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Abstract: Digital pathology offers powerful tools for biomarker discovery, analysis, and translation.
Despite its advantages, the clinical adoption of digital pathology has been slow. A clinical and
methodological validation is required for novel digital pathological biomarkers. Four steps are
required to validate a novel pathological digital biomarker for clinical use: sample collection and
processing, analytical validation, clinical validation, and clinical utility. The digital biomarkers and
their diagnostic, monitoring, pharmacodynamic response, predictive, prognostic, safety, and risk
assessment applications are discussed. Adopting pathological digital biomarkers can be used in
conjunction with other diagnostic technologies to select the most appropriate patient treatment,
thereby reducing patient suffering and healthcare costs.
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1. Introduction

Pathology-based evaluation has been utilized to diagnose diseases and determine
the efficacy of drug use in various areas [1]. The traditional pathology technique has
the advantage of being inexpensive and versatile, and it may be used on formalin-fixed,
paraffin-embedded tissue samples [2]. However, due to discrepancies in laboratory proce-
dures and subjective interpretations, this conventional pathology can cause disagreements
among observers. This leads to inconsistencies in diagnosis and, as a result, to poor
treatment options [3].

Digital image analysis in pathology enables a quick and accurate identification and
quantification of specific cell types and quantifies histological features, morphological
patterns, and biologically relevant areas of interest (e.g., tumor or tumor-surrounding areas,
various immune cell populations, relationships between regions) [4]. It could improve
study inclusion criteria and outcomes. Image analysis can extract relevant measurements
and features. Automated methods have been successfully used to quantify immunohis-
tochemistry [5]. Image analysis can provide a more reproducible quantification of cell
or gland morphology. Deep learning replaces traditional image analysis algorithms. By
training complex computation models directly from data, algorithms can often surpass
traditional image analysis methods including PD-L1 scoring [6], the quantification of im-
mune infiltrates to predict testicular cancer outcomes [7], sentinel lymph node detection [8],
and better colorectal cancer outcome prediction than a morphological assessment [9]. The
incorporation of digital pathology into the clinical environment enables accurate prediction
of the patient’s response to treatment and prognosis, as compared to current pathology
practices [10].

Despite these advantages, it is not easy to adopt digital pathology in clinical practice.
In order for an evaluation using digital pathology to be actually introduced into clinical
practice, it is necessary to prove whether diagnostic and classification algorithms using
digital pathology are useful in clinical practice, such as validation procedures for existing
biomarkers. This article deals with how quality control is being implemented to achieve
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consistent results in recent digital pathology. It also deals with how new algorithms of
digital pathology have been revealed to have clinical usefulness.

2. Workflow of Digital Pathology

Most pathology labs have been using digital technologies for a long time. The labora-
tory information management system is used at every step of a specimen’s journey through
the lab, from when it is brought in to when the final report is published. Adding more
digital technologies to this process can make it safer, better, and more efficient in the prean-
alytical, analytical, and postanalytical phases [11]. A laboratory system using end-to-end
digital identification (barcodes or radio frequency ID tags) would eliminate these manual
steps, ideally at specimen retrieval [12]. Barcoding provides real-time information about
laboratory specimens, assets, and processes. Barcodes can store specimen type information,
which can be used to route a digital slide to a specific pathologist or add instructions for
special stains or additional levels automatically [13], and real-world data make biomarker
development easier.

3. Validation of Pathological Digital Biomarker

Tumor biomarkers are used for diagnosis and management of tumors in patients.
Because there are so many various types of tumor biomarkers now, it is crucial to pick the
right one. This is a topic that is directly related to the patient’s treatment outcomes, hence
scientifically validated biomarker testing should be performed. Despite the enormous
number of publications on tumor “biomarkers” in recent years, the lack of clinically usable
biomarkers appears to be largely due to the lack of a well-defined validation method for
bringing a newly found “biomarker” into the clinic [14].

