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Abstract: This research mainly studies the semi-supervised learning algorithm of different domain
data in machine olfaction, also known as sensor drift compensation algorithm. Usually for this kind of
problem, it is difficult to obtain better recognition results by directly using the semi-supervised learning
algorithm. For this reason, we propose a domain transformation semi-supervised weighted kernel
extreme learning machine (DTSWKELM) algorithm, which converts the data through the domain and
uses SWKELM algorithmic classification to transform the semi-supervised classification problem of
different domain data into a semi-supervised classification problem of the same domain data.

Keywords: semi-supervised learning; extreme learning machine; sensor drift compensation

1. Introduction

Machine olfaction is widely used in gas classification and calibration of accurate
concentration estimation. For example, in terms of food safety, it is used to detect the
purity and quality of food [1–3]. In terms of environmental protection, it is used for a wide
range of air quality monitoring [4,5]. In medical cases, it is used to detect diseases [6]. The
research on sensor drift compensation can effectively improve detection accuracy.

In the face of sensor drift, in order to avoid tedious calibration tasks and save costs,
many researchers have studied drift compensation algorithms for many years, proposing
different solutions [7–12]. The most important methods can be divided into three types:
the first is the component correction method; the second is the adaptive method; the third
is the machine learning method.

For example, Wold S et al. proposed an orthogonal signal correction method (orthogo-
nal signal correction, OSC). This method makes the corrected signal retain as much useful
information as possible by removing the linearly irrelevant part of the domain target matrix
in the original signal [13]. Feng et al. used the OSC method to preprocess the data, and
then optimized the RBF network through the particle swarm optimization algorithm. In
order to detect wound infection, good results were obtained [14]. Artursson et al. proposed a
component correction principal components analysis (CCPCA) algorithm based on the OSC
algorithm [15]. This algorithm first assumes that the drift has a preferred direction in the
measurement space rather than a random distribution and finds the direction of the drift
through the method of principal component analysis (PCA). The drift direction is removed by
the measurement matrix, and irrelevant information in the data is removed, thereby increasing
the stability and increasing the generalization ability of the classification model.

The adaptive method is a passive drift compensation method that matches the trained
model to the current sensor output by modifying the parameters in the classification
algorithm [16,17]. There are two main methods: adaptive resonance theory (ART) and self-
organizing feature mapping (SOM). Distante C. et al. combined adaptive resonance theory
with neural networks for gas identification. For overlapping clusters and non-overlapping
clusters, different approaches to the drift problem have been proposed [18]. Distante C. et al.
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proposed a novel mSom neural network approach to improve gas classification for multi-
sensor systems. The algorithm adapts to changes in the data distribution brought about by
the drift problem by repeating the self-training process by using multiple self-organizing
graphs that approximate the statistical distribution of a single odor set [19].

Machine learning methods can also be used to address sensor drift [17,20,21]. This
approach automatically adapts the classification to drift, thereby reducing the impact of drift
problems, rather than explicitly describing or computing drift. Vergara A. et al. proposed an
ensemble method based on support vector machines [22], a method of weighted summation
of classifiers trained at different time points. In order to reduce the impact of cost and
sensor drift, semi-supervised algorithms with both the advantages of supervised learning
and unsupervised learning are introduced into the field of machine olfactory. Combining
the domain adaptation algorithm with the domain semi-supervised algorithm, in [23], Liu
et al. proposed a method to construct a classifier using a weighted geodesic flow kernel
(GFK) combined manifold regularization. Combined kernels are defined on multiple curves
between source domain data and target domain data using unlabeled data.

Domain adaptation has become a better method to solve sensor drift. Domain adap-
tation is a type of transfer learning that utilizes informative source domain samples to
improve the performance of target domain models [12,24–26]. Its idea is to map data
features from different domains (such as two different datasets) to the same feature space,
so that data from other domains can be used to enhance target domain training. Zhang
proposed a framework called domain adaptive extreme learning machine [27], proposing
two types of domain adaptive extreme learning machines (DAELM). One is the source
domain adaptive learning machine (DAELM-S) and the target domain adaptive learning
machine (DAELM-T). The framework uses limited target domain labeled data and labeled
source domain data to train a classifier with good generalization ability. This algorithm has
achieved good results in the problem of sensor drift.

