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Abstract: As the access to consumption data available in household smart meters is now very common
in several developed countries, this kind of information is assuming a providential role for different
players in the energy sector. The proposed study was applied to data available from the Smart Meter
Energy Consumption Data in the London Households dataset, provided by UK Power Networks,
containing half-hourly readings from an original sample of 5567 households (71 households were
hereby carefully selected after a justified filtering process). The main aim is to forecast the day—ahead
load profile, based only on previous load values and some auxiliary variables. During this research
different forecasting models are applied, tested and compared to allow comprehensive analyses
integrating forecasting accuracy, processing times and the interpretation of the most influential
features in each case. The selected models are based on Multivariate Adaptive Regression Splines,
Random Forests and Artificial Neural Networks, and the accuracies resulted from each model are
compared and confronted with a baseline (Naïve model). The different forecasting approaches being
evaluated have been revealed to be effective, ensuring a mean reduction of 15% in Mean Absolute
Error when compared to the baseline. Artificial Neural Networks proved to be the most accurate
model for a major part of the residential consumers.

Keywords: load forecasting; smart meter; residential consumption; Random Forest; Artificial
Neural Networks

1. Introduction

Smart meter data have already proved their importance for different players in the
electricity sector. On the one hand, the transmission and distribution operators may have
access to individual load profiles, allowing the estimation of future load demand for
different areas. They provide the physical balance between supply and demand (at real
time), and the opportunity to adjust the grid operation to minimize power losses, voltage
drops (or other power quality events), thus increasing the grid resilience and reducing
costs. For suppliers, it is also valuable to know in detail how the clients are effectively using
this resource, estimating the expected accumulated electricity volume for their customer
portfolio (at different hourly periods) when buying in the electricity market. Suppliers may
also propose different commercial options (such as contracted power, the choice between
flat/time of use/ or dynamic rates or even the counting cycles programmed in the meters)
according to each consumer profile, launching fair rates, obtaining a distinct and valuable
position as electricity retailers. Even end-users also take advantage of getting access to
their own consumption, which should be viewed as a trigger to make demand more
flexible, as this detailed information may undoubtedly increase awareness (when there are
untypical consumptions, since alarmistic solutions are becoming popular). Furthermore,
with the increasing and desired investment in renewable sources, traditional consumers are
becoming prosumers and this phenomenon is expected to increase the interest of residential
consumers (but not restricted to this sector) to rethink consumption behaviour, trying to
match consumption with the available electricity from self-generation. The consequences
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are less dependence on electricity provided by the grid, with the inherent savings in energy
bills and the reduction in greenhouse gas (GHG) emissions.

Through a comprehensive analysis of works developed in this domain, it becomes
clear that several authors have made use of machine learning applications to estimate
hourly electricity consumptions for the day-ahead, not only at a considerable aggregation
level, but at a single household as well. Some references still use traditional statistical
methods, such as Linear [1] or Polynomial Regression, Autoregressive Integrated Moving
Average—ARIMA models [2–4] or some variants (such as incremental ARIMA or involving
a prior stage of signal pre-processing) to enhance their performance. In [5], a model based
on Conditional Kernel Density Estimation is compared with machine learning models.
Despite the interest associated with these simple approaches, there are some drawbacks
often referred to, such as the effect of multicollinearity among the input variables being
used [6], and the models tend to become hostage and sensitive to the data quality, which is
quite difficult to preserve in this kind of data series [7].