Preanalytic, analytic, and clinical validation and a demonstration of clinical utility are
the four important processes in moving a novel pathological digital biomarker from a labo-
ratory to daily clinical use [15]. The validation process of a pathological digital biomarker
is comprehensively illustrated in Figure 1. The sample collection and processing step eval-
uates preanalytical factors that may alter biomarker concentration measurement, and this
step is essential for all biomarkers utilized clinically, not just cancer biomarkers. Analytical
validity, clinical validity, and clinical utility are three crucial semantic concepts proposed
for biomarker research [16]. Analytic validity refers to the ability of biomarker tests to
accurately and reliably quantify biomarkers in patient samples. Clinical validity refers to
the ability of a tumor biomarker test to divide patients into two or more distinct groups
with statistical significance based on biological or clinical results. For tumor biomarker
tests to be clinically useful, they must either improve clinical outcomes or demonstrate that
clinical results are the same at low cost or toxicity.

[ Novel pathological digital biomarker ]
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Clinical utility
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Figure 1. Validation of pathological digital biomarker.

3.1. Preanalytic Validation

A whole-slide image (WSI) is a critical procedure for digitizing data when using patho-
logical digital biomarkers in diagnostics [17]. As a result, in order to apply a pathological
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digital biomarker in clinical practice, the accuracy of the WSI must be guaranteed [18].
This is predicated on the assumption that glass slides have been precisely scanned and
duplicated using a scanner [19]. Atallah et al. gathered data on the failure rates of scanned
digital images before and after the use of quality control (QC) measures for routine scan-
ning. The QC failure rate of WSIs was 20%. Glass slides and WSIs were subjected to strict
quality control techniques three months later. The failure rate of images was dramatically
lowered to 2% [20].

The WSI quality control consists of prescan QC, real-time QC, and postscan QC pro-
cesses [20]. Before scanning, it should be checked if the glass slides are not damaged,
stained or dried properly, clean and free of ink markings, that the covers are properly
positioned, and that there are no air bubbles [21]. Barcode detection failures, tissue de-
tection failures, macro focus image failures, and image quality errors are all checked by
scanners [20]. After the scanning, image thumbnails are checked to ensure that all of the
tissues on the glass slide have been digitized [22].

The College of American Pathologists published a guideline for the validation of
whole-slide imaging systems in pathology for diagnostic purposes. Three recommenda-
tions and nine statements of good practice were included in this guideline. According to the
guideline, the validation process should include at least 60 cases for one application or use
case (e.g., hematoxylin-eosin-stained sections of fixed tissue, frozen sections, hematology)
that reflect the spectrum and complexity of specimen types and diagnoses likely to be
encountered during routine practice [23]. Current histology QC requirements allow for a
wide heterogeneity in preanalytical and analytical artifacts across and within labs [24,25].
Artifact severity and quality vary. Some influence the glass slide (pen markings, filth,
bubbles), while others affect the tissue (folds, thickness, stain intensity) or the scanning
process (for example, differences in focus or the gridding effect of the WSI). While patholo-
gists learn to interpret using their usual stain methodology and read artifacts on a glass
slide, tissue section, or digital picture, computers must adapt to such heterogeneity [26].
Computer-aided algorithms must be generalizable across datasets for digital pathology
measurement, categorization, and prognostication [27]. The variability in WSI training
sets may be an advantage for generalizability; however, an algorithm’s success is tied to
analytics control and dataset homogeneity [28].