However, DAELM requires a certain amount of labeled data in the target domain,
and in many cases, it is relatively difficult to obtain labeled data. In this paper, we have
proposed an algorithm named DTSWKELM, which can effectively avoid such problem. In
this study, we first introduce the specific implementation process of the DTSWKELM and
the principle of solving the sensor drift problem. The algorithm effect test is carried out on
a public dataset, and the comparison experiment and analysis with different sensor drift
compensation algorithms are carried out. This algorithm transforms the semi-supervised
classification problem of different domain data into a semi-supervised classification problem
of the same domain data through the method of domain transformation. Compared with the
DAELM algorithm, it improves the problem that requires a certain amount of labeled target
domain data and the random hidden layer mapping brings instability problems.

2. Datasets

The dataset used in this study is publicly available data collected by A. Vergara et al.
using sensors and published on the UCI Machine Learning Repository [22,28]. This dataset
has 6 different gases and 13,910 data samples, which is very suitable for the study of related
algorithms for classification. In addition, the most important point is that the data collection
work is divided into different batches at different times. Due to the characteristics of the
sensor, it is prone to aging, poisoning, and other factors, resulting in the drift problem of the
sensor. Therefore, the collected 10 batches of data are prone to different data distributions.
The algorithm DTSWKELM introduced in this study is to solve the problem of long-term
drift of the sensor, so this dataset is selected to test the effect of the DTSWKELM algorithm.
Table 1 shows the details of the dataset.
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Table 1. Data volume for different sample gases in 10 batches.

Batch ID Month Acetone Acetaldehyde Ethanol Ethylene Ammonia Toluene Total

Batch 1 1–2 90 98 83 30 70 74 445
Batch 2 3–10 164 334 100 109 532 5 1244
Batch 3 11–13 365 490 216 240 275 0 1586
Batch 4 14,15 64 43 12 30 12 0 161
Batch 5 16 28 40 20 46 63 0 197
Batch 6 17–20 514 574 110 29 606 467 2300
Batch 7 21 649 662 360 744 630 568 3613
Batch 8 22,23 30 30 40 33 143 18 294
Batch 9 24,30 61 55 100 75 78 101 470
Batch10 36 600 600 600 600 600 600 3600

3. Materials and Methods
3.1. Maximum Average Discrepancy

Maximum mean discrepancy (MMD) is a very efficient measure of the distance be-
tween two distributions. We mainly use it to compare the difference of target domain
data and source domain data, and then find a new domain by minimizing MMD. The
maximum mean discrepancy is based on the idea that we need to identify a function that
takes distinct assumptions about two different distributions. By looking for a continuous
function F in the sample space, finding the mean of the function values of samples with
different distributions on F , and by taking the difference of the two means, the average
deviation of the two distributions corresponding to F can be obtained. Find an F such that
the deviation has a maximum value, and the MMD is obtained. Finally, MMD is taken as
the test statistic to judge whether the two distributions are the same. If this value is small
enough, the two distributions are considered the same. At the same time, this value is also
used to judge the similarity between the two distributions. In transfer learning, this F is
generally used as the RBF kernel function, and MMD can be expressed by Equation (1) [29].

MMD2(F , p, q) :=
sup

f ∈ FEx∼p‖[ f (x)]− Ey∼q[ f (y)]‖ (1)

where F is the desired function, x, y is the sample of two random variables, p is the
distribution of x, and q is the distribution of y. If and only if p = q, MMD2(F , p, q) = 0.