Machine learning algorithms tend to be transversal to a major part of the analysed
references. In this domain, Artificial Neural Networks (ANN) are, by far, the most used
algorithms [8]. This popular approach is a data-driven method [9] that does not need
to be explicitly programmed [10]. ANN are often pointed out by their ability to learn
and to identify hidden trends, thereby finding the intrinsic trends in time series [11].
Their ability to generalize even in the presence of incomplete and noisy data (common in
residential smart meter data) [10] and their non-parametric distinction (they do not require
prior assumptions about the data distribution) make them good approximators capable
to model any continuous function at any desired accuracy. Some drawbacks associated
with the use of ANNs in forecasting applications are the risk of getting underfitted (as it
can get stuck on a local optimal solution) or overfitted models (if the training process
is not interrupted through a proper cross-validation strategy) [12]. Thus, the practical
difficulty is to accurately find the weights associated with each connection along the training
process [11]. Another disadvantage of their use is the lack of explanatory variables, making
them lose interpretability and explainability (also known as the black-box problem) [10].
In [9], it is mentioned that shallow ANN architectures may assume that inputs/outputs
are independent of each other, even when dealing with sequential data. To overcome that
fact, recent research is adopting novel methodologies based on deep learning. Recurrent
Neural Networks (RNN) are one of the alternatives more adapted to time series data,
using feedback connections among the nodes to remember the values from the previous
time steps [9]. Nevertheless, long sequences may cause serious problems that may be
overcome by using Long Short-term memory networks (LSTM), a variant of RNN. LSTM
use internal memories to store information and are faster to converge. Even with this
apparent research potential, some authors [13] have concluded that LSTM have limited
improvements in accuracy when applied to residential smart meter data, are quite more
complicated and more time-consuming, and are not feasible for daily use in practice.
Ref. [14] have tested Convolutional Neural Networks, LSTM and Bidirectional LSTM,
being identified as challenging when tested alone, and the resulting training times are
inconsistent due to various customer load profiles and different factors such as dataset
sizes, number of features and prediction model parameters. Ref. [15] also compared deep
learning approaches with more usual models (Linear Regression, Random Forest (RF),
K-Nearest Neighbours and Support Vector Regression (SVR)). Ref. [16] also compared
LSTM models with ANN, SVR and RF applied to a dataset involving Irish homes and
businesses and assumed that error bars have less variance in MAPE metrics in more “old-
fashioned” models (ANN, SVR and RF), while in LSTM approaches MAPE vary by up to
11% in the five models run. Ref. [17] also concluded that Convolutional Neural Networks
present some difficulties to predict spikes, as they exploit the temporal stationarity of load
time series.

In the subset of machine learning, other popular methods have been applied in the last
few years, such as Support Vector Machines, Decision Trees and Random Forests [1,12,18,19].
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These approaches are also quite common to be proposed or to be used as benchmarks in
comparative analysis. Support Vector Machines are based on a structural risk minimization
principle, rather than an empirical risk minimization principle that characterizes ANN
models [5,9,11]. Their use is based on kernels, leading to the absence of local minima.
They allow a considerable control of the process (acting on the tolerance margin or on the
support vectors), being less dependent on the dimensionality of the feature space. The
major challenge is the inherent combinatorial effort to fine tune the hyperparameters (error
margin, penalty factor and kernel constant). Some authors propose metaheuristics to guide
this search, while others explore simpler approaches such as a grid search technique [5].
Decision Trees are interesting for use when time series with missing values are presented,
as they can handle numerical data and categorical information [19], which makes them
very attractive models for various applications. Random Forest is an extension of Decision
Trees, as it uses multiple models to improve its performance, rather than using a single tree
model [19]. Random Forest runs efficiently on large amounts of data, tends to provide high
accuracy [18] and has low sensitivity to parameter values, as it has an inherent internal
cross-validation [12]. The most interesting advantage is a suitable variable importance mea-
sure. The drawback often pointed out is the hard task to find an optimal architecture and
parameter tuning [9,12,18] (predefining the total number of trees, the maximum number of
variables for decision splits or the minimum number of records for leaf nodes).

The use of ensemble methods is being substantially considered in the bibliography.
Ref. [20] propose the combination of ANN with RF models, ref. [21] combines RF with
Linear Regression and ref. [18] propose a hybrid method combining Random Forest and
Multilayer Perceptron. An ensemble method combining several single models including
Auto-regressive, Multilayer Perceptron, Extreme Learning Machine, Radial Basis Function
and Echo-State Network is proposed by [7]. Refs. [14,15] combine different approaches
involving deep learning. Despite the generic trend to improve forecasting accuracy, hybrid
methods are considerably more time-consuming (when scalability has a key role) and lacks
for interpretability and explainability.

Regarding error metrics, it is quite controversial to compare different works, as the
datasets are obtained in different parts of the world (as access to smart meter data is
becoming a reality in several developed countries) and the consumption patterns and
volumes can be quite distinct. Ref. [11] describes Mean Squared Errors from 0.1 to 0.13 kWh2

for different hours being predicted and an accuracy from 52% to 70% (assuming a tolerance
error within 10%). Ref. [21] reveal a Root Mean Squared Error of about 0.704 kW when
predicting active power for the day-ahead with 15 min resolution. Ref. [14] shows Mean
Absolute Percentage errors varying from 55.8% to 36.75% with the proposed hybrid model.
Ref. [7] noted a reduction from 15.7% to 13.54% in the Mean Absolute Percentage Error
metric when applying their proposed ensemble method. Ref. [22] proposes a federated
learning algorithm with recurrent neural networks conducted with residential consumers,
leading to a MAPE of about 17%.

Different research has been applied in this domain, highlighting the importance of
finding suitable forecasting models to be applied at household consumption level. Due to
the inherent randomness and noise associated with residential consumption profiles, this
task is often considered more challenging than forecasting at a level with more consumption
aggregation (such as that of a public substation or even a national transmission grid).