3.2. Analytical Validation

A new biomarker assay, regardless of format, must go through analytical (technical)
validation [29]. Analytic validity refers to the ability of biomarker assays to accurately
and reliably quantify biomarkers in patient samples. The initial development and vali-
dation of an assay is frequently done in a research laboratory (academic or industrial).
However, such laboratories” sample numbers are limited, and the importance of results is
less crucial than in a clinical context [30]. To ensure that the assay is adequately validated,
clinical laboratories should conduct additional validation using large sets of data. This
simultaneous validation by a research lab and a clinical lab can give evidence of an assay’s
practicability [29]. The double verification is required because pathological digital biomark-
ers demand precision with large numbers of samples. Pathological digital biomarkers also
deal with vast quantities of specimens, thus they must provide an automated analytical
method. For automated testing, double validation both by the research laboratory and the
clinical laboratory, where the test is employed, is required [4].

3.3. Clinical Validation

Pathological digital biomarkers must be clinically validated after analytic validation.
Patients should be able to be divided into two or more groups using biomarkers. Such
divided groups can include those with or without disease, those who are expected to
have a good or poor result [31], and those who are at a higher or lower risk of disease
recurrence [32]. Central pathology review is the main benefit of digital pathology clinical
validation. Digital pathology allows a simultaneous case review and quick access to inter-
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national experts. Digital imaging eliminates the need to physically transfer slides and tissue
blocks, preventing damage or loss [33]. Digital pathology provides new information from
histological samples. Digital image analysis can be used to quickly quantify and reproduce
immune cell infiltrates [34,35]. Pathologists can mine and link novel digital morphometric
signatures to clinical outcome [36]. However, pathologists face significant challenges in
the arduous process of manually assessing specimens to determine their clinical utility.
Methods based on artificial intelligence can help make accurate quantitative assessments of
digital images at a level that could be better than that of a human observer [37]. Examples
of clinical validation of digital pathological digital biomarker are shown below.

Sobottka et al. developed a diagnostic algorithm using digital pathology to quan-
titatively evaluate tumor-infiltrating CD8+ T cell spatial densities, which is one of the
most important predictive indicators in immuno-oncology [31]. The diagnostic algorithm
translated spatial densities of tumor-infiltrating CD8+ T cells into the clinically relevant
immunological diagnostic categories “inflamed”, “excluded”, and “desert” based on intra-
tumoral and stromal CD8+ T cell densities in the tumor center compartment. For tumor
classification in the desert category, a precision of 100 percent was achieved, with a few
excluded tumors (sensitivity 83 percent, specificity 100 percent) allocated to the inflamed
tumors. (sensitivity 100 percent, specificity 62.5 percent)

Surgically resected hepatocellular carcinoma (HCC) has a significant recurrence rate
but cannot be predicted. Based on digital pathologic images and machine learning using a
support vector machine (§VM), Saito et al. predicted the early recurrence of HCC following
resection [32]. For the prediction, three integrated SVM models were used: one based
on the region of interest (ROI) of HCC area, one based on the ROI of non-HCC area, and
one based on nuclei characteristics. The prediction was precise 89.9% of the time. The
potential clinical benefits for disease-specific digital biomarkers included a more rapid
and accurate disease diagnosis, prediction, and potential reduction in size and duration of
clinical trials. Continuous efforts and clinical trials (summarized in Table 1) are currently
being performed. Due to the fact that clinical validation of pathological digital biomarkers
is possible under digital pathology systems, slide scanners and image analysis algorithms,
with or without the assistance of artificial intelligence, which are intended for medical use
and are classified as medical devices, have been utilized [38]. Regulatory requirements for
clinical performance studies of in vitro diagnostics (IVDs) and for the use of IVDs as digital
pathology in clinical trials of medicinal products are debated and evolving [39].

Table 1. Currently registered clinical trials with digital pathology.