For the unsupervised domain adaptation problem, two different domains are consid-
ered: the source domain S and the target domain T, whose probability distributions are PS
and PT , respectively. The source domain data XS = [x1, x2, . . . , xSi] and the source domain
label YS = [y1, y2, . . . , ySi] and the unlabeled target domain data XT =

[
x1, x2, . . . , xTj

]
,

where NS and NT are the number of samples in the source domain and the number of sam-
ples in the target domain, respectively. Generally speaking, the probability distributions
PS and PT are different. The Euclidean distance between the source domain and the target
domain after a specific function ϕ(·) is mapped to the reproducing kernel Hilbert space
(RKHS), as shown in Equation (2):

MMD2(XS, XT) = ‖
1

Ns

Ns

∑
i=1

ϕ(xSi)−
1

NT

NT

∑
j=1

ϕ
(
xTj
)
‖

2

H

(2)

3.2. Sensor Drift Compensation Algorithm

This section proposes the DTSWKELM algorithm, which transforms the source domain
data and the target domain data so that the two sets of data distributions are close. The
semi-supervised classification problem of different domain data is converted into a semi-
supervised classification problem of the same domain, and then the semi-supervised
classification task is carried out through the SWKELM algorithm. The algorithm has the
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advantages of a good classification effect, strong generalization ability, and no need for
labeled target domain data.

In the dataset, labeled source domain data are accessible, so only unlabeled target
domain data and labeled source domain data can be used to build data reconstruction models.
Through data transformation, it is desirable to keep the source domain data unchanged as
much as possible, while making the distribution of the drifting target data close to the
distribution of the source data. Figure 1 is a flow chart of the DTSWKELM algorithm:
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As can be seen from Figure 1, the source domain data and the target domain data are
obtained through kernel mapping to obtain the hidden layer. Under the constraints of two
conditions, two sets of new domain data are obtained, which are sent to the SWKELM
classifier for model training, and finally the new target domain data are predicted. The
calculation flow of the specific algorithm is given below. The algorithm in this paper can be
defined as the following optimization problem, as shown in Equation (3):

min
f εF

DD(∅(XS),∅(XT)) + L(XS,∅(XS)) + ‖ f ‖2
H (3)

The first term in the formula is used to represent the distribution difference between
the source domain data and the target domain data, and ∅(·) represents the correlation
mapping. The second term is the loss function, which is used to prevent the loss of useful
information in the source domain data in the process of data transformation. The third
normal form is the regularization term used to avoid overfitting.

This paper chooses the maximum average difference to describe the distribution
difference between the source domain and the target domain, as shown in Equation (4):

DD(∅(XS),∅(XT)) = MMD2(XS, XT) (4)

The second loss function can be expressed as Equation (5):

L(XS,∅(XS)) =
NS

∑
i=1
‖∅(xSi)− xsi‖2 (5)

The domain transformation algorithm can be defined as Equation (6):
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min
β

λ
2 MMD2(XS, XT) +

C
2

NS
∑

i=1
ξSi

2 + 1
2‖β‖

2

s.t. h(xSi)β = xT
Si − ξT

Si, i = 1, · · · , NS
h(xSi)β = ∅(xSi), i = 1, · · · , NS
h(xTi)β = ∅(xTi), j = 1, · · · , NT

(6)

where β represents the output layer matrix, C and λ are the trade-off parameters for
adjusting the model, and h(xSi) is the i− th point obtained by the source data through a
single hidden layer neuron. h(xTi) is the i− th point obtained by the source data through a
single hidden layer neuron. xT

Si represents the transpose of the source domain data samples,
NS and NT are the number of source domain samples and the number of target domain
samples, respectively.

Transforming the constrained optimization problem in Equation (6) into an uncon-
strained optimization problem, Equation (7) can be obtained

min
β

λ

2
MMD2(XS, XT) +

1
2

Tr
[
(XS − HSβ)TΛC(XS − HSβ)

]
+

1
2
‖β‖2 (7)

In the formula ΛC is a diagonal matrix, the element on the main diagonal is the
parameter C, and Tr represents the trace of a matrix.