The main contributions of this study can be summarized as follows:

- A comparison among different forecasting approaches: different alternatives were
chosen to allow accurate predictions, also being interpretable models, providing
feasible training times and easy to replicate.

- A comparison between different alternatives not applied to a single consumer with
specific characteristics, but for a larger number of consumers to allow a fair and
extended comparison of created models: load patterns available in the used dataset
are diverse; thus, scalability and flexibility are providential tools for the proposed
forecasting methods.
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- A detailed analysis of the created forecasting models, allowing the interpretation of
the different feature contributions and a comparison of the training times.

The article is organized as follows: Section 2 describes the used dataset for this study
and presents some background related to the used methods and the strategies adopted
when applying them in this study, and the list of features considered is also introduced.
Section 3 is initiated with the description of the adopted error metrics, followed by the main
results presentation, providing a detailed comparison among the proposed methods and
allowing a comprehensive analysis of the main influential features in each case. Finally, in
Section 4, the main conclusions are drawn, revealing the potential amongst the forecasting
models tested and highlighting a comparative analysis of these selected models. In this
section, some topics are proposed for further research.

2. Materials and Methods

In this section, the used dataset is carefully described to allow the comprehension of the
assumptions associated with this choice. Furthermore, the different forecasting approaches
are theoretically presented, as well as the description of the training/validation/test subset
split and the inputs’ selection phase.

2.1. Used Dataset

The dataset used is related with energy consumption readings for a sample of 5567 London
households between November 2011 and February 2014. These readings carried out from
UK Power Networks within the scope of the Low Carbon London project (here called
the LCL dataset) [23]. Readings were taken at half hourly intervals and represent the total
electricity consumption for that period in kWh. Despite a large number of consumers
available in this study, the authors carefully analysed the dataset and imposed specific
assumptions to ensure representative and reliable data. The following rules were created to
select the consumers who contribute with data to be used in the further phase related to
forecasting application.

- The ratio of null or atypical values in the total amount of records available for the
considered period (28 months) must be kept below 5%. Despite some reasons that may
cause null values (such as power outages, or temporary absence of the households in
the consumption locations) or may cause atypical values (outliers due to sudden and
abrupt changes typically caused by data transmission/communication problems), it is
important to preserve data integrity to enhance the forecasting exercise.

- For each consumer, the consumption trend should be kept uniform for the different
complete civil years available. It is expected that consumption variations may occur
during the year due to seasonality effect, but significant changes in annual total con-
sumption may be caused by unexpected consumer behaviour changes, measurement
failure or even trouble in data transmission/storage. Based on mean daily consump-
tion, differences above 10% from year to year have triggered less uniformity in the
consumption trend.

After this filtering process, the dataset was considerably summarized to 71 consumers,
providing large confidence in the quality of available data (for almost the whole period
between November 2011 and February 2014, as some initial and final periods of data were
not clearly trustworthy). In the authors’ opinion, this selected sample is representative
enough to be explored, allowing a benchmark among the proposed forecasting tools. Table 1
summarises the LCL dataset available information, and the selected sample used.
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Table 1. Summary of the available dataset and the selected sample.

Data Description Number of Consumers Available Data

Original Data 5567 From 1 November 2011 to 28 February 2014
Selected Sample 71 From 21 December 2011 to 27 February 2014 1

1 The last day of February 2014 presented several null values for the 71 selected consumers; thus, it was
not considered.

2.2. Forecasting Approaches

As mentioned before, due to a considerable amount of noise in the consumption time
series for each individual consumer, and in order to create methodologies to deal with a
large number of individual end-users, it is strongly recommended to create forecasting
models simultaneously accurate, straightforward, non-time-consuming and even explain-
able. This research uses Multivariate Adaptive Regression Splines, Random Forest and
Artificial Neural Networks.

2.2.1. Multivariate Adaptive Regression Splines (MARS)

This approach is characterized as a regression algorithm and its foundations rely on
simple linear regressors, making it easy to use and to interpret [13,20]. As the load demand
often represents a non-linear dependence between output(s) and inputs, the MARS model
can cope with it, as it involves an ensemble of aggregated linear functions based on one or
two hinge functions. The perspective of hinge functions can be approximated to:

h(x − k) = max(0; x − k) = {x − k, if x > k; and 0 if x ≤ k} (1)

where k is a constant, known as a knot. The MARS model will result in aggregating the
hinge functions associated with each knot, and even considering linear dependence on
single features and a bias (also known as the intercept term).

