturated zones depends on the fracture porosity to the power
of 3.

In this work, we apply rock-physics methods to quantify pore/crack connectivity in
porous-fractured limestone. Note that the term “crack” is commonly used in theory, but the
term “fracture” is usually applied in practice. We quantified the pore connectivity in terms
of a parameter (f -parameter) entered in some of the rock-physics methods. We consider
this factor as a measure of pore/crack connection via the existence of cracks at a smaller
scale level, which connect the pores at a larger scale. Cracks are specified by aspect ratio
related to their aperture and volume concentration: crack porosity. The volume fraction of
these cracks in rock is assumed to be small (less than 2%).

In practice, if we wish to obtain the connectivity (or crack parameters through the
correlation with f -parameter) on the well-log scale, for example, we need some measurable
property like elasticity (provided by sonic log). Then, solving the inverse problem for
finding the parameters of the model, we will obtain the connectivity. Further, the fracture
parameters could be inverted from the experimental data (for example, from elastic wave
velocities, porosity, and density). The effective medium theory gives no possibility of
taking into account the fracture length explicitly. The aspect ratio of fractures could be
seen as the ratio of height to length of the fracture or as fracture aperture. If we consider
the double porosity model, then we could evaluate the aspect ratio of fractures and their
volume fraction. If we consider the f -model and the pores as “round” fractures, then we
could evaluate their connectivity, aspect ratio, and volume fraction. In our work, we do not
consider the inversion of the fracture parameters since we have another goal. Note that
in all EMT methods, the void’s size is not taken into account explicitly. Thus, the volume
fraction of inclusions can be increased by the increasing the void’s number but keeping
their shape and size or by increasing the void’s length and/or opening and keeping the
void’s number. In the case of elasticity, the EMT formulas give the same results for these
two types of increasing the volume fraction of voids. However, when dealing with the
effective permeability, as was shown by our previous modeling, the void’s size should
be implicitly incorporated in the permeability of so-called fluid-conductive zones [31,32].
This parameter is included in the list of unknowns and inverted from experimentally
measured permeability.

We consider two types of conceptual models (Type 1 and Type 2) of porous-cracked
limestone. They include the mineral grains, pores, and fractures whose shape is approx-
imated by ellipsoids having various aspect ratios. The classification depends on a way
how the void’s connectivity is represented. The Type 1 model is the double porosity model.
In this model, the pores are connected via randomly oriented cracks. The void’s connec-
tivity in the Type 1 model is taken into account implicitly. The Type 2 model assumes
that a rock contains only pores and the pore connectivity is explicitly described by the
f -parameter, which is an empirical factor expressing a degree of void’s connectivity. These
models are applicable for isotropic formations without subvertical cracks at the core and
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well-log scales. Note that the model complexity highly dependents on the problem, thus
the construction of the model is a balance between the oversimplification and preserving
the geological realism.

For calculating the effective elastic properties, we apply five methods of effective
medium theory. Each of the methods is applicable for the model of Type 1 or Type 2.

Matching the calculated effective elastic properties between two selected models (one
model of Type 1 and the other model of Type 2) we obtain a relation between values of
f -parameter and a pair of parameters characterizing the crack morphology—crack aspect
ratio and porosity. Moreover, we find similar relations between the f -parameter and crack
density and specify them in the form of equations.

2. Materials and Methods
2.1. Basic Principles of Effective Medium Theory

We assume that rock is a micro-inhomogeneous material that can be in general macro-
scopically anisotropic. Macroscopic properties (or effective properties) of this material
averaged over a representative volume (REV) are controlled by the properties of mineral
grains and materials filling pores and cracks (inclusions), and also by inclusion’s shape,
orientation, and spatial distribution. REV should be a statistically homogeneous media. In
addition, REV should be large enough compared to the characteristic size of heterogeneities
and, on the contrary, REV should be small enough compared to the fluctuation length
of macroscopic fields (specifically, wavelength). Thereafter the EMT methods provide a
determination of the physical properties (elastic and transport) of heterogeneous media.

In the case of elasticity, the macroscopic properties of a heterogeneous medium are
described by the effective stiffness tensor C∗ that relates, via the Hook law, the strain ε and
stress σ fields averaged over the REV. The problem of determination of effective properties
leads to a multiparticle problem that can be solved only approximately. Consequently, for
random media only approximation methods exist. The majority of EMT methods are based
on the Eshelby problem solution for the strain filed in ellipsoidal inclusions placed in the
infinite matrix [33]. Thereafter, all heterogeneities have the shape of general ellipsoids that
can be characterized by two aspect ratios. For simplicity, ellipsoids of revolution are used
whose shape can be specified by a single aspect ratio α. Among a variety of EMT methods
we choose the following ones: the self-consistent method of Berryman [34], differential
effective medium (DEM) [35], and two versions (self-consistent and f -model) of generalized
singular approximation (GSA) [28,29]. Besides, we suggest our own version of Berryman’s
method to parametrize the void’s connectivity via the f -parameter.

Our choice is motivated by the method’s ability to take into account the connection of
inclusion implicitly or explicitly.