Domain adaptation algorithms that minimize reconstruction error are different from
traditional autoencoders or Boltzmann machines, which use backpropagation to update
parameters to learn the weights of the input and output layers. Domain adaptation algo-
rithms focus on the mapping of source and target domains to new domains rather than
feature extraction.

Equation (4) can be calculated from Equation (8):

MMD2(XS, XT) = ‖
1

Ns

Ns

∑
i=1

∅(xSi)−
1

NT

NT

∑
j=1

∅
(
xTj
)
‖

2

H

(8)

Defining H =

[
HS
HT

]
, Equation (8) can be rewritten as Equation (9):

MMD2(XS, XT) = Tr
[

βT HT DHβ
]

(9)

where D ∈ R(NS+NT)×(NS+NT) is the matrix of MMD, which can be defined in the form of
Equation (10):

Dij =


1

NT2 i f i, j > NS
1

NS
2 i f i, j ≤ NS

− 1
NS NT

others
(10)

To sum up, Equation (7) can be rewritten as Equation (11):

min
β

λ

2
Tr
[

βT HT DHβ
]
+

1
2

Tr
[
(XS − HSβ)TΛC(XS − HSβ)

]
+

1
2
‖β‖2 (11)

For convenience, the source domain data and the target domain data are combined as X∗.
The first NS is the source domain data XS, and the last NT is 0. Λ = dig(C, C, · · · , C, 0, · · · , 0),
where the number of C is the number of source domain data, and the number of 0 is
the number of target domain data. In this way, Equation (11) can be transformed into
Equation (12):

min
β

λ

2
Tr
[

βT HT DHβ
]
+

1
2

Tr
[
(X∗ − Hβ)TΛ(X∗ − Hβ)

]
+

1
2
‖β‖2 (12)
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Obviously, Equation (12) is a convex optimization problem, finding its gradient and
letting it equal to 0, we can get:

λHT DHβ + HTΛHβ− HTΛX∗ + β = 0 (13)

Finally, we get the output layer matrix, as shown in Equation (14):

β = HT
(

INS+NT + (Λ + λD)HHT
)−1

ΛX∗ (14)

Because the input data are mapped to the hidden layer using the kernel function, the
mapped data H cannot be directly and explicitly obtained, and the output layer matrix β
cannot be directly calculated. However, since the kernel matrix K = HHT , it can be directly
calculated. The data after domain transformation, as shown in Equations (15) and (16):

XIS = K(XS, X)
(
(Λ + λD)K + INS+NT

)−1ΛX∗ (15)

XIT = K(XT , X)
(
(Λ + λD)K + INS+NT

)−1ΛX∗ (16)

where X =
[
XT

S , XT
T
]T is the combination of source domain data and target domain data.

The obtained new source domain data and target domain data are sent as input into the
SWKELM model, the semi-supervised classifier is trained, and the trained classifier is used
to predict the X_IT data, and finally the accuracy is calculated.

4. Results

The algorithm DTSWKELM introduced in this paper is to solve the problem of long-
term drift of the sensor, so this dataset is selected to test the effect of the DTSWKELM
algorithm. This part can be mainly divided into three experimental analyses. The first
comparative experiment is the analysis of data distribution, comparing the distribution
before and after data conversion, and observing its changes. The second experiment is to
compare the recognition effects of different algorithms in the dataset. The third experiment
is to analyze the hyperparameters. The whole experiment was carried out in a Window10
system, and Pycharm2020.1.3 was selected as the platform for algorithm implementation.

