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Abstract: This paper presents two methods to understand the rhythmic patterns of the voice in
Korean traditional music called Pansori. We used semantic segmentation and classification-based
structural analysis methods to segment the seven rhythmic categories of Pansori. We propose two
datasets; one is for rhythm classification and one is for segmentation. Two classification and two
segmentation neural networks are trained and tested in an end-to-end manner. The standard HR
network and DeepLabV3+ network are used for rhythm segmentation. A modified HR network
and a novel GlocalMuseNet are used for the classification of music rhythm. The GlocalMuseNet
outperforms the HR network for Pansori rhythm classification. A novel segmentation model (a
modified HR network) is proposed for Pansori rhythm segmentation. The results show that the
DeepLabV3+ network is superior to the HR network. The classifier networks are used for time-
varying rhythm classification that behaves as the segmentation using overlapping window frames
in a spectral representation of audio. Semantic segmentation using the DeepLabV3+ and the HR
network shows better results than the classification-based structural analysis methods used in this
work; however, the annotation process is relatively time-consuming and costly.

Keywords: structure analysis of music; rhythm classification; semantic segmentation; Pansori dataset

1. Introduction

Deep learning research on music information retrieval has generally focused on
content-based filtering (affective state, artist, genre, music similarity) rather than musical
structure, although musical structure analysis has wide applications in music information
retrieval (MIR). The applicable fields of music structural analysis (MSA) are musicology,
music theory, and music cognition. Numerous methods [1–5] have been developed in
the structural analysis of music based on similarities between a given musical data and
other pieces of music. Some well-known similarity comparison methods are note-based
(string matching approach), frame-based (geometric representation), ground truth-based,
probability matching, and N-gram (based on pitch and rhythm dimensions) [6,7].

The development of a computational model to learn from music content for structure
analysis is an important and useful tool today to efficiently store and retrieve the digital
content. In musicology, the musical structure expresses the contiguous, non-overlapping
musical segments that compose a given audio signal. MSA identify the similar musical
pieces and label them at different time scales. The automatic segmentation of music is a key
issue in music browsing, searching, summarization and recommendation [8]. Segmenting
music involves identifying boundaries between homogenous regions. Music segmentation
is possible based on vocals, instruments, rhythm, harmony, pitch, and interval. The
segmentation result shows musical boundaries, musical form and semantic labels such as
verse, chorus or bridge [9–11]. The segmentation algorithm detects the locations where
significant changes of statistical properties [12] or semantic information [13] occur.
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A perfect understanding of musical boundaries is a hard task even for a human,
as highlighted in a review paper [14]. The paper highlights the real-world applications,
current trends and challenges, existing methods, evaluation, dataset, and future direction of
research for music structure analysis. Homogeneity, novelty, repetition, and regularity are
some segmentation principles described in the review paper; among them, our approach
is homogenous musical piece detection using a deep neural network. Past methods show
interesting results in MSA using a non-data-driven approach. Sheh [8] proposed an EM-
based HMM method for chord-based segmentation. Similarly, Wei [11] used tonality
and the recurrent structure of music for automatic music segmentation. The data-driven
approaches are now massively used for structure boundaries determination of music.
A CNN-based method [15] used audio spectrograms with self-similarity lag matrices.
The method proposed a complex CNN structure with multiple input features fusion. The
results are interesting but have some limitations because of limited training data and simple
network architecture. The past research only conducted a similarity-based comparison
of two-piece of music using the information of pitch, rhythm, vocals, or instrument. We
proposed a novel technique for music structure analysis using rhythmic information at
pixel labels. At the time of writing, we could not find such research that has been used to
segment music according to rhythmic features.

At present, we have several efficient segmentation algorithms but still have data
scarcity to train them from scratch. We proposed two datasets and methods for MSA that
could attract new researchers in this direction in the future. In this paper, we studied a
structural analysis of Korean traditional music called Pansori based on musical rhythms.
Musical rhythm is a sound pattern composed of silent and singing notes. There are more
than six unique rhythmic patterns in Pansori excluding rests (silences) between each
rhythmic category and narration. Some non-data-driven methods for MSA research [1,16]
using rhythmic information of music have been used in Western music. We use the current
mainstream classification and semantic segmentation for MSA using deep learning. Two
novel Pansori rhythm datasets are proposed in this work and define a baseline of the
proposed dataset, which provide inspiration for subsequent research.