Each knot can generate one or a pair of “knees” at the model function. Figure 1
illustrates this by considering a non-linear real function in light blue and an approximation
made possible by using a MARS model (in dark blue). As the two hinge functions show,
two knots are here considered (x = −10 and x = 10) and each individual hinge function are
enough to model this desired non-linearity.
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Figure 1. Example of a MARS model to approximate a non-linear real function.

To fine-tune the model, the associated knots must be found based on the inputs-outputs
pairs provided during the training phase, being a data-driven model. Many candidate
basis functions are generated in the forward phase, being generated in pairs h(x − k)
and h(k − x). Each pair is added to the model if it contributes to reducing the model’s
performance. A subsequent backward phase is used to prune the terms in the final equation
whenever they do not contribute to the overall performance. This backward process
can be viewed to avoid model overfitting, as a generalized cross-validation is applied to
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compare the performance of model subsets. It ensures a trade-off between accuracy and
model complexity.

MARS models in the scope of this research were created and tested using PyEarth pack-
age [24] to be used in the Scikit library of Python (being a third-party library). By default,
the maximum number of terms was considered as a value dependent on number of features
and number of samples, with a maximum number of 1 for the terms generated by the
forward pass, a value of 3.0 as penalty factor during the pruning pass and a zero tolerance.

2.2.2. Random Forest Regressor

Random Forest is characterized as an ensemble machine learning algorithm, as each
tested decision tree is fit on a slightly different training dataset and uses different features,
and in turn, results in a slightly different performance. An example of an individual decision
tree applied in a load forecasting application is available in Figure 2.

The first step of the CART (Classification and Regression Tree) algorithm consists in
splitting at best the root into two different child nodes if it implies a cost function (in general,
the variance of child nodes) reduction [12]. Then, the child nodes are also divided according
to the same procedure. The expansion of the tree is stopped by a termination criterion. It is
common to stop the tree when a maximum number of levels has been reached, or when a
node contains less than a defined number of observations [12,18].
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Figure 2. Example of a Random Forest Regressor model (just an example, not corresponding to any
decision tree applied during the research).

The main principle is called bagging, where a sample of size n from the training set
is selected randomly and fitted to a regression tree. This sample is called a bootstrap,
and is chosen with replacement, i.e., the same observations may appear many times.
A bootstrap sample is obtained by selecting randomly n observations with replacement;
each observation has the probability of 1/n to be selected. The independent identically
distributed random variables represent this random selection. The bagging algorithm
selects several bootstrap samples, applies the CART algorithm to them to obtain a collection
of predicting trees, and then aggregates the output of all these predictors.
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In addition to bagging, to split a node, only a predefined number of the features are
selected, and the RF algorithm tries to find the best cutting among only the selected features.
The intention is to find a good combination to cut by minimizing a cost function, and the
procedure continues until all the trees are fully developed. RF is based on predictions
derived from different trees, which are averaged resulting in better performance than any
single tree in the model.

The main advantage of bootstrap aggregation is immunity to noise, since it generates
uncorrelated trees through different training sets. A weak predictor (regression tree) may
be sensitive to noise, while the average of many uncorrelated trees is not. The selection of a
random subset of features at each split has the same purpose of avoiding overfit.

RF models in the scope of this research were created and tested using Ensemble
package [25] available in the Scikit library of Python. By default, 100 trees were considered
in the forest, the mean squared error was chosen as the function to measure the quality of a
split, and nodes were expanded until all leaves were pure or contained less than 2 samples.

2.2.3. Artificial Neural Networks

This subsection details some fundamental concepts of ANN and its application for
load forecasting. Moreover, how ANN-based models were used in this case study is
presented. ANN, inspired by the neural processing commonly found in the human brain
and its ability to learn, still have a significant number of practitioners in the function
approximation field. Some of the advantages that can be pointed are the appropriateness
of multivariate models and the ability to capture potential nonlinear relationships between
output(s) and inputs during the learning process using some historical data (the training
phase) [5,8,11,18,19,26,27]. At the training phase, the forecast error minimization is achieved
through an iterative network adaptation. Therefore, the available and chosen historical
data representativeness is crucial and the result is an automatic mapping of the relations
that may exist between output and inputs. Another advantage that can be pointed to
neural networks is the ability to deal with noisy data, whenever networks used are not too
complex. The advantages of using neural networks for electrical load forecasting (possible
applications to estimate active power demand, total electricity consumption or even power
losses) are essentially the extraction of nonlinear relations that are present and the use of
multivariate models. Since the training phase is based on a machine learning process, it is
strongly dependent on the quality of historical data; otherwise the training phase may not
contemplate the necessary, accurate and updated information to adapt the neural network.
In load forecasting applications, the multilayer feed-forward architecture is still the most
common neural model used. Each neuron, as the basic component of the architecture,
processes the captured information in its inputs, such as the system’s inputs or the previous
hidden layers’ outputs, by applying an activation function to the weighted sum of the
inputs plus a scalar bias. Commonly, the selection of the activation functions depends on
the type of forecasting [26,27], with the most popular functions being the hyperbolic tangent
function (tanh), the sigmoid function and the linear transfer function. The use of nonlinear
functions is essential when there are nonlinear relations between outputs and inputs. At
the network training phase, the network parameters (weights and biases) are adjusted to
minimize deviations between measured and predicted values. Several training methods
are commonly used based on iterative optimizing methods. The objective is to optimize the
performance function, typically minimizing the mean squared error. More details about
ANN architectures and mathematical foundations are better described in [26,27].