4.1. Experimental Data Distribution Analysis

The difference in the data distribution of different data is the best manifestation of
the sensor drift problem. In order to more intuitively reflect the different distributions of
different batches of data, the PCA method is used to reduce the dimensionality of the data.
This part reduces the data to two dimensions and presents the dimensionality-reduced
data points by means of a dot plot. Figure 2 is a dot plot of all batches of data in the dataset
after PCA dimensionality reduction:

It can clearly be seen from Figure 2 that the uneven distribution of data in different
batches of datasets is caused by sensor drift; especially when comparing Batch1 with Batch4,
Batch5, Batch8, and Batch9, it is found that this situation is more obvious. In addition, we also
found that there is no certain law in the change of distribution. It can be seen that the sensor
drift is random, not in a fixed direction. It is for these reasons that the classification model that
has been trained on one dataset often has a poor recognition effect on the new dataset.

The main idea of the DTSWKELM algorithm proposed in this study is to find a
new domain for mapping between the source domain data and the target domain data by
calculating the MMD. Make the new source domain data more similar to the target domain
data and then perform model training and recognition on the new data. Figure 3 shows the
distribution of different batches after domain transformation, where Batch1 is selected as the
source domain data, and other batch data are respectively used as the target domain data.



Appl. Sci. 2022, 12, 9529 7 of 13
Appl. Sci. 2022, 12, 9529 7 of 14 
 

 
Figure 2. Dot diagram of 10 batches of data after PCA dimensionality reduction. 

It can clearly be seen from Figure 2 that the uneven distribution of data in different 
batches of datasets is caused by sensor drift; especially when comparing Batch1 with 
Batch4, Batch5, Batch8, and Batch9, it is found that this situation is more obvious. In ad-
dition, we also found that there is no certain law in the change of distribution. It can be 
seen that the sensor drift is random, not in a fixed direction. It is for these reasons that the 
classification model that has been trained on one dataset often has a poor recognition ef-
fect on the new dataset. 

The main idea of the DTSWKELM algorithm proposed in this study is to find a new 
domain for mapping between the source domain data and the target domain data by calcu-
lating the MMD. Make the new source domain data more similar to the target domain data 
and then perform model training and recognition on the new data. Figure 3 shows the dis-
tribution of different batches after domain transformation, where Batch1 is selected as the 
source domain data, and other batch data are respectively used as the target domain data. 

Figure 2. Dot diagram of 10 batches of data after PCA dimensionality reduction.

Appl. Sci. 2022, 12, 9529 8 of 14 
 

 
Figure 3. Dot diagram of 10 batches of data after PCA dimensionality reduction after domain trans-
formation. 

In the DTSWKELM algorithm, in the process of domain conversion, the information 
of the source domain data is preserved as much as possible. In this experiment, Batch1 is 
all used as the source domain data. Therefore, its distribution has not changed much, and 
the above figure only shows a diagram of Batch1. From the figure, we can see that the 
distribution of Batch2–10 data changed significantly after domain transformation, and it 
is closer to the distribution of Batch1, in which Batch2 and Batch8 are more obvious. It can 
be seen from this that the domain transformation part of the algorithm plays a role. It can 
effectively reduce the distribution difference between different batches of data, so that the 
new source domain data are more similar to the target domain data. Thus, the semi-su-
pervised learning problem in different domains caused by the sensor drift problem is 
transformed into a semi-supervised learning problem in the same domain. 

4.2. Sensor Drift Algorithm Comparison Experiment 
In the comparative experiment, the comparison of the recognition effect of the 

DTSWKELM algorithm with other algorithms on this dataset is shown to verify the effec-
tiveness of the DTSWKELM algorithm. Two different sets of comparative experiments are 
set up: the first set of experiments uses Batch1 data as the source domain data, and Batch2–
9 data as the target domain data. The second set of experiments uses adjacent batch data 
as two datasets, that is, using Batch N−1 data as the source domain data and Batch N data 
as the target domain data. At the same time, seven commonly used sensor drift compen-
sation algorithms were selected for the comparison of recognition effects, namely SVM-
rbf algorithm, SVM-comgfk algorithm, ML-comgfk algorithm, ELM-rbf algorithm, 
DAELM-S (5) algorithm, domain transfer broad learning system, SWKELM algorithm, 
DTBLS algorithm, and TDACNN algorithm [30,31]. 