We introduce a novel benchmark of Pansori rhythm segmentation using the data-
driven deep learning method. We trained the HR network [17] and DeepLabV3+ net-
work [18] for segmentation in an end-to-end manner. A modified HR network and a novel
GlocalMuseNet are trained for rhythm classification and later used for both segmentation
and classification purposes. The GlocalMuseNet outperforms the other classifier for the
classification and segmentation of Pansori rhythm. The DeepLab V3+ network shows the
best performance in the semantic segmentation of rhythm. Overall, semantic segmentation
outperformed classification-based segmentation, despite a time-consuming data annota-
tion process that required expert supervision. The major contributions of this work are
summarized as follows:

1. We developed two supervised datasets for rhythm classification and segmentation.
2. We propose GlocalMuseNet, a DNN, which was found to be efficient at capturing

the acoustic information and preserving the resolution in feature maps. The network
outperforms other DNNs for the classification of Pansori rhythm.

3. A novel segmentation model (modified HR) is proposed for the semantic segmentation
of music rhythm that is found to be superior to a vanilla HR network.

4. We compared the classification and semantic segmentation-based methods for the
structural analysis of music.

This paper is structured as follows. Section 2 describes the proposed dataset for
rhythm classification and segmentation. The methods in Section 3 introduce the Pansori
rhythm classification and segmentation datasets, music preprocessing methods, and neural
network architectures used in the study. The experiments and results in Section 4 discuss
the classification and segmentation results and analyze the performance of the trained
DNNs. Finally, we present the conclusions and potential areas for further research in
Section 5.
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2. Dataset for Pansori Rhythm

Pansori is a genre of a narrative song performed by a vocalist and a drummer. It
reflects the different situations of stories using varying tones and rhythmic structures.
Originally, there were 12 sets of Pansori stories known as Madang; however, only five sets
are still being performed in the 21st century. The singer performs a long narrative poem
with alternating singing, narrating, and acting. Aniri is a form of narration, and there are
numerous singing modes such as Anirichangzo, Jinyangjo, Jajinmori, Jajinzungzungmori,
Jungmori, Jungjungmori, Danjungmari, Hwimori, Eonmori, Eotjungmori, Sichang, Semachi,
Dockseoseong, and Pyungzungmori. The singing modes are the rhythmic patterns in
Pansori known as Jangan that express unique circumstances in a story and differ according
to the story’s content and the performer’s singing techniques. Usually, narration follows
singing, but this is not always the case. The rhythmic patterns are diverse according to
the song’s duration, measure, rhythmic cycle, and speed. For example, “Jinyangjo” is the
slowest rhythm pattern with six slow beats in one measure and four measures in each cycle,
which are expressed in 18/8 time. On the other hand, “Hwimori” is the fastest rhythm
which consists of four very quick beats, which are expressed in 4/4 time.

In this work, Pansori data are collected from original CD recordings with the help of
the Jeonbuk National University, Department of Music (https://wz3.jbnu.ac.kr/musiceng/
index.do, accessed on 14 December 2021). Five students from the department are involved
in the annotation and validation process of the Pansori rhythm. Students involved in
this research are good Pansori singers and drummers and have a deep understanding of
rhythmic patterns and note-level composition of the song. As displayed in Table 1, we used
seven categories for structural analysis of Pansori music; among them, ‘Aniri’ generally
appeared before the other six singing modes. In the ‘Aniri’ section, the singer tries to
explain the story’s characters, activities, and scenarios, and then, the story is sung using
various modes based on the situation. The six categories of Pansori rhythm used in this
work are namely ‘AniriChangzo’, ‘Jajinmori’, ‘Jinyangjo’, ‘Jungjungmori’, ‘Jungmori’ and
‘Others’ where the ‘Others’ class included rhythms that rarely appear in Pansori songs such
as ‘Dockseoseong’, ‘Eonmori’, ‘Eotjungmori’, ‘Hwimori’, ‘Semachi’, and ‘Sichang’.

Table 1. Pansori rhythm classification dataset. There is only one rhythm category per sample.

Musical Class Number of Samples

Aniri 752
AniriChangzo 232

Jajinmori 144
Jinyangjo 132

Jungjungmori 157
Jungmori 292
Others Ψ 95

Ψ Other categories include ‘Dockseoseong’, ‘Eonmori’, ‘Eotjungmori’, ‘Hwimori’, ‘Semachi’, and ‘Sichang’ musi-
cal modes.