In this research, feed-forward neural networks were adopted, using one single hidden
layer (more than one hidden layer were tested without increasing the overall performance in
the test sample) [26]. To allow the comparison among different neural network dimensions,
adapted to the context of each consumer’s idiosyncrasies, it was decided to simulate a
variable number of neurons (from 3 to 10, being the maximum adopted bearing in mind
the input set dimension) [26]. For each scenario, 10 different trials were used in order
to explore initialization of different random weights and biases. The best-case scenario
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(for a specific number of neurons and for a specific trial) was preserved and saved for each
specific consumer. An example of an ANN model created is presented in Figure 3.
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ANN models in the scope of this research were created and tested using Neural
Network package [28] available in the Scikit library of Python.

Other approaches based on Support Vector Regression are also in the author’s research
domain. They were tested for this specific dataset, but created serious time constraints
when tuning the hyperparameters for different consumers. Thus, this approach was not
presented in this paper.

2.3. Models’ Calibration and Feature Selection

Initially, a Naïve model was planned as a baseline when comparing different forecasting
tools. This Naïve model assumes that the half-hourly electricity consumption records
being predicted for the day-ahead (day D) are simply the reproduction of the half-hourly
electricity consumption records of the same day one week before (day D-7).

In order to allow a fair comparison between the different forecasting approaches, and
for each individual consumer, a strategy was used of splitting the dataset into two subsam-
ples: training and test subsamples. Along with this, the following aspects were considered:

- Training data: from 28 December 2011 to 21 September 2013 (80% of the whole
available dataset);

- Test data: from 22 September 2013 to 27 February 2014 (20% of the whole avail-
able dataset)

The careful selection of input data to be used is one of the most important stages
in data-driven forecasting approaches. Based on similar studies [1–22], this quite often
involved the use of historical data of the variable being predicted (electricity consumption,
hourly active power or peak values of active power), the use of auxiliary variables (such as
the month number, the weekday code, or even the hourly period code) or the dependence
on exogenous variables (weather variables being very common in this context or variables
related with household lifestyle).
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Due to the lack of information available regarding weather conditions and knowing
that in the UK, the dependence of heating/cooling needs does not significantly rely on elec-
tric devices (electric heating present a combined share of 5% and only 3–5% of households
is estimated to have a cooling unit [29,30]), this type of information was not here included.
In addition, [15] also proved that after several experiments involving an ensemble method,
better results were obtained only using past values of load (excluding date/time variables
and weather conditions).

Based on the available type of information, it was decided to only use historical values
of the variable being predicted (electricity demand). In addition, two supplementary
variables to characterize the data periodicity, in this case to distinguish the weekday being
predicted and the specific hourly period, were considered to be used. For the different
forecasting approaches, the same inputs were chosen, based on the information available
in Table 2.

After several experiments were made, and as a major part of the features are related
with electricity consumption data (no exogenous variables were here used), it was decided
to avoid data normalisation.

Table 2. Selected features to be integrated to characterize the models.

Type of Data Input Description 1

Historical Data

Electricity consumption measured at the same hourly period—8 days before (x0)

Electricity consumption measured 2 hourly periods before—7 days before (x1)
Electricity consumption measured 1 hourly period before—7 days before (x2)

Electricity consumption measured at the same hourly period—7 days before (x3)
Electricity consumption measured 1 hourly period after—7 days before (x4)

Electricity consumption measured 2 hourly periods after—7 days before (x5)

Electricity consumption measured 2 hourly periods before—6 days before (x6)
Electricity consumption measured 1 hourly period before—6 days before (x7)

Electricity consumption measured at the same hourly period—6 days before (x8)
Electricity consumption measured 1 hourly period after—6 days before (x9)

Electricity consumption measured 2 hourly periods after—6 days before (x10)

Electricity consumption measured 2 hourly periods before—2 days before (x11)
Electricity consumption measured 1 hourly period before—2 days before (x12)

Electricity consumption measured at the same hourly period—2 days before (x13)
Electricity consumption measured 1 hourly period after—2 days before (x14)
Electricity consumption measured 2 hourly periods after—2 days before(x15)

Cyclic variables

Cyclic variable 1 based on the weekday (x16)
(from 1—“Sunday” to 7—“Saturday”)

Cyclic variable 2 based on the hourly period (x17)
(from 1—“00:00” to 48—“11 h 30 p.m.”)