2.2. Models of Fractured Carbonate Rock

The two models of porous-cracked limestone considered to find a correlation between
connectivity factor f and crack’s characteristics are shown in Figure 1. The first one (Type 1
model) is a double porosity model (Figure 1a). It consists of an isotropic matrix and two
types of voids—pores and randomly oriented cracks saturated with a fluid. Crack aspect
ratio αcrack varies from 10−5 to 0.1, and crack volume fraction (crack porosity) φcrack does
not exceed 2%. Pore aspect ratio αpore is equal to 1. The aspect ratio of calcite grains is also
equal to 1.

The second model (Type 2 model) is a so-called f -model (Figure 1b) [29,36], which
takes into account the connectivity of the voids via a special parameter f. In contrast to the
double porosity model here only spherical saturated pores are embedded in the matrix. An
empirical factor f reflects the connectivity of the pores and varies from 0 to 1. Pore volume
fraction φpore changes from 0 to 20% for both models.

Considering the carbonate rock model, we use the calcite matrix (isotropic polycrystal)
with brine- and gas-filled voids. The bulk and shear moduli of the matrix are equal to 72.0
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and 32.0 GPa respectively. The brine bulk modulus is 2.5 GPa, and the gas bulk modulus is
0.006 GPa. The shear modulus of fluids is zero.
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2.3. Generalized Singular Approximation Method (GSA)

The general formula for effective stiffness tensor C∗ evaluation in the GSA method
is [28,29,36]:

C∗ =
〈

C(r)
[
I− gC′(r)

]−1
〉〈[

I− gC′(r)
]−1
〉
−1, (1)

where angle brackets mean averaging over the representative volume; C(r) is the fourth-
rank tensor of the elastic constants related to the calcite matrix or fluid filling the voids; I is
the unit fourth-rank tensor; g is the Green function tensor, defined by the equation:

gijkl = −
1

16π

∫ 2π

0

∫ π

0

(
nkjΛ

−1
il + nkiΛ

−1
jl + nl jΛ

−1
ik + nliΛ

−1
jk

)
sin θdθdϕ, (2)

where θ ∈ [0,π], ϕ ∈ [0, 2π) and Λij = Cc
ijklnknl , i, j, k, l = 1, 2, 3 with n1 = sin θ cosϕ/a1,

n2 = sin θ sinϕ/a2, n3 = cos θ/a3; a1, a2, a3 are semi-axes of the ellipsoidal inclusions. The
tensor C′(r) ≡ C(r)−Cc is the fluctuation of the stiffness tensor. The tensor Cc is the elastic
tensor of the comparison body whose parameters could be arbitrary [28]. All indices in
Equation (2) vary from 1 to 3.

If we set Cc equal to the stiffness tensor of the medium with the effective properties
Cc= C∗, then it gives us the formulas of the self-consistent method (GSA-SC) [28,37].

This equation represents one of several realizations of self-consistent methods. The
main idea of this approach is based on two hypotheses: (1) every inclusion acts like an
isolated one in the medium with the effective properties of the composite and (2) the field
acting on every inclusion is the external field applied to the medium. Thus, both hypotheses
reduce the problem of interaction between many inclusions to a one-particle problem. In
general, the self-consistent method gives good predictions for polycrystals and is a bit less
accurate in the case of matrix composites.

If we consider porous space connectivity in the f -model, we express the comparison
body properties as a linear combination of the matrix and fluid properties according to
Equation (3) [29]:

Cc = (1− f )CM + f Cfl, (3)

where CM and Cfl are, respectively, the stiffness tensors of the mineral matrix (the stiffest
component) and fluid filling the voids (the softest component); f is an empirical dimension-
less parameter reflecting connectivity of the voids.

Jiang [38] shows that, in the general case, the parameter f is a tensor and the following
expressions are valid:

f = αεfl
(
εC
)−1

, I− f = αεM
(
εC
)−1

, (4)

where f is a “connectivity tensor”; α is the poroelastic Biot-Willis parameter [39–41];
εfl, εM and εC, are, respectively, the strain fields in the fluid inclusions, matrix, and com-
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parison body. Thus, the physical meaning of the f -parameter specifies the deformation field
distribution in the medium when the heterogeneous body reaches an equilibrium state.

If f = 1 in Equation (4), we get the lower Hashin-Shtrikman bound (Cc= Cfl). In
this case, we have an artificial medium where the pore space is connected and ellipsoidal
particles of mineral material are enveloped by fluid with no direct contact between them.
In such a case, the deformation of the fluid inclusion will make the largest contribution
to the overall deformation and εC= εfl. Furthermore, this situation is a representation of
an unconsolidated medium, which Biot–Willis parameter α ≈ 1 [42]. In the opposite case
when f = 0, we get the upper Hashin–Shtrikman bound, all voids become isolated and
the matrix is a connected space. Therefore, the deformation of the matrix will contribute
the most to the overall deformation and εC= εM. Note that all real cases met in practice
correspond to parameter f between 0 and 1. A sensitivity study of effective stiffness tensor
to parameter f exhibits a non-linear behavior. The elastic moduli become to decay faster as
f approaches 1. A relation of parameter f with permeability is also analyzed in [43] where
the authors demonstrated that this parameter is proportional to ln(k/φ), where k is the
permeability and φ is the porosity.