The segmentation of Pansori music according to its rhythmic features is a challenging
task due to its diversified rhythmic structure, imbalanced training samples, and computa-
tional complexity due to long and variable length rhythmic structures. Some rhythms are
very short (less than five seconds), and some are more than 20 min. During the semantic
segmentation, the ‘Others’ class used in the classification network was represented as back-
ground. Other categories of singing mode and narration are kept the same, as illustrated in
Table 2.

https://wz3.jbnu.ac.kr/musiceng/index.do
https://wz3.jbnu.ac.kr/musiceng/index.do
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Table 2. Pansori rhythm segmentation dataset. Events are the singing mods presented in the
whole dataset.

Musical Segment Name Number of Audio Events

Aniri 752
AniriChangzo 232

Jajinmori 144
Jinyangjo 132

Jungjungmori 157
Jungmori 292

Background # 95
# Background includes ‘Dockseoseong’, ‘Eotmori’, ‘Eotjungmori’, ‘Hwimori’, ‘Semachi’, and ‘Sichang’ musical
segments of audio.

3. Methods

This study focuses on the segmentation of Pansori music, which follows an established
rhythmic structure. This section explains the audio processing and deep neural networks
used in this work for the classification and segmentation of Pansori rhythm.

3.1. Audio Representation

The raw audio requires pre-processing in a suitable format before it is input into
the deep neural networks for the MIR task. We used the log-Mel spectrogram for both
classification and semantic segmentation tasks because it is proven and found efficient
representation for audio classification [19], emotion recognition [20], and sound event
detection [21,22]. The data pre-processing during training and testing time is designed
to address the fixed-size input to the neural network and memory issues in processing
the long audio sequence. During training, fixed-sized input was randomly selected that
should meet the neural network input dimension. During testing time, the clip of test
audio is sequentially passed to the trained DNNs. A series of test results are aggregated
and voted in overlapping regions for a final decision on test data. The detail of audio
processing for the classification and semantic segmentation of Pansori rhythm is discussed
in the following sub-sections.

3.1.1. Audio Processing for Classification

In the classification process, rhythms were clipped from long audio sequences, and
the clips were then uploaded to the DNN for training and testing. The stereo channel audio
was transformed into mono, and the music was repeated when the audio was less than the
required length. We used 30 s of audio to train the neural networks with a sampling rate of
16 kHz, a fast Fourier transform (FFT) size of 1024, a Mel-bin of 64, and a hop size of 500 in
audio pre-processing.

During the inference process, we used a sliding overlapping window over the time-
frequency representation of the audio sequence as described in Algorithm 1. The window
length should be the same as the input audio representation used during training time.
The stride size was 10 s, and other audio parameters were the same as those used for
training time. The overlapping regions of the input audio sequences were counted and
voted on by averaging the multiple classification results from pre-trained DNNs for the
final determination of category labels.

3.1.2. Audio Processing for Segmentation

For the semantic segmentation in audio, the annotation is given in the temporal
dimension with the value of the start time, end time, and rhythm category label. Based
on the annotation, we generated the mask on-the-fly during training. Input log-Mel
spectrograms and corresponding masks were randomly selected from long audio sequences
during the training of the neural network. The log Mel-spectrogram is generated by keeping
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the same value of sampling rate, FFT size, Mel bins, and hop length used in the rhythm
classification process.

Algorithm 1: Classification-based segmentation with overlapped sliding windows

Inputs: Log-Mel spectrogram (A) and rhythm category (C)
Network: A neural network (N)
Step 1: Calculate input length of audio; W = length(A)
Step 2: Create and initialize a list (L) for counting the total segments of input audio and iterate
over the total audio length with overlapping strides
Step 3: Initialize prediction result array: (P) = Zeros (W, C); and overlapping window counter
array: (O) = Zeros (W, C)
Step 4: Loop s until length of L
Step 4.1: Select network input a = A [s [0]:s [1]]
Step 4.2: Predict rhythm class p = N(a)
Step 4.3: Update P by adding p and O by adding one
Step 5: Average result by P/O
Step 6: Find the target category by maximizing number of predicted classes

At the inference stage of semantic segmentation, the entire time-frequency representa-
tion of an audio sample was inputted to the trained segmentation network, and probable
masks were generated for each rhythm category, as shown in Figure 1. The start and end
times of each predicted rhythm category are shown in output masks with unique colors as
with visual data [23]. The background class was illustrated with black (RGB: 0, 0, 0), Aniri
with red (RGB: 255, 0, 0), AniriChangzo with green (RGB: 0, 255, 0), Jajinmori with blue
(RGB: 0, 0, 255), Jinyangjo with yellow (RGB: 255, 255, 0), Jungjungmori with pink (RGB:
255, 0, 255) and Jungmori with sky green (RGB: 0, 128, 128).