NCT No. Specimen Primary Outcome Source Intervention Country
NCT02470572  Surgical specimen Diagnosis WSI Omnyx IDP system N/A
NCT05447221  Gastric biopsy Diagnosis of intestinal metaplasia ~ WSI DPAIDS China
NCT04846933  Ovarian cancer tissue Diagnosis, therapeutic prediction ~ WSI Multilayer data analysis ~ Finland
NCT05046366  Not specified Diagnosis, therapeutic prediction ~ Digital image Multimodal Al China
NCT04879056  Not specified Diagnosis WSI PIPS 5.1 scanner USA
NCT05221814  Lung surgical specimen  Diagnosis Gross photo image Deep learning model USA
NCT04695015  Ocular tumor tissue Diagnosis Digital image Multimodal AI China
NCT04425941  Colon polyp Diagnosis Colonoscopic image Al-aided diagnosis Hungary
NCT04840056  Gastric biopsy Diagnosis WSI Machine learning China
NCT04217044  Brain tumor tissue Molecular profile prediction Histopathology image  Deep learning algorithm  China
NCTO05300113  Brain tumor tissue Diagnosis WsI Al-aided Diagnosis China

Search date: 18 September 2022; ClinicalTrials.gov.

3.4. Clinical Utility

Pathological digital biomarkers must be shown to be therapeutically beneficial after
analytical and clinical validity has been established. Biomarkers must either improve
clinical outcomes or show that they can achieve the same results at a lower cost or with
less toxicity [40]. The clinical utility of biomarkers can be demonstrated in two ways: by
directly demonstrating the utility of novel biomarkers or by demonstrating the correlation
between existing and new biomarkers [41]. Among published studies, the following are
examples of establishing utility in clinical practice employing digital pathology technology.
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Studies utilized pathological digital biomarker to predict tumor response to immune
checkpoint inhibitor in advanced non-small-cell lung cancer (NSCLC). When the pro-
grammed death ligand-1 (PDL-1) tumor proposition score (TPS) was greater than 50%,
previous trials demonstrated that Pembrolizumab had a higher tumor response rate (TRR)
and survival in advanced NSCLC than chemotherapy [42]. When the PDL-1 TPS was
1%—49%, however, the effects of Pembrolizumab and chemotherapy treatments were identi-
cal [43], indicating the need for a novel biomarker to predict tumor response in patients.
Park et al. used an artificial-intelligence-powered spatial analysis of tumor-infiltrating
lymphocytes (TILs) as an immune checkpoint inhibitor (ICI)’s complementary biomarker
in advanced NSCLC to achieve this goal [44]. Patients with advanced NSCLC who had
received ICI monotherapy were studied retrospectively. When compared to patients with
immune-excluded or immunological-desert phenotypes, patients with the inflamed im-
mune phenotype (IP) had more local immune cytolytic activity, a higher TRR, and a longer
progression-free survival.

There is disagreement over the regulation and inspection of clinical trials using these
technologies as medical devices. Although there are Al algorithms in clinical practice that
have received regulatory clearance, constantly evolving Al applications pose additional
difficulties [45]. To the best of our knowledge, there are no regulations governing the
application of image analysis or digital pathology in clinical trials. The development of
the REMARK recommendations for biomarker studies was prompted by the low yield
of clinically actionable biomarkers from a large number of research studies involving
significant resource expenditure [46]. Additionally, there is no consensus on the best way for
pathologists to integrate computational pathology systems into their daily operations [47].
To solve these problems, explainable artificial intelligence (xAI) methods can be used to
build computational pathology systems as a powerful and effective alternative to opaque
Al models. [48]. Developing similar recommendations for digital pathology applications
would reduce resource waste in biomarker studies. The inefficient development and
adoption of clinically relevant biomarkers has been linked to a lack of reproducibility caused
by inadequate experimental reporting [49]. To avoid repeating research practice failures,
it is important to report how digital pathology applications were validated and consider
adopting existing biomarker guidelines. Digital pathology parameters meet the definition
of a biomarker as an indicator of normal biological processes, pathogenic processes, or
responses to an exposure or intervention, including therapeutic interventions [50].

4. Clinical Application of a Pathological Digital Biomarker

Pathological digital biomarkers have been subdivided by application. One biomarker
may meet multiple criteria for different uses, but each definition needs evidence. While
definitions may overlap, they have distinguishing features that specify their uses. Figure 2
provides a summary of clinical applications of pathological digital biomarkers.