In our models described in the previous section, the particles of mineral matrix,
pores and cracks are considered the inclusions. For Type 1 model, N = 3 and the volume
concentration of mineral matrix is v1 = 1 − (v2 + v3) where v2 = φpore and v3 = φcrack are
the volume concentrations of pores and crack, respectively. For Type 2 model, N = 2 and
v1 = 1 − v2 where v2 = φpore. The pieces of mineral matrix are considered to be spherical.

We can rewrite Equation (1) in the form:

C∗ =
(

∑
i

viCi
∫

Pi(θ,ϕ,ψ)[I− gi(Ci −Cc)]−1sin θdθdϕdψ
)
×(

∑i vi
∫

Pi(θ,ϕ,ψ)[I− gi(Ci −Cc)]−1sin θdθdϕdψ
)−1 (5)

where gi is the Green function tensor of the inclusions of type i defined by the Equation (2).
The tensor Ci is the stiffness tensor of i-th type of inclusions. The function Pi is the
probability density function of distribution of the inclusions over their orientations; θ, ϕ, ψ
are the Eulerian angles describing the inclusion orientation in space. The tensors I and Cc

have the same meaning as in Equations (1) and (2).

2.4. Berryman’s Method

Berryman’s method [34] is another realization of the self-consistent effective medium
methods [44–47]. Based on the results of Kuster and Toksoz [48], Berryman obtained
expressions for calculating the effective moduli (Equation (6)) of an isotropic matrix with
randomly oriented ellipsoidal isotropic inclusions. Note that in this method no host
medium is assumed. The pieces of mineral material, pores, cracks, and other impurities
are considered as ellipsoidal inclusions. The formulas for calculating the effective elastic
moduli have the form:

N

∑
i=1

νi(Ki − K∗SC)P∗i = 0,
N

∑
i=1

νi(µi − µ∗SC)Q
∗i = 0, (6)

where K∗SC and µ∗SC are effective bulk and shear moduli; Ki and µi are the inclusion’s bulk
and shear moduli, νi are the volume fractions of inclusions, N is the number of inclusion
types. The coefficients P∗i and Q∗i depend on the inclusion’s shape and properties of the
effective medium. Equations of the P∗i and Q∗i for the general case of ellipsoidal inclusions
are rather bulky and are not shown here. They can be found in [48]. Equation (6) contain
unknown effective elastic moduli in the both left- and right-hand sides. Such equations are
solved by iterations.

Note that Equation (6) can be written in a form more convenient for computations:
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K∗SC- f = ∑N
i=1 νiKiP∗i/ ∑N

i=1 νiP∗i, µ∗SC- f = ∑N
i=1 νiµiQ

∗i/ ∑N
i=1 νiQ∗i, (7)

Equations (6) and (7) are the results of a series of long-wavelength scatterings experi-
ments. During the experiments, a small sphere of the true composite material (heteroge-
neous material) is embedded in a medium whose properties are changed in a controlled
manner, achieving zero scattering from the composite sphere. If we change the sphere
properties to comparison body properties and consider comparison body properties as
provided by Equation (3) with f -parameter, we derive an alternative version of Berryman’s
formulas accounting for pore connectivity. Note that in this case there is no need for an
iteration scheme as for Equation (6) or (7).

K∗SC- f = ∑N
i=1 νiKiPCi/ ∑N

i=1 νiPCi, µ∗SC- f = ∑N
i=1 νiµiQ

Ci/ ∑N
i=1 νiQCi, (8)

where PCi and QCi are evaluated similarly to those as in Equations (6) and K∗= KC, µ∗= µC.
The comparison body moduli KC and µC are found by analogy with Equation (3):

KC = (1− f )KM+ f K f l , µC = (1− f )µM+ fµ f l , (9)

where KM, µM are the bulk and shear moduli of the mineral matrix (the stiffest component);
K f l , µ f l are the bulk and shear moduli of the fluid filling the voids (the softest component);
f is an empirical parameter, reflecting connectivity of the saturated voids.

As in the previous section, for our modeling N = 3 for Type 1 model and N = 2 for Type
2 model. Inclusions are pieces of mineral matrix, pores, and cracks in Type 1 model. For
Type 2 model the inclusions are pieces of mineral matrix and pores. The pieces of mineral
matrix are assumed to be spherical.