Figure 1. Information pipeline in inference phase of semantic segmentation of Pansori rhythm. The
black color represent background and the music rhythmic segments are shown by unique color in the
temporal direction of music in spectral representation.

3.2. Network Architectures

We used two neural networks for classification and two for segmentation of the Pansori
rhythm dataset. The standard HR network [17] is a network used for rhythm segmentation.
The HR network maintains high-resolution representations through the encoding process
by connecting the high-to-low resolution convolution streams in parallel and repeatedly
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exchanging the information across resolutions. Another encoder–decoder network used for
semantic segmentation is the DeepLabV3+ network that uses atrous separable convolution
to preserve the resolution in the feature map. For both the HR network and DeepLabV3+,
we utilized the network configurations as in the original paper.

A modified HR network is used for the classification of music rhythm. The last de-
convolution block of the standard HR network was replaced by a Softmax layer after using
global average pooling. We proposed a novel rhythm classifier called GlocalMuseNet
that is capable of capturing local and global correlations of music. We addressed two
major problems of standard convolution networks in the proposed architecture. First, the
standard convolution considers only local regions and operations, which cannot include
the global long-range dependencies. Second, deep neural networks become computation-
ally expensive as the number of feature channels increases using standard convolution.
Therefore, powerful hardware is a requirement that may not always be infeasible for all.

The GlocalMuseNet includes several dense residual blocks with several skip connec-
tions to share the global information and preserve sufficient resolution in feature maps.
The network is designed with fewer parameters using the filter and channel separable
convolution method [24]. In music processing using 2D convolution, the standard square
filter of size (n × n) is converted into a rectangular temporal filter (1 × n) and spatial fil-
ter (n × 1). This convolution separation method reduces computational complexity by
preserving the essential temporal and harmonic features of music. The separable channel
method summarizes all the channel information into a single channel and behaves as
spatial attention. Each dense residual block of GlocalMuseNet is designed using filter and
channel convolution and globally connected with another block to share the information
and keep a resolution. The network block diagram of GlocalMuseNet is shown in Figure 2
with a detailed description of hyper-parameter settings and acronyms.

Figure 2. Architectural block diagram of GlocalMuseNet with detail view of dense residual block,
hyper-parameters and symbolic representation.

4. Experiments and Results

In this experiment, we represented the structural analysis of music using rhythms.
The rhythmic structure of Pansori music was segmented using classification and semantic
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segmentation methods in long audio sequences. The classification-based segmentation
method needs the class label to train DNNs and does not require precise boundary infor-
mation (start time and end time) of music rhythm as the semantic segmentation method.
Therefore, the classification-based method is less expensive in terms of labeling, training
and evaluation time than semantic segmentation. However, the classifier does not experi-
ence the real data pattern at training time, which diminishes the overall segmentation result
in test data. On the other hand, the DNNs for semantic segmentation are understood about
the changing scenario of rhythmic patterns in the long audio sequence. Therefore, they well
segment the test samples of Pansori music; however, some pixels are not correctly classified
because of fewer training samples. The classifier and semantic segmentation networks are
trained in an end-to-end fashion because of less possibility of transfer learning or meta-
learning. In addition, the data augmentation is not used during training and testing: that
is, test–time augmentation. Therefore, future researchers have enough space to improve
this type of research. The greatest pitfall of our classification and segmentation results is
the unbalanced dataset that needs to be corrected in future work. One possible way can
be a generation of synthetic music data in order to balance the dataset using generating
models such as GANs.