4.1. Diagnostic Biomarker

A diagnostic biomarker detects or verifies the existence of a disease or condition
of interest, or identifies an individual with a disease subtype [51]. A previous study
built a supervised Al model based on ten cellular features provided by an experienced
breast pathologist to distinguish between malignant and benign breast tumors using
pictures of fine-needle aspiration biopsy specimens [52]. A tissue microarray of male breast
cancers revealed the predictive value from nuclear shape and texture [53]. In pathology
images of prostate tissues, a unique gland angularity feature correlated with the degree of
abnormality of the glandular architecture was identified, which appeared more frequently
in aggressive prostate cancers than indolent prostate cancers in addition to presenting
characteristics related with abnormalities in nuclear shape, orientation, and architecture in
tumor and tumor-associated benign areas [54]. Immune phenotyping can also be done with
pathological digital biomarkers. Immunological desert, excluded, and inflamed melanoma
could be phenotyped in metastatic melanoma, and immunological diagnoses coincided
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with a pathologist’s assessment [31]. Furthermore, in advanced melanoma, the response
to immunotherapy was predicted using a machine learning system [55]. When PD-L1
TPS was less than 50%, NSCLC patients could use a pathological digital biomarker to
evaluate whether they should get chemotherapy or ICI [44]. As a result, pathological digital
biomarkers can be used as a complement to determine the optimal treatment for a patient.
Immune phenotyping also aids in identifying the disease’s prognosis. A quantitative
examination of neoplasmatic infiltrates in kidney transplant patients can predict interstitial
fibrosis and tubular atropies, a considerable risk factor for delayed graft function [56].

Diagnostic
biomarker

Safety and risk Monitoring
biomarker biomarker

Application of
pathological digital

biomarker
Prognostic Pharmacodynamic
biomarker biomarker
Predictive
biomarker

Figure 2. Clinical applications of a pathological digital biomarker.

4.2. Monitoring Biomarker

Monitoring biomarkers are those that may be evaluated serially to examine the status
of a disease or medical condition for evidence of exposure to a medical product or envi-
ronmental agent, or to detect the influence of a medical product or biological agent [57].
Monitoring is a broad concept, thus there is overlap with other biomarker categories [57].
A quantitative digital pathology revealed the potential role of recurrence probability in
patient follow-up decisions [58]. Disease recurrence is predicted using digital pathology
biomarker in prostate cancer [58], hepatocellular carcinoma [32], colorectal cancer [59], and
nonalcoholic fatty liver disease [60]. Such a biomarker can influence the disease monitoring
schedule decision.

4.3. Pharmacodynamic Biomarker

A pharmacodynamic biomarker is a type of biomarker whose level changes when a
person is exposed to a drug or an environmental agent. This kind of biomarker is very help-
ful both in clinical practice and in the early stages of drug development [57]. In recent years,
Al-based drug discovery and development techniques have gained popularity. A large
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proportion of patients receiving specific therapeutic modalities, such as cytotoxic drugs or
immune checkpoint inhibitors, do not respond to treatment, prompting interest in merging
Al with digital pathology to identify those most likely to benefit from treatment [61]. A
quantitative approach can help the researcher determine if there is a cutoff or expression
level that results in the medicine reaching the target population, leading to pathway in-
hibition and tumor cell death. This cutoff assessment could be a clinical study’s patient
selection indicator [62].