2.5. Differential Effective Medium (DEM) Method

Differential effective medium theory [26,35,49–51] represents an iterative approach
for calculating the effective elastic properties. This approach consists of the sequential
introduction of the entire volume of inclusions in infinitesimal portions. At each step,
the problem of finding the effective elastic properties of a material consisting of a matrix
and inclusions is solved with the use of equations similar to (7) with the comparison
body moduli equal to the effective moduli calculated at the previous step. As a result, a
nonlinear differential equation or a system of such equations of the first order is obtained
for calculating the effective elastic moduli of the medium (Equation (10)). As an initial
step, we can assume the equality of the elastic moduli of the effective medium to the elastic
moduli of the mineral matrix. The equations have the form:

(1− ν)
∂K∗DEM

∂ν
= (Ki − K∗DEM(ν))P∗i, (1− ν)

∂µ∗DEM
∂ν

= (µi − µ∗DEM(ν))Q∗i, (10)

where K∗DEM and µ∗DEM are the effective bulk and shear moduli; Ki and µi are the inclusion’s
bulk and shear moduli; ν is the volume fraction of inclusion which equals porosity here; P∗i

and Q∗i depend on the shape of the inclusions and properties of the host (effective) medium.
In our modeling with DEM, we apply the iteration method for solving the differential

Equation (10). At each iteration, first, we insert a small portion of cracks and, then, we add
a small portion of pores. The iterations are carried our until we reach given values of φpore
and φcrack.

One practical detail of the application of the DEM is that the final result for a medium
with several kinds of inclusions would depend on embedding the order of different compo-
nents into the matrix.

3. Results

By comparing the effective elastic properties obtained for two types of carbonate rock,
we can associate the f -parameter values with the crack’s aspect ratio and porosity.
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For the estimation of effective elastic moduli of the double porosity model we apply
the classical self-consistent method of the effective medium theory (GSA-SC), Berryman’s
method (Berryman-SC), and DEM. In the case of GSA-SC and Berryman-SC, the pores,
cracks, and calcite grains are embedded in effective media simultaneously, while in the
case of the DEM, we insert the saturated voids in the calcite matrix sequentially: cracks at
first and then the spherical pores.

Regarding the calculation procedure for the self-consistent methods (GSA-SC and
Berryman-SC), we use an iterative scheme, in which properties of effective media were
obtained in the previous iteration step. In the initial step, we take the elastic characteristics
of effective media calculated with the Hill approximation (average of the results provided
by Voigt and Reuss methods). The iterative procedure is stopped if the maximum change
of moduli is less than 0.01 GPa.

We vary the aspect ratio of cracks αcrack from 10−4 to 0.1, and crack porosity φcrack
from 0 to 2%, and we calculate the effective properties for all possible combinations of these
parameters. Instead of αcrack and φcrack, we use the decimal logarithm of these parameters
as it is more convenient for calculation and visualization. For obtaining f -model properties
we use the generalized singular approximation method (GSA-f ) and modification of the
Berryman method (Berryman-f ) with the introduced parameters f that is changing from 0
to 1. All these calculations are performed for different but fixed porosity of spherical pores
φpore varying from 2 to 20%.

Then, we choose the pairs of moduli (bulk and shear) from the double porosity model
(Type 1) and f -model (Type 2) whose difference is less than 0.1 GPa. This value of the
threshold is chosen since, commonly, in geophysics, the bulk and shear moduli of minerals
and rocks are specified with one decimal place.

Figures 2 and 3 show scatter plots resulting in pairs of log10(αcrack) and log10(φcrack)
versus f -parameter colored depending on the values of f -parameter. The volume fraction of
spherical pores is fixed for each realization. We consider the cases when the spherical poros-
ity equals 2, 5, 15, and 20%. Besides we analyze the behavior of the f -parameter vs. crack
density for fixed spherical porosity (Figure 4). The crack density is a convenient parameter
combining the crack porosity and aspect ratio thereby providing a single parameter to
characterize fractured zones. The formula for the crack density has the form

ε =
3φcrack

4παcrack
. (11)

In Figures 2 and 3 we observe some tendencies common for three pairs of methods:
(1) GSA-SC − GSA-f, (2) Berryman-SC − Berryman-f, and (3) DEM − Berryman-f. As
follows from Figures 2 and 3 the values of the f -parameter reflecting pore connectivity
increase with increasing crack porosity for a fixed aspect ratio. Assuming brine saturated
voids (Figure 2), for low porosities (less than 10%) the presence of a high volume of cracks
increases the f -parameter more significantly than for higher porosities.

As seen in Figure 2, the maximum values of the f -parameter depend on the spherical
porosity of brine-filled pores. Thus, the f -parameter reaches a maximum of 0.7 (Berryman-
SC − Berryman-f ) and 0.6 (DEM − Berryman-f ) for 20% volume fractions of spherical
pores. However, for low porosity (2%) these values are higher attaining, respectively, 0.98
and 0.97. As follows from Figure 2 the possible maximum value of f -parameter tends to
decrease with increasing porosity and it is true for all pairs of methods. The results shown
in Figure 2 suggest that this is more pronounced for sufficiently open cracks (aspect ratio is
greater than 10−3). The reason for a decrease in the f -parameter with spherical porosity
(for constant crack porosity) is that the relative volume of cracks in the total porosity (the
ratio of the crack porosity to the total porosity) decreases. This result is in line with the
proportionality of the f -parameter to the permeability-to-porosity ratio reported in the
work [34] since the permeability is greatly affected by connected cracks.
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and Berryman-f methods, voids are gas saturated. The accepted difference between the effective 
moduli provided by Type 1 and Type 2 models in cases (a–c) is chosen as 0.1 GPa. (d) Effective 
properties are calculated with Berryman’s methods, voids are gas-saturated; the accepted difference 
between the effective moduli provided by Type 1 and Type 2 models is chosen as 1%. The meaning 
of numbers in parentheses is (type of saturation, accepted difference between the effective moduli 
provided by Type 1 and Type 2 models). 