We used two methods for music segmentation described in the following sub-section.
The deep neural networks used in this study successfully discovered the correlated in-
formation of multiple time-varied musical rhythms. The two datasets are set on contrast
experiments for classification and segmentation in this paper. Adam is utilized to optimize
the network by the initial learning rate of 1 × 10−3. The size of the log Mel-spectrogram
input is set to 32 (Mel-bins) by 1020 (temporal length), which is equivalent to one-minute
audio. The system was trained on a batch size of 8, and early stopping was applied to
obtain the optimal solution. The Keras 2.3 with backend TensorFlow 1.4 is combined with
CUDA version 10.0 and cuDNN version 8.0. The model training and inference are carried
out in line with the NVIDIA RTX 6000 ×1 and Intel i7-6700k@4GHz.

4.1. Classification-Based Rhythm Segmentation

The modified HR network and the GlocalMuseNet were trained in an end-to-end
manner for the classification of Pansori rhythms. The entire rhythm classification dataset
was split randomly into the train (80%) and test (20%) sets. The performance of the trained
classifier on the Pansori rhythm test dataset is illustrated in Table 3.

Table 3. Classification score of rhythm classifier.

Network Test Accuracy F1-Score ROC-AUC
Score

Training
Parameters

HR net 0.8554 0.811 0.971 9,523,655
GlocalMuseNet (n * = 8) 0.8795 0.815 0.969 1,753,567
GlocalMuseNet (n = 16) 0.8591 0.784 0.961 6,967,951

* n = number of convolution features in first layer.

The GlocalMuseNet outperforms the HR net in this experiment with few training
parameters. The GlocalMuseNet with eight initial convolution filters outperforms the other
classifiers. The HR network has higher computational complexity than the GlocalMuseNet
with 16 initial convolution filters but has relatively more computational complexity. The
GlocalMuseNet with eight initial convolution filters perform the best and lightweight for
training. The same network was used in classification-based rhythm segmentation. The
evaluation metrics used in the classification of rhythmic patterns were accuracy, F1-score,
and the area under the receiver operating characteristic curve (ROC-AUC) score. The
confusion matrix of our three classifiers is shown in Figure 3a–c. The “Other” rhythmic
class was found to be more confusing for GlocalMuseNet because it includes a diversified
rhythm category, as described on Section 2. “AniriChangzo” was found to be confusing
with “Aniri” for all classifiers, because these two classes have some common characteristics.
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Figure 3. Confusion matrix of our three classifiers using Pansori classification dataset of seven classes.

The segmentation results of a test sample using GlocalMuseNet are shown in Figure 4.
The ground-truth rhythmic boundaries and class categories are described in the caption of
the figure. The result shows a strong calibration of segmented rhythm with ground truth.
However, some results are biased from actual ground truth due to the lack of training data.

Figure 4. Segmented output on test sample using classification-based segmentation method. (ground
truth: Aniri 0 to 17 s and Jungjungmori 18 to 93 s).

4.2. Pixel-Based Rhythm Segmentation

The standard HR network and DeepLabV3+ networks are designed for the seman-
tic segmentation of images that are applicable in MIR if audio representation is a time-
frequency spectrogram. In this work, the HR network is used in its original form and with
minor modifications. We termed the modified HR network for semantic segmentation
as a 2Dto1D HR network in which the frequency dimension is squeezed to one by max-
pooling/average pooling after upsampling the encoded feature maps in the final layer. The
modified version of the HR network outperformed the original HR network but did not
exceed the DeepLabV3+’s capabilities, as shown in Table 4. For the semantic segmentation
network, the input audio representation had a size of (1920, 32) with a single channel. Here,
32 represents the number of Mel-bins, and 1920 represents the temporal length of audio in
spectral representation that is equivalent to one-minute audio.

Table 4. Semantic segmentation based on rhythmic segmentation.

Network Test_IOU Test_Acc MSE Test_Pixel_Acc

DeepLabV3 0.81580 0.9829 0.0038 0.9829
HR network 2Dto1D 00.7987 0.9428 0.0145 0.9428

HR network 0.67242 0.8886 0.0287 0.8886
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The evaluation metrics used in the semantic segmentation experiment are intersection
over union (IoU), class accuracy, mean square error (MSE), and pixel accuracy scores. The
DeepLabV3+ network outperformed the HR network; however, it required a relatively large
number of parameters and training time. Figure 5a,b show the DeepLabV3+ network’s
segmentation results with ground truths provided by Pansori experts. Figure 5a shows
the successful segmentation of Pansori rhythms; however, the separation of background
(black) from other rhythmic categories/classes was difficult, as it included highly unbal-
anced rhythmic patterns and boundary noises. Figure 5b illustrates that the segmentation
networks were well-trained and successfully recognized the rhythmic patterns when it
has sufficient training samples. The output masks can be of different widths (as shown in
Figure 5) based on the length of the audio.