  

Figure 3. Dot diagram of 10 batches of data after PCA dimensionality reduction after domain
transformation.



Appl. Sci. 2022, 12, 9529 8 of 13

In the DTSWKELM algorithm, in the process of domain conversion, the information
of the source domain data is preserved as much as possible. In this experiment, Batch1
is all used as the source domain data. Therefore, its distribution has not changed much,
and the above figure only shows a diagram of Batch1. From the figure, we can see that
the distribution of Batch2–10 data changed significantly after domain transformation, and
it is closer to the distribution of Batch1, in which Batch2 and Batch8 are more obvious. It
can be seen from this that the domain transformation part of the algorithm plays a role.
It can effectively reduce the distribution difference between different batches of data, so
that the new source domain data are more similar to the target domain data. Thus, the
semi-supervised learning problem in different domains caused by the sensor drift problem
is transformed into a semi-supervised learning problem in the same domain.

4.2. Sensor Drift Algorithm Comparison Experiment

In the comparative experiment, the comparison of the recognition effect of the
DTSWKELM algorithm with other algorithms on this dataset is shown to verify the ef-
fectiveness of the DTSWKELM algorithm. Two different sets of comparative experiments
are set up: the first set of experiments uses Batch1 data as the source domain data, and
Batch2–9 data as the target domain data. The second set of experiments uses adjacent batch
data as two datasets, that is, using Batch N−1 data as the source domain data and Batch
N data as the target domain data. At the same time, seven commonly used sensor drift
compensation algorithms were selected for the comparison of recognition effects, namely
SVM-rbf algorithm, SVM-comgfk algorithm, ML-comgfk algorithm, ELM-rbf algorithm,
DAELM-S (5) algorithm, domain transfer broad learning system, SWKELM algorithm,
DTBLS algorithm, and TDACNN algorithm [30,31].

4.2.1. Experiment 1

Table 2 shows the recognition effects of eight different algorithms in Experiment 1.
The bold data is the highest recognition effect of each Batch. In order to better display the
comparison results between different algorithms, the data in Table 2 are converted into a
histogram in Figure 4.

Table 2. The recognition effect of each algorithm in Experiment 1 (%).

Task 1–>2 1–>3 1–>4 1–>5 1–>6 1–>7 1–>8 1–>9 1–>10 AVG

SVM-rbf 74.36 61.03 50.93 18.27 28.26 28.81 20.07 34.26 34.48 38.94
SVM-comgfk 74.47 70.15 59.78 75.09 73.99 54.59 55.88 70.23 41.85 64
ML-comgfk 80.25 74.99 78.79 67.41 77.82 71.68 49.96 50.79 53.79 67.28

ELM-rbf 70.63 66.44 66.83 63.45 69.73 51.23 49.76 49.83 33.5 57.93
DAELM-S(5) 72.66 75.72 61.3 86.29 53.45 59.4 31.16 66.85 44.39 61.25

DTBLS 78.67 96.36 74.6 85.23 83.2 81.53 58.67 56.19 63.1 75.28
TDACNN 89.56 83.83 77.64 75.63 74.36 62.08 75.1 60.85 50.88 72.21
SWKELM 76.13 86.88 73.29 81.82 89.73 71.88 43.57 59.78 53.31 70.71