Figure 4. The f -parameter vs. crack density for fixed spherical porosity values. Effective properties
are calculated with Berryman’s methods, voids are (a) brine and (b) gas saturated; (c) with DEM and
Berryman-f methods, voids are gas saturated. The accepted difference between the effective moduli
provided by Type 1 and Type 2 models in cases (a–c) is chosen as 0.1 GPa. (d) Effective properties are
calculated with Berryman’s methods, voids are gas-saturated; the accepted difference between the
effective moduli provided by Type 1 and Type 2 models is chosen as 1%. The meaning of numbers
in parentheses is (type of saturation, accepted difference between the effective moduli provided by
Type 1 and Type 2 models).
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In Figure 2, a slight increase in the f -parameter is observed as the crack aspect ratio
(or crack relative opening) decreases at the fixed crack porosity. This means that for fixed
crack length, more cracks of lower aspect ratio should exist in rock to keep the same crack
porosity as for more open cracks. In turn, the increase in crack number enhances the
probability of cracks being connected. Thus, this result seems to be logical.

Similar dependences for gas-saturated voids are shown in Figure 3. Again, we see a
tendency for an increase in the f -parameter with crack porosity. However, now solutions
for very thin cracks (aspect ratio around 10−4) can be obtained. For these thin cracks,
we observe another behavior of the f -parameter with porosity. Namely, we can see the
high values of connectivity parameter in the whole range of spherical porosity without a
tendency to decrease with porosity. As the cracks become more open the effect of a decrease
in this parameter with the spherical porosity (as is observed for brine-saturated pores)
starts to manifest itself.

If we compare the results of three pairs of methods, we notice that the results of the
first two pairs GSA-SC − GSA-f, and Berryman-SC − Berryman-f are almost identical for
brine-saturated voids. It follows from that GSA and Berryman methods give the same
effective moduli for spherical inclusions. In the case of gas-saturated voids, i.e., the media
with a greater difference in elastic properties between matrix and fluids, the results on the
scatter plots are slightly different (Figure 3).

Figure 4 demonstrates the dependence of the f -parameter on the decimal logarithm
of crack density. Figure 4a,b shows the results for pairs Berryman-SC − Berryman-f for
brine and gas-saturated models, respectively. Figure 4c exemplifies similar dependences
for pair DEM − Berryman-f for gas-saturated case. The chosen measure of closeness in the
elastic moduli for all of these cases is 0.1 GPa. A pronounced positive correlation of the
f -parameter with the crack density is observed. For comparison we also show the results
for pair Berryman-SC − Berryman-f for gas-saturated model but for another measure of
closeness in the elastic moduli obtained by the two methods, namely, 1% (Figure 4d). As
seen, in this case, the results are more scatter compared to the same model but for measure
of closeness 0.1 GPa.

Regarding the relationship between the f -parameter and crack density, Figure 4 show
that for fixed spherical porosity, the connectivity factor equals certain constant value
until the crack density reaches its critical value (mark with dashed black line). After
this point, the connectivity begins to increase steadily. We represent this behavior as the
piecewise continuous function (Tables 1 and 2). For the most curves the increasing part is
approximated with the following function f = a log10 (ε)

2 + b log10 (ε) + c. The obtained
coefficients a, b, and c (Tables 1 and 2) in the equations for the pairs GSA-SC − GSA-f,
and Berryman-SC − Berryman-f are quite close. Interesting, that the constant f -value
for the Berryman-SC − Berryman-f and GSA methods are increasing together with the
spherical porosity. Thus, higher porosities demonstrate higher connectivity even with the
small crack densities. The DEM– Berryman-f results show noticeably lower connectivity
values (Figure 4c) for a wider range of the crack’s aspect ratios and porosities than the pairs
GSA-SC − GSA-f and Berryman-SC − Berryman-f.
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Table 1. Relationships between the crack density and f -parameter for fixed spherical porosity values
for the case of brine-saturated voids. The R2 is the coefficient of determination.