1 One day before was not considered in this case, because when forecasting the day-ahead (Day D), the energy
records of the prior day are not yet completely available (for the 48 hourly periods).

3. Results

This section is divided into three different subsections. The first one describes the
error metrics used, while the second one is dedicated to the comparison among the three
different forecasting models based on machine learning and comparing them with the
Naïve model. At the end, the third subsection analyses and evaluates the effect of different
features in each model, the training times associated with the different implementations
and some relevant information regarding the derived ANN architectures.

3.1. Error Metrics Description

For our study, initial analysis on each method were based on the Mean Absolute Error
(MAE) and on the Mean Squared Error (MSE). This is given as the simple formula:

MAE =
∑N

i=1|Measured Energy Valuei − Predicted Energy Value i|
N

(2)
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MSE =
∑N

i=1(Measured Energy Valuei − Predicted Energy Value i)
2

N
(3)

N being the number of forecasted values. Since each model was tested separately
before the comparison with another one, it was required to have a benchmark method to
help grasp the quality of the performance. This also allowed to establish a scaling for the
computed errors, avoiding having an error metric expressed in absolute values [5]. The
most common error measure in forecasting is the Mean Absolute Percentage Error (MAPE),
where the error is expressed as a percentage of the observed value, but this measurement is
known to have undesired effects, such as non-symmetry and being affected by null values
presented in the data series. Thus, new metrics, called the Mean Absolute Scaled Error
(MASE) and the Mean Squared Scaled Error (MSSE), are then introduced and computed as:

MASE =
MAE

MAENaïve
(4)

MSSE =
MSE

MSENaïve
(5)

MASE and MSSE above 1 means that the model being considered performed worse
than the Naïve approach.

3.2. Forecasting Models Comparison

As mentioned earlier, for each one of the 71 consumers, the three different approaches
(MARS, RF and ANN) were evaluated and compared with the Naïve model. All the fol-
lowing presented results are related with the test sample. Attending to the MAE metric,
it can be stated that ANNs were the most accurate approach for 68 consumers and RF
reveals the best performance for the remaining three consumers. In this case, despite MARS
models showing similar forecasting performances compared with the concurrent ones, this
approach was never the best one. With respect to the MSE metric, ANN was the most
accurate approach for 54 consumers, and RF was the most accurate for 16 consumers and
the remaining consumer was better forecasted using the MARS model. The differences in
the absolute error metrics are not so significant (as can be visualized in Figures 4 and 5);
it is possible to infer that none of the different forecasting approaches applied somehow
compromise an expected accuracy range. The radar charts allow a holistic view of the
error analysis, with no prior logical order of the different consumers and highlighting the
different forecasting methods. However, to allow a clearer analysis, bar charts were also
used with an ascending trend of error metrics MAE and MSE, using the MARS model as a
reference in the ranking. The bar charts shown in Figures 6 and 7, due to the high number
of consumers being involved, were split into two different graphs.
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As mentioned earlier, scaled error metrics were also applied using the Naïve model as
baseline. A more detailed comparison of different applied models is possible, as shown in
Figures 8 and 9. As it is perceived, apart from some residual number of consumers, the
forecasting methodologies are more precise than the Naïve model as expected (MASE values
are below the unitary value, highlighted as Reference in the chart). For most of the tested
consumers, ANN is the most accurate model, but with no significant differences among
the approaches. With this MASE analysis, it can be concluded that RF models reveal some
weaknesses when applied to some specific consumers. These low performances identified
are often related with cases of overfitting, as will be further discussed.

Regarding MSSE analysis, it can be pointed out that for almost all consumers, the
three proposed approaches considerably reduce the error metrics identified in the Naïve
model (MSSE typically below 0.8).

With the perspective of conveying the challenge associated with domestic load fore-
casting, Figures 10 and 11 present measured weekly load diagrams during the test period
and the short-term predictions (day-ahead forecasting) available by using the proposed
methodologies. It must be stressed that the electricity consumption records available in the
time series were converted to active power to build up these load profiles.