4.4. Predictive Biomarker

A predictive biomarker is characterized by the finding that the presence or change in
the biomarker predicts that an individual or group of persons are more likely to experience
a positive or negative outcome from exposure to a medicinal product or environmental
contaminant [57,63]. Pathological digital biomarkers can be used in clinical practice as
an aid for predicting the patient’s optimal treatment. Digital pathology can be used to
stratify different cancers. On a computerized platform, noninvasive urothelial carcinomas
were assessed and found to be noninferior to uropathologists [64]. The hormone receptor
status of breast cancer can be determined via digital pathology [65]. By distinguishing
these cancers, it is also capable of predicting the disease’s prognosis. A novel follow-up
technique for HCC patients after resection was suggested using a machine-learning-based
HCC recurrence prediction method [32]. LARC has demonstrated that a pathological
digital biomarker can be utilized as a predictor of chemoradiation therapy response, thereby
creating a new criterion for avoiding undue suffering and expense for patients [66]. Image
analysis can help measure a threshold-based metric for the effectiveness of a targeted
therapy and confirm that the target has been blocked [62]. Target expression is crucial in
antibody-drug conjugate projects to deliver the therapeutic payload to the appropriate
target-expressing (tumor) cells.

4.5. Prognostic Biomarker

A prognostic biomarker provides information regarding the likely cancer outcome
(e.g., disease recurrence, disease progression, and death) regardless of the treatment re-
ceived [63]. A method was proposed for modeling and analyzing the spatial distribution
of lymphocytes among tumor cells on triple-negative breast cancer WSIs. Three types of
lymphocytes were found based on how close they were to cancer cells. Tissue microarray
gene expression profiling found that the ratio of lymphocytes to cancer cells inside a tumor
was an independent predictor of survival and was linked to the levels of cytotoxic T lym-
phocyte protein-4 expression [67]. Stromal characteristics affect cancer prognosis. In order
to identify tumor-infiltrating lymphocytes and stromal-specific characteristics, automated
algorithms are being developed to determine epithelial and stromal tissue regions [36].

4.6. Safety and Risk Biomarker

Clinical uses of digital pathology include pathological diagnosis, assessment of im-
munohistochemistry, tumor board, frozen section diagnosis, receiving and requesting
second opinions, remote working, and insourcing or outsourcing diagnostic work [68].
All these image-analysis-based approaches can be utilized to quantify biomarker for ther-
apeutic or care-schedule decision including safety and risk assessment. Image analysis
platforms can classify risk in colon cancer patients [69]. However, these kinds of studies are
only available as single-site, stand-alone tests, which makes them less useful to the pathol-
ogy community as a whole. Studies that have looked at the use of full digital pathology
workflows have shown that they make operations more efficient and useful [70]. Manually
assessing hundreds of specimens for safety investigations is tedious, time-consuming,
and expensive. Quantitative image analysis in digital pathology helps scientists evaluate.
Traditionally, safety studies evaluate changes based on histochemical stains (such as H&E
and Masson’s trichrome). Several studies have shown the feasibility of automated scor-
ing in murine studies of liver fibrosis [71,72], the quantification of hepatic lipid droplets
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and steatosis [73], heart ischemic injury [74], lung fibrosis [75,76], kidney injury [77], and
pancreatic toxicity [78].

5. Discussion

Digital pathology is being actively developed for numerous reasons, including the in-
creased volume and complexity of histopathological workloads, the pressure on turnaround
times, the shortage of staff, the need to expand capacity, the drive toward networks and
service mergers, and the drive toward healthcare digitalization [68]. Digital pathology
has a number of possible clinical applications, including pathology sample diagnostic test,
immunohistochemistry evaluation, MDT/tumor board, and frozen section diagnosis [68].
DP can also improve diagnostic and predictive clinical decision-making in cancer treatment
since Al and machine learning can display clinical and pathological characteristics of many
clinical samples [10].