ϕpore, % Equation R2

Berryman-SC − Berryman-f and GSA-SC − GSA-f

2 f =

{
−0.08 log10(ε)

2 + 0.17 log10(ε) + 1.10, log10(ε) ≥ −2.5
0.15, log10(ε)< −2.5 0.74

5 f =

{
0.06 log10(ε)

2+0.62 log10(ε)+1.30, log10(ε) ≥ −2.5
0.19, log10(ε)< −2.5 0.88

10 f =

{
0.13 log10(ε)

2+0.77 log10(ε)+1.34, log10(ε) ≥ −2.2
0.25, log10(ε)< −2.2 0.93

15 f =

{
0.29 log10(ε)+0.93, log10(ε) ≥ −2.1

0.34, log10(ε)< −2.1 0.95

20 f =

{
0.23 log10(ε) + 0.89, log10(ε) ≥ −2.1

0.45, log10(ε) < −2.1 0.95

DEM − Berryman-f

2 f =

{
−0.08 log10(ε)

2+0.19 log10(ε)+1.10, log10(ε) ≥ −2.5
0.19, log10(ε)< −2.5 0.71

5 f =

{
0.05 log10(ε)

2+0.56 log10(ε)+1.20, log10(ε) ≥ −2.5
0.15, log10(ε)< −2.5 0.85

10 f =

{
0.15 log10(ε)

2+0.86 log10(ε)+1.34, log10(ε) ≥ −2.2
0.17, log10(ε)< −2.2 0.92

15 f =

{
0.15 log10(ε)

2+0.78 log10(ε)+1.20, log10(ε) ≥ −2.1
0.2, log10(ε)< −2.1 0.94

20 f =

{
0.14 log10(ε)

2+0.71 log10(ε)+1.11, log10(ε) ≥ −2.0
0.24, log10(ε)< −2.0 0.95

Table 2. Relationships between the crack density and f -parameter for fixed spherical porosity values
for the case of gas-saturated voids. The R2 is the coefficient of determination.

ϕpore, % Equation R2

Berryman-SC − Berryman-f and GSA-SC − GSA-f

2 f =

{
0.04 log10(ε)

2+0.51 log10(ε)+1.30, log10(ε) ≥ −3.5
0.15, log10(ε) < −3.5 0.94

5 f =

{
0.07 log10(ε)

2+0.56 log10(ε)+1.18, log10(ε) ≥ −3.0
0.18, log10(ε) < −3.0 0.98

10 f =

{
0.09 log10(ε)

2+0.56 log10(ε)+1.10, log10(ε) ≥ −3.0
0.20, log10(ε) < −3.0 0.98

15 f =

{
0.10 log10(ε)

2+0.54 log10(ε)+1.07, log10(ε) ≥ −2.5
0.30, log10(ε) < −2.5 0.97

20 f =

{
0.07 log10(ε)

2+0.42 log10(ε)+1.01, log10(ε) ≥ −2.0
0.40, log10(ε) < −2.0 0.97

DEM − Berryman-f

2 f =

{
0.01 log10(ε)

2+0.38 log10(ε)+1.14, log10(ε) ≥ −3.3
0.13, log10(ε) < −3.3 0.94

5 f =

{
−0.03 log10(ε)

3 − 0.08 log10(ε)
2+0.34 log10(ε)+1.10, log10(ε) ≥ −3.0

0.11, log10(ε) < −3.0 0.98

10 f =

{
0.09 log10(ε)

2+0.60 log10(ε)+1.07, log10(ε) ≥ −3.0
0.14, log10(ε) < −3.0 0.98

15 f =

{
0.10 log10(ε)

2+0.57 log10(ε)+0.99, log10(ε) ≥ −2.5
0.19, log10(ε) < −2.5 0.98

20 f =

{
0.10 log10(ε)

2+0.53 log10(ε)+0.94, log10(ε) ≥ −2.0
0.23, log10(ε) < −2.0 0.97

4. Discussion

We analyze several methods of rock physics that give a possibility of taking into
account the effect of pore space connectivity in carbonate rock. Some of these methods,
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namely, GSA-SC, Berryman-SC, and DEM, allow us to do that implicitly. Thus, the deriva-
tion schemes of formulas for GSA-SC and Berryman-SC methods assume that each inclusion
of ellipsoidal shape is placed in a matrix with effective properties thereby implicitly al-
lowing the inclusions to be in a contact with each other. The DEM method, at each step,
requires placing a portion of inclusions in a medium that already contains several portions
of inclusions embedded in the previous steps. The elastic properties of this medium change
after each step. This means that the inclusions of every new step can be in a contact with
previously embedded inclusions.

The other two methods considered in our work, GSA-f and Berryman-f, can quan-
tify the effect of pore space connectivity via a special dimensionless parameter f vary-
ing from 0 to 1. This parameter controls the properties in so-called comparison body in
Formulas (3), (5), (8), and (9), being a coefficient in the linear combination of stiffness ten-
sors of the stiffest and softest materials composing a rock. The comparison body serves as a
host medium for other inclusions. The case f = 0 is related to a matrix having properties
of the stiffest component with isolated ellipsoidal inclusions of other components. The
opposite limiting case f = 1 is related to the medium where the softest component plays the
role of the host matrix. In the case of porous rock, the first case corresponds to completely
isolated inclusions in a mineral matrix. The second limiting case comprises an exotic
medium with a fluid matrix with ellipsoidal solid particles of mineral matter, kerogen,
etc. The f values between 0 and 1 are related to intermediate cases met in reality. The
increase in this parameter means that the voids become more connected and vice versa.
This parameter is non-measurable and can be evaluated by inversion from experimental
data with the use of rock-physics modeling [36,43].