The randomness in resulting active power series is clear and some abrupt changes
(sudden peak values or unexpected low values) in active power load are in some cases
difficult to predict with the different methodologies. The two presented consumers were
chosen due to considerably different consumption volumes as well as load patterns.
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3.3. In-Depth Analysis of the Trained Models

With the MARS, RF and ANN models already trained and providing the most accurate
predictions for each consumer, it becomes relevant to proceed to a zoom-in look, with the
intention of evaluating features’ relevance, training times and also, for the case of ANNs,
the networks’ dimension.

To evaluate features’ relevance in MARS models, the dependence of each model on the
different features was identified and, for the different hinge functions and eventual linear
dependences of single features, an average of absolute coefficient values was computed.
After aggregating the effect verified for the studied consumers, normalised averages (sum
of values equal to 1) are presented in Figure 12. The labels are related with the used features
(from x0 to x17) already presented in Table 2. It can be noted that the features x0, x3, x8, and
x13 tend to be the most influential in MARS models.
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These are related with past record values verified 8 days ago, 7 days ago and 2 days
ago at the same hourly period being predicted. The strategy of including “neighbouring”
records (not at the similar hourly periods, but at hourly periods hp − 2, hp − 1, hp + 1 and
hp + 2) to give the effect of trend when forecasting, denotes specific features (such as x2,
x14 and x15) to be interesting.

In addition, the dependence on the cyclic variables (x16 and x17) seems to be low. With
a more detailed analysis, it can be concluded that for the individual models created for
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each individual consumer, the contribution of these cyclic variables was imposing a linear
dependence of these variables without the effect of hinge functions. As the input variables
were not normalised, the ranges of these cyclic variables are considerably higher than the
historical electricity consumption records (from x0 to x15); thus, the resulting coefficients
are considerably lower, distorting the real effect of these variables.

Proceeding with the same analysis for the RF model and combining the RF features’
relevance for the different models (individual consumers) through an average results in the
normalised relevance of each feature, also shown in Figure 12.

It can be validated that the electricity consumption values identified at similar hourly
periods 7 days before and 2 days before the day being predicted are the most relevant in
the forecasting process. In this case, the cyclic variable associated with the hourly period
is also valuable, as the regression trees often create a branch to determine the following
sub-node according to this feature.

For the interpretation of relevant features in ANN models, after finding the best
models, the weights obtained in the first layers (according to the connections between the
different inputs and the different neurons assumed in each model) were analysed. For
each ANN, an average of the absolute weights associated to each individual feature was
assumed to characterise this corresponding feature. At the end, the relative importance of
each feature was obtained by an average of its relative importance for the 71 consumers.
The resulting normalised relevance for each individual feature is presented in Figure 13.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 16 of 19 
 

weights may not be reliable enough. In multilayer networks, a partial derivative has the 
same interpretation as a weight in a linear model, but instead of extending the analysis to 
the entire input space, it is only focused on the neighbourhood of the input point being 
considered. 

 
Figure 13. Feature relevance using ANN model. 

During different experiments, processing times were recorded for each forecasting 
model and for each consumer analysed. The PC used during the tests was an Intel-core i7, 
2.5 GHz with 12 GB of installed memory (RAM). Despite the available records of training 
times and simulation times (only during the prediction and not interfering in the model-
ling) for the training and test subsets, these two latest ones are so negligible that they are 
not here presented. Table 3 shows the resulting training times for the different forecasting 
models.  

Table 3. Training Time Analysis (in seconds). 

Model Min Average Max 
MARS 0.95 s 10.68 s 79.01 s 

RF 40.44 s 83.71 s 1743.81 s 
ANN 1 2.30 s 5.45 s 11.54 s 

1 Training times associated with ANN models are related to the most accurate model out 
of 80 different simulations. (10 trials followed to a variable number of neurons—from 3 
to 10). 

As can be seen, the most time-consuming is the Random Forest Regressor (RF model), 
and in some cases (individual consumers) this can be avoided as the models tend to be 
overfitted. The hyperparameters’ definition would be providential to circumvent this ef-
fect. ANN models tend to be rapidly trained; however, several tests were in fact consid-
ered, including several trials and different numbers of neurons, until the most accurate 
model was found. MARS models are a good compromise to have a straightforward and 
interpretable model, with low computational time to train (not depending on several tri-
als, unless different hyperparameters—maximum number of hinge functions, the penalty 
parameter or the maximum number of interactions—are explored through a metaheuris-
tic or a grid-search technique). 

In Figure 14, it is shown that almost 70% of the consumers tested were in fact mod-
elled with an ANN with seven or more neurons. Despite this fact, error metrics found in 
ANNs with higher dimensions are not that much lower than the error metrics obtained 

Figure 13. Feature relevance using ANN model.