Figure 5. Pixel-level segmentation results of test samples using DeepLabV3+. The best segmen-
tation network distinguishes the musical modes with unique color per class. The background
class is illustrated with black (RGB: 0, 0, 0), Aniri with red (RGB: 255, 0, 0), AniriChangzo with
green (RGB: 0, 255, 0), Jajinmori with blue (RGB: 0, 0, 255), Jinyangjo with yellow (RGB: 255, 255,
0), Jungjungmori with pink (RGB: 255, 0, 255) and Jungmori with sky green (RGB: 0, 128, 128).
(a) Semantic segmentation result of a test sample using best segmentation network. The upper figure
is an input log Mel-spectrogram and the lower figure is the predicted mask (ground truth: Aniri 0 s to
5 s and Utmori 6 s to 191 s). (b) Semantic segmentation result of a test sample using best segmentation
network. The upper figure is an input log Mel-spectrogram and the lower figure is the predicted
mask (ground truth: Aniri 0 to 29 s and Jungjungmori 30 to 75 s).

4.3. Comparison on Proposed Methods

The past MSA methods do not use the pixel-level segmentation of musical modes.
The past research [16,17] used a novelty curve and self-similarity matrix to represent the
structural information in music. We made a pixel-level structural segmentation of music
using two methods. In this section, we compared the efficiency of our classification-based
and semantic segmentation-based methods in the Pansori rhythm segmentation dataset.
It is hard to make a quantitative comparison between these two methods; therefore, we
interpreted the segmentation results of our two methods in the same test sample, as shown
in Figure 6a,b.

The small boundary of the “Aniri” class at the right end of Figure 6a shows the miss-
predicted segmentation result using the classification-based segmentation method. The
semantic segmentation shown in Figure 5b solves this issue and segmented the music
bounder as the ground truth; however, the DeepLabV3+ model also has some limitations
in pixel label. The “Background” includes highly diversified rhythmic patterns that create
confusion for both the classifier and the segmentation network. Another reason can be
the unbalanced dataset and noisy rhythmic boundaries. These issues can be solved in
the future by increasing the dataset and designing an optimal neural network for this
specific problem.
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Figure 6. Classification-based and semantic segmentation-based Pansori rhythm segmentation on
same test sample. The color indicates the rhythmic class as in Figure 5. (a) Segmented output on test
sample using classification-based segmentation method (ground truth: Aniri 0 to 50 s and Hweemori
51 to 101 s). The segmented classes are distinguished by color and captions. (b) Segmented rhythm in
a test sample using DeepLabV3+. The upper figure is an input log Mel-spectrogram and the lower
figure is the predicted mask (ground truth: Aniri 0 to 50 s and Hweemori 51 to 101 s).

5. Conclusions

We developed a straightforward method of music structure segmentation using the
rhythms of Korean traditional music called Pansori. We successfully implemented rhythm
classification and semantic segmentation methods for rhythm segmentation. We imple-
mented straightforward and practical methods to process long audio sequences during the
inference phase of music classification and segmentation. We proposed and utilized two
supervised datasets: one for classification and another for the semantic segmentation of
Pansori music. Several classifications and semantic segmentation neural networks were
trained in an end-to-end manner and tested for structural analysis. A novel classification
model called GlocalMuseNet and a novel segmentation model (modified HR) are proposed
in this work for the structural analysis of Pansori music. The trained classifiers successfully
segment the music rhythm by using overlapping window frames in a spectral represen-
tation of unknown audio. In this experiment, the semantic segmentation-based method
was more accurate than the classification-based rhythm segmentation method. One reason
is that the classifier never faces the real segmentation environment in its training phase.
In comparison, the annotation process for the semantic segmentation method is more
complicated and expensive than the classification-based method. In the future, if sufficient
training data and efficient methods are available, both the classification and segmentation
methods can provide satisfactory results in the structural segmentation of music. Data
augmentation using generative networks such as GANs can be another way to solve the
data scarcity and unbalanced class problem.
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