To clarify the physical meaning of the f -parameter, we compare two simple rock-physics
models of carbonate rock. Porous-cracked limestone is considered. The first model (Type 1
model) is a double porosity model representing isotropic calcite polycrystal with two types
of voids: spherical pores and randomly oriented cracks having various aspect ratios. To
calculate the effective elastic properties of this model we apply two methods based on the
self-consistent approach of the effective medium theory including GSA-SC, Berryman-SC,
and DEM. The second model (Type 2 model) is the same isotropic calcite polycrystal with
spherical pores whose connectivity is described by the f -parameter according to formulas of
GSA-f and Berryman-f methods (Equations (1)–(5) and (6)–(9), respectively).

Our idealized models (Figure 1) reflect specific microstructure that could be met for
isotropic carbonates in practice [43,52–54]. These idealized models are often used to es-
timate the effective elastic properties of reservoir rocks. Specifically, these are simplest
models for porous-fractured carbonate reservoir rocks that are of vital interest for prospect-
ing geophysics. These idealized models have predictive power and help to assess the
elastic wave velocities change if: (1) the crack porosity increases (or decreases), (2) the crack
relative opening increases (decreases), (3) crack density increases (decreases), (4) the fluid
type varies and so on. Specifically, these models are applied for well-log and seismic data
in order to localize and characterize the fractured zones [55,56].

To analyze how the f -parameter is related to characteristics of pore/crack space, we
calculate the effective elastic moduli of carbonate rock using the five mentioned above
methods varying the model parameters in a wide range. Then, among the obtained
solutions for the effective bulk and shear moduli, we choose those that could be called
“similar” and associate the f -parameter provided by a Type 2 model with the respective
crack characteristics provided by a selected Type 1 model. We analyze three pairs of models
(Type 1 model − Type 2 model): (1) GSA-SC − GSA-f, (2) Berryman-SC − Berryman-f, and
(3) DEM − Berryman-f.

The results of our analysis demonstrate that the f -parameter can be associated with
cracks in a double porosity model. Thus, an increase in the crack porosity (Figures 2 and 3)
or crack density (Figure 4) is accompanied by an increase in the f -parameter values. For
cracks of aspect ratio 10−3 and higher, if we keep the crack porosity constant but increase the
spherical porosity the f -parameter becomes to decrease. This is explained by diminishing
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the crack contribution to the overall effect of porosity on the elastic moduli. This result
is consistent with the findings of [34] showing that the f -parameter is proportional to the
logarithm of the ratio of permeability to porosity. It is interesting that this effect is not
observed for very thin (aspect ratio around 10−4) gas-saturated cracks. In this case, high
values of the f -parameter are seen in the whole range of spherical porosity. These results
suggest that f -models have a good chance to detect and quantify the zones of enhanced
fracturing and hence permeability.

Note that a good correlation between the f -parameter with crack density gives favor to
f -models in characterizing the fractured zones. The f -models (Type 2 models) contain only
one parameter in contrast to Type 1 models which incorporate two parameters to specify
cracks. Commonly, a wide range of combinations (crack porosity, crack aspect ratio) could
be inverted from measured elastic wave velocities and density, based on the rock-physics
modeling. These characteristics of cracks are very difficult to estimate experimentally
in order to impose bounds on the possible solutions. The use of crack density allows
one to decrease the non-uniqueness in the characterization of fractured zones. Note that
Hudson’s [57,58] model for effective elastic properties of rock with aligned cracks also
operates with a single parameter characterizing cracks, namely, crack density instead of
the pair “crack aspect ratio, crack porosity”. Besides, the inversion based on the f -models
works faster compared to the inversion based on the self-consistent models due to the
smaller number of unknowns and absence of iterations. This fact is significant in the case
when the inversion should be performed for a large number of wells with extended depth
intervals of interest.

The theoretical models should be validated, ideally, on artificial samples with known
geometry of inclusions. Such a validation of f -model was carried out in [29]. However, in
the case of rocks, this type of validation is quite complex and may be possible with the use
of digital rock approach based on data of electron microscopy or computed tomography.
Besides, the parameter f in the second model has no an experimentally measurable analog.
In addition, along this way, other problems arise. For example, so-called segmentation
problem exists that gives a solution to the question of where the solid material ends and the
void begins. This problem is not easily solved for carbonate samples due to their specific
microstructure. Another problem in the digital rock approach is that the properties of
intergranular material should be incorporated in the digital model but they are difficult
to determine.

We have a few examples of “indirect” validating of the effective medium models. The
authors [31] applied the GSA method for the effective permeability modeling for Barnett
shale. They showed that, for this modeling, the permeability of fluid-saturated zones
should be also specified (or inverted from the permeability measurements). Besides, it
was demonstrated that the f -parameter inverted from measured permeability has values
similar to that inverted from the elastic wave velocities. In another work authors using the
modified GSA method with f -parameter demonstrated prediction of the hydraulic perme-
ability and thermal conductivity of clastic rocks from logging data on Vp and electrical
conductivity [32]. The predicted permeability is in good agreement with the measured on
full-size core samples.