DTSWKELM 88.26 90.66 77.01 89.85 96.31 74.29 55.78 62.77 68.33 78.14

Observing Table 1 and Figure 4, first compare the recognition effects of DTSWKELM
and 6 common sensor drift compensation algorithms. Under the conditions set in Experi-
ment 1, the DTSWKELM proposed in this paper achieves the best recognition effect in the
four groups of tasks and has the highest recognition accuracy. Especially when the target
domain data is Batch6 data, the recognition accuracy of DTSWKELM reaches 96.31%, which
is 13.11% higher than DTBLS and 68.05% higher than SVM-rbf. Although DTSWKELM
achieves the highest recognition accuracy only in Batch5, Batch6, and Batch10, it is not too
different from the algorithm with the best recognition effect. In addition, from the average
of the recognition accuracy in the 9 tasks, DTSWKELM has the best average recognition ac-
curacy, so it can be seen that on the whole, DTSWKELM performs better. Next, we observe
SWKELM, from which we can see that SWKELM also achieved relatively good results,
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and the overall average recognition accuracy is lower than that of TDACNN, DTBLS, and
DTSWKELM. Moreover, it shows better results than DTBLS and TDACNN in Batch6. It
can be seen that in some scenarios, traditional semi-supervised learning algorithms can
also achieve better results in semi-supervised classification problems between different
domain data.
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4.2.2. Experiment 2

Table 3 below is the recognition effect of eight different algorithms in Experiment 2.
Bold data also represents the highest recognition effect of each Batch. In order to better
display the comparison results between different algorithms, the data in Table 3 are also
converted into a histogram in Figure 5.

Table 3. The recognition effect of each algorithm in Experiment 2 (%).

Task 1–>2 2–>3 3–>4 4–>5 5–>6 6–>7 7–>8 8–>9 9–>10 AVG

SVM-rbf 74.36 87.83 90.06 56.35 42.52 83.53 91.84 62.98 22.64 68.01
SVM-comgfk 74.47 73.75 78.51 64.26 69.97 77.69 82.69 85.53 17.76 69.40
ML-comgfk 80.25 98.55 84.89 89.85 75.53 91.17 61.22 95.53 39.56 79.62

ELM-rbf 70.63 40.44 64.16 64.37 72.7 80.75 88.2 67 22 63.36
DAELM-S(5) 72.66 69.99 72.61 79.54 52.93 87.18 91.36 56.66 29.05 68

DTBLS 78.67 97.65 79.88 67.01 75.34 90.44 95.1 68.09 54.47 78.52
TDACNN 89.56 97.46 87.58 94.68 73.9 80.18 78.43 83.19 47.64 81.48
SWKELM 76.13 90.73 90.68 93.4 73.43 83.73 87.07 92.55 41.69 81.05

DTSWKELM 88.26 97.23 93.17 98.98 78.43 93.99 93.19 96.38 55.08 88.30

Looking at Table 3 and Figure 5, similar conclusions can be drawn as in Experi-
ment 1. Compared with the seven commonly used sensor drift compensation algorithms,
DTSWKELM performs better overall, with an average accuracy of 88.30%, which is 6.82%
higher than TDACNN. Compared with the SWKELM algorithm, it has a better recognition
effect, and the average accuracy is 7.25% higher, which reflects the effectiveness of the
domain conversion process. In addition, it can be seen that the recognition effect of each
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algorithm in different tasks in Experiment 2 is generally higher than that in Experiment 1.
This is mainly because the data of adjacent batches are relatively less affected by sensor
drift, and the distribution difference between the data is relatively small.
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In summary, through two different sets of experiments verify the effect of the
DTSWKELM algorithm, the same conclusion is obtained, and DTSWKELM shows the
best recognition effect.

4.3. Parameter Influence and Analysis

In the DTSWKELM algorithm, MMD is used to describe the distance between two
sets of data distributions, and popular regularization is used to correlate labeled data with
unlabeled data. These two parts play a crucial role in this algorithm. In this section, the trade-off
parameters λ1 and λ2 of these two parts in the optimization problem are analyzed and discussed.
In this paper, the random search method is used to determine the optimal hyperparameters
in the DTSWKELM model, and then the two hyperparameters are analyzed while other hy-
perparameters are fixed. Figure 6 below shows the influence of two hyperparameters on the
recognition effect of the algorithm under the conditions of Experiment 1.