Again, from the historical electricity consumption data, the electricity consumption
records available at the similar hourly periods are the most important. In this case, the
relative importance of adjacent hourly periods seems to be more relevant to pass to the
ANN, to allow the perspective of transmitting the effect of trend. As before, the effect
of day D-7 and day D-2 seems to be more important than that of day D-6. Finally, cyclic
variables assume a relative importance in the context of ANN training. In this research, a
straightforward analysis to the weights vector in the first layer was followed. Nevertheless,
a sensitivity analysis could be followed, involving the concept of partial derivatives, to
give a perspective on the local rate of change of the output with respect to an individual
input holding the other inputs fixed [27,31]. As the neural network models evaluated
use nonlinear activation functions between the different layers, a simple comparison of
weights may not be reliable enough. In multilayer networks, a partial derivative has the
same interpretation as a weight in a linear model, but instead of extending the analysis
to the entire input space, it is only focused on the neighbourhood of the input point
being considered.

During different experiments, processing times were recorded for each forecasting
model and for each consumer analysed. The PC used during the tests was an Intel-core i7,
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2.5 GHz with 12 GB of installed memory (RAM). Despite the available records of training
times and simulation times (only during the prediction and not interfering in the modelling)
for the training and test subsets, these two latest ones are so negligible that they are not here
presented. Table 3 shows the resulting training times for the different forecasting models.

Table 3. Training Time Analysis (in seconds).

Model Min Average Max

MARS 0.95 s 10.68 s 79.01 s
RF 40.44 s 83.71 s 1743.81 s

ANN 1 2.30 s 5.45 s 11.54 s
1 Training times associated with ANN models are related to the most accurate model out of 80 different simulations.
(10 trials followed to a variable number of neurons—from 3 to 10).

As can be seen, the most time-consuming is the Random Forest Regressor (RF model),
and in some cases (individual consumers) this can be avoided as the models tend to be
overfitted. The hyperparameters’ definition would be providential to circumvent this effect.
ANN models tend to be rapidly trained; however, several tests were in fact considered,
including several trials and different numbers of neurons, until the most accurate model was
found. MARS models are a good compromise to have a straightforward and interpretable
model, with low computational time to train (not depending on several trials, unless
different hyperparameters—maximum number of hinge functions, the penalty parameter
or the maximum number of interactions—are explored through a metaheuristic or a grid-
search technique).

In Figure 14, it is shown that almost 70% of the consumers tested were in fact modelled
with an ANN with seven or more neurons. Despite this fact, error metrics found in ANNs
with higher dimensions are not that much lower than the error metrics obtained with lower
ANN dimensions. More than the ANN dimension, each energy behaviour idiosyncrasy
and the quality of measured data are more influential on the forecasting accuracy, as the
forecasting quality was revealed to be not so sensitive to the ANN architecture.
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4. Conclusions

The developed research revealed many interesting and useful insights. On one hand,
despite the ANN models being more accurate and more flexible to be adapted to different
consumers’ patterns, it is clear that the three different forecasting approaches do not differ
significantly in accuracy of estimating half-hourly electricity consumption records for the
day-ahead, applied to different consumers. This implies that the quality of smart meter
data used, the feature selection phase and each model’s parametrization may be quite
more determining to enhance the forecasting action, rather than the chosen forecasting
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model itself. Regarding this, for the electricity supplier/distributor, the trade-off between
the accuracy and the interpretability of each individual model must be considered. This
conclusion is strengthened when a scale effect is involved, as several individual forecasting
models should be trained and used for different end-users.

On the other hand, with a thorough analysis of the trained models, it was possible
to identify some relevant features that are transversal to the different approaches (mainly
the electricity consumption records measured at similar hourly periods 2 and 7 days
before). The strategy of including previous electricity consumption records at hourly
periods “adjacent” to the similar hourly periods seems to be more justified in the case of
ANN and not so relevant to MARS or RF models. The effects of including cyclic variables
to distinguish the consumption pattern specific to each day of the week or even to each
hourly period tend to be notorious and should not be avoided. Some experiments were
exploited without these cyclic variables, leading to an overall degradation in forecasting
performances.

Further research should address the inclusion of exogenous variables in the models
(including weather variables on a half-hourly basis or, at least, considering daily meteoro-
logical values associated with extreme conditions—e.g., minimum, and maximum values of
temperature on a daily basis). To overcome the risk of overfitting in the RF model, different
hyperparameters should be explored by eventually using a metaheuristic. Finally, rather
than simply looking at the weights vector in the first ANN layer, a sensitivity analysis
based on partial derivatives must be followed up to better evaluate features’ relevance
in ANNs.
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