The question of the model simplicity is debatable. According to Dvorkin [59], a rock-
physics model should be “as simple as possible but not simpler”. The meaning of this
phrase is that the model simplicity is dictated by availability of experimental data and
the goal of modeling. Definitely, in a real rock, the pores and cracks exhibit a variety of
shapes and sizes. At the core scale we have many tools to examine the rock microstructure
(optical and electron microscopy, CT scanning, direct observation of samples). In this
case, a rock-physics model can incorporate different type of voids. An example is a
very popular the Xu-Payne model [60] of carbonate rocks that includes four types of
voids: micropores, clay-related non-isometric voids, cracks, and macropores. Each type
of void is described by its specific aspect ratio. This model contains seven parameters of
microstructure describing the shape and volume concentration of voids of different types.



Appl. Sci. 2022, 12, 10185 18 of 21

Another example is the Xu-White model of clayey sandstones containing silt-related and
clay-related pores of different aspect ratios [61]. This model contains three microstructural
parameters—aspect ratios of silt- and clay-related voids and a parameter describing the
porosity distribution between the silt and clayey parts. Commonly, the microstructural
parameters are inverted from two elastic wave velocities (Vp and Vs) measured on rock
samples or provided by logs. The number of unknowns in these models is greater than the
number of measurements which leads to a wide domain of possible solutions. However,
constrains provided by microstructural analysis narrow this domain. If the inversion is not
supported by microstructural analysis in such complex models the found model parameters
have no sense and only play a role in fitting parameters. In this case, simpler models should
be applied. However, a model should not be oversimplified. Thus, sometimes the effective
elastic properties of carbonate rocks are based on a model consisting of carbonate matrix
with a single type of inclusions [62–65]. A disadvantage of oversimplified models is that
they may provide an erroneous prediction. Thus, in the work [66] it is shown that a model
with a single aspect ratio used for all voids and a model that distinguishes between the
pores and cracks produce different predictions for elastic wave velocities if the fluid type
changes. In both models the self-consistent scheme of EMT was applied.

If a rock exhibits a hierarchical structure at the scale of consideration and contains sev-
eral groups of heterogeneities having different sizes, the rock physics model is constructed
according to the rule “from smaller to larger heterogeneities”, and the modeling assumes
different stages (like in the Xu–Payne model). At stages when it is necessary to insert
connected voids, the f -models can be applied, which leads to a decrease in the number of
model parameters. Note that the replacement of crack characteristics by the f -parameter is
applicable for any matrix, not only for calcite polycrystal.

Moreover, we can speak about two approaches to model design: conceptual models
and data-driven models. The first one addresses the fit-for-purpose mind set [67] and
represents the essential and reasonable features of the detailed geological structure of the
rocks. This is in line with Dvorkin’s [59] approach to modeling. The second one tends to
make the models as complex as the geology is believed to be. The tools such as electron
microscopy and CT scanning provide us the evidence that the rocks are considerably more
complex in detail than we are capable of modelling explicitly. Yet the data-driven models
rely on the statistical content of the investigating data set and in the reality this data set is
usually statistically insufficient. Separately, from a practical point of view, much of these
details are irrelevant to further reservoir modeling and hence for economic or engineering
decisions [67].

We believe in the compromising approach which relies on building a detailed model
as available experimental data enables us and then according to the modeling purpose
provide the sensitivity study to simplify the model.

5. Conclusions

Methods of effective medium theory give a possibility of taking into account the void’s
connectivity. Some of the methods allow to do this implicitly (self-consistent methods
of Berryman and GSA, differential scheme), and the other methods include a special
parameter quantifying the connectivity (f -models of GSA and Berryman-like approach). A
comparison of results obtained with two groups of EMT methods allows us to conclude
that the parameter f is controlled by the portion of fractures in the total pore volume, and
an increase in the crack porosity is accompanied by increase in the f -parameter. A valuable
correlation of the crack density ε and f -parameter is established which, in general, has the
form f = a log10 (ε)

2 + b log10 (ε) + c for ε ≤ εmin. For the crack density less than εmin the
f -parameter can be approximated by a constant value fmin. The values of εmin and fmin and
coefficients a, b, and c depend on the porosity of spherical pores, saturation type, and pair
of methods used for finding the link. This allows us to conclude that enhanced values of
the f -parameter inverted from experimental data on elastic wave velocities can help to
localize zones of enhanced fracturing and, thereby, the enhanced permeability.
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The obtained results give a favor for f -models to localize fractured zones from well-log
data since they have only a single parameter specifying fractures. The inversion based on
models with fewer unknown parameters is more stable and produces a narrow domain of
possible solutions. In addition, the inversion works faster compared to the case of a larger
number of unknowns.

The use of methods based on f -parameter instead of SCA-based methods can also
reduce the total number of parameters in complex rock-physics models. This is the case
when a model requires input of pores and cracks at certain stage(s) but estimation of their
characteristics (e.g., relative opening) based on microstructural analysis meets difficulties.
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