Figure 6a shows the influence of the trade-off parameter λ1 of the MMD part on
the recognition effect of the algorithm when other hyperparameters are fixed. Take
lg(λ1) = [−4,−3,−2,−1, 0, 1, 2, 3, 4]. As can be seen from the figure, lg(λ1) in [−4, 0] is
relatively stable in this range, and the trade-off parameter λ1 should be selected within this
range. However, when λ1 increases, the recognition effect of the algorithm decreases. We spec-
ulate that this may be due to the fact that this part accounts for too much in the optimization
problem, resulting in the loss of too much information in the domain-transformed data.

Figure 6b is the influence of the trade-off parameter λ2 of the popular regularization
part on the recognition effect of the algorithm when other hyperparameters are fixed.
Similarly, taking lg(λ2) = [−4,−3,−2,−1, 0, 1, 2, 3, 4], the trade-off parameter λ2 is not
as stable as λ1. However, it can be seen that lg(λ2) can achieve better results on [−2, 0].
When the trade-off parameter λ2 is too large, it can be found that the accuracy of the
algorithm is low. This is because when the manifold regularization part occupies a large
proportion in the optimization problem, the useful label information will be weakened,
and semi-supervised learning will degenerate into unsupervised learning, resulting in low
recognition accuracy.
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5. Discussion

The sensor drift is caused by the sensor’s own material, processing method, or external
environment. In this case, the semi-supervised classification problem of different domain
data, that is, the sensor drift compensation problem, is studied. This paper proposes a
domain shift semi-supervised weighted kernel extreme learning machine (DTSWKELM)
algorithm, which defines the benchmark dataset as the source domain data and the drift
dataset as the target domain data. By mapping the source domain data and the target
domain data to the new domain, and finally performing semi-supervised learning on the
new domain data set, the target domain data are predicted. The algorithm transforms the
semi-supervised classification problem of different domain data into a semi-supervised
classification problem of the same domain data through the method of domain transforma-
tion. Compared with the DAELM algorithm, the problem of requiring a certain amount
of labeled target domain data and the instability problem caused by random hidden layer
mapping is improved. Experiments show that the proposed algorithm can effectively
compensate for the long-term sensor drift problem.

The DTSWKELM algorithm is a sensor compensation algorithm for single-source
domain data. Although it has achieved good results, in some cases, there will be multiple
source domains, and the algorithm cannot combine multiple source domains together. Rea-
sonable and effective use of multiple source domain data can better learn the characteristics
of the data and solve the problem of sensor drift, which is also an important problem in
future research on olfactory machines.

6. Conclusions

Inspired by the DAELM algorithm, this study combines the domain transformation
algorithm with the semi-supervised learning algorithm and proposes the DTSWKELM
algorithm to compensate for sensor drift. First, by using MMD to represent the distance
between two distributions, by minimizing MMD, a new domain is found, and the source
domain data and the target domain data are mapped, thereby reducing the source domain
data and the target domain data. The distribution difference between the data, the obtained
new domain data is sent to the SWKELM model, the semi-supervised classifier is trained,
and finally the target domain data is identified.
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In the analysis stage of the experimental results, three groups of comparative exper-
iments are mainly set up. First, the PCA method is used to compare and analyze the
distribution of different batches of data before and after domain conversion, which more
intuitively shows the impact of the sensor drift problem and verifies the effectiveness of
the domain conversion process. Next, when testing the performance of the DTSWKELM
algorithm, two experiments were set up. The first experiment is to set Batch1 as the source
domain data, the data of Batch2–Batch10 are set as the target domain data and predict it.
The second experiment is to set BatchN−1 as the source domain data and BatchN as the
target domain data and make predictions on it. In these two groups of experiments, seven
commonly used sensor drift compensation algorithms and SWKELM algorithm are used as
control algorithms. Compared with other algorithms, the DTSWKELM algorithm proposed
in this study has better recognition effect and can better deal with the long-term sensor
drift problem. The last part is an analysis of the hyperparameter settings in the model. By
setting different hyperparameters for comparative experiments, it shows the importance of
hyperparameters to the model.
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