Despite these advantages, digital pathology is not easily adopted in clinical practice.
Pathologists are working on a number of projects to better comprehend Al-based predic-
tions. However, there are so many variables that influence judgments that humans are
unable to fully comprehend them [79]. Because of the lack of understanding, Al-based
predictions are prone to bias and misdiagnoses, making Al challenging to apply in clinical
practice. As a result, the novel pathological digital biomarker must be rigorously validated.
However, because digital pathology is still being developed, validation approaches are
currently being debated. This review article discusses validation methods and examples
for novel pathological digital biomarkers, based on the known validation approach that
biomarkers must go through for clinical application. Another new technological advance in
digital pathology is 3D pathology [80]. Three-dimensional pathology aided computational
analysis and deep learning such as generative adversarial network to provide multistage
features such as nuclei [81,82], collagen fiber [83], and glands [84]. Three-dimensional
pathology with deep-learning-assisted prostate gland-biopsy analysis has opened the possi-
bility of nondestructive, superior prognostic stratification of patient disease, demonstrating
the value of computational 3D pathology for clinical decision support, especially for low-
to intermediate-risk prostate cancer [84].

In terms of insurance, ensuring the therapeutic utility of pathological digital biomark-
ers is critical. The difficulty of use, evidence of effectiveness, and financial return on
investment are all factors that contribute to Al deployment failures in health care [85].
As previously noted, clinical usefulness is a critical consideration when determining if
pathological digital biomarkers may be employed in clinical practice. It would be difficult
to employ pathological digital biomarkers clinically until the technology’s clinical value
is demonstrated through clinical studies, because clinical usefulness is intimately linked
to the question of reimbursement. In digital pathology, there is currently no particular
procedural code for applying Al techniques for diagnostic or prognostic purposes [17]. The
US Food and Drug Administration (FDA) approval will be required for digital biomarkers
to demonstrate their clinical utility and be utilized in clinics. A medical image manage-
ment and processing system is defined by the FDA as a device that provides one or more
capabilities related to the review and digital processing of medical images for the purpose
of interpretation by a trained practitioner for disease detection, diagnosis, or patient man-
agement. The software components may provide advanced or complex image processing
functions for image manipulation, enhancement, or quantification that are intended for
use in medical image interpretation and analysis. Image segmentation, multimodal image
registration, and 3D visualization are examples of advanced image manipulation functions.
Complex quantitative functions may include semiautomated measurements or time-series
measurements [86]. Indeed, The FDA has allowed the use of Al in ophthalmology and
radiography, which means that physicians will have more personal availability when using
this instrument, a higher possibility of earning reimbursements, and less of a burden on
the library for self-validation in pathology [85].
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Recently, suitable regulation has been required in order to deploy the Al-based algo-
rithm securely and effectively [79]. The FDA is working on developing acceptable regula-
tions for Al-assisted digital pathology. The FDA has issued "Artificial Intelligence /Machine
Learning (AI/ML)-Based Software as a Medical Device Action Plan" in this regard [87].
Although the details have not been completed, the FDA is focusing on the safety and
efficacy of digital pathology.

One of the primary difficulties that needs to be overcome when using pathological
digital biomarkers in ordinary clinical practice for medical decision-making is the reim-
bursement of costs [85]. Reagents were used to examine traditional pathologic biomarkers.
However, unlike the previous method, a pathological digital biomarker employs a WSI
technology, thus no further testing is required to use the markers. As a result, medical
institutions may be able to lower the actual cost of testing. However, it is difficult to use
technology without difficulty because it requires money to get it into the institution, which
raises the issue of reimbursement. In this regard, if the cost is estimated using the decrease
in the actual cost of traditional biomarker tests by a digital biomarker, the new biomarker
test could be adopted more widely.

6. Conclusions

We discussed the current limitations but tremendous potential of digital technologies
in pathology, as well as how digital pathology could provide immediate solutions to the
search for new therapeutic and prognostic biomarkers. The future direction of combining
digital pathology and artificial intelligence will lead to new therapeutic stratification and
advanced diagnostics, allowing researchers and clinical teams to share and use computa-
tional algorithms to assess and contribute valuable insights, eventually leading to a more
informed and detailed multimodal diagnosis.
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