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Abstract: The long text classification task has become a hot research topic in the field of text classifica-
tion due to its long length and redundant information. At present, the common processing methods
for long text data, such as the truncation method and pooling method, are prone to the problem of
too many sentences or loss of contextual semantic information. To deal with these issues, we present
LTTA-LE (Long Text Truncation Algorithm Based on Label Embedding in Text Classification), which
consists of three key steps. Firstly, we build a pretraining prefix template and a label word mapping
prefix template to obtain the label word embedding, and we realize the joint training of long text and
label words. Secondly, we calculate the cosine similarity between the label word embedding and the
long text embedding, and we filter the redundant information of the long text to reduce the text length.
Finally, a three-stage model training architecture is introduced to effectively improve the classification
performance and generalization ability of the model. We conduct comparative experiments on three
public long text datasets, and the results show that LTTA-LE has an average F1 improvement of
1.0518% over other algorithms, which proves that our method can achieve satisfactory performance.

Keywords: long text classification; text truncation; label embedding; prefix template

1. Introduction

Text classification refers to classifying text content according to certain rules or
models [1]. As a basic task of natural language processing (NLP), it is widely used in
applications such as emotion recognition, spam classification, news text classification, etc.
At present, long text, especially document-level text data, shows an explosive growth
trend. Long text classification has become a hot topic in text classification due to its rich
information and long text length.

The traditional text classification algorithms mainly use n-gram [2], TF-IDF [3] to
extract text features and then input the text features into the machine learning models
for training. For example, Shahi et al. made use of hybrid features (FastText+TF-IDF) to
represent Nepali COVID-19-related tweets for the sentiment classification [4]. The evalua-
tion results on the NepCOV19Tweets demonstrated that their method achieved excellent
performance. However, these methods rely heavily on manual feature engineering and
ignore the contextual relationship and location information between words, which severely
limits the model performance. With the rapid development of deep learning, neural net-
work models such as convolutional neural network (CNN) [5], recurrent neural network
(RNN) [6], and long short-term memory (LSTM) [7] are widely applied in the field of text
classification. The rise of pretrained language models represented by bidirectional encoder
representation from transformers (BERT) [8] indicates that the transformer [9] architecture
can be fully applied to the field of text classification, enabling text context information to
participate in the expression of word vectors in a more comprehensive and reasonable way.
However, due to the limitation of the input data length, the pretrained language models
perform poorly in the field of long text classification. Therefore, how to effectively reduce
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the text length while minimizing the loss of semantic information is the key to improving
the performance of pretrained language models in the field of long text classification.

Long text data preprocessing methods can be classified into four categories: truncation
method [10], pooling method [11], compression method [12,13] and transformer model
improvement [14]. However, these methods generally have problems such as information
loss, resource waste and insufficient precision. In long texts, there are often many redundant
sentence segments that are not very relevant to the topic, which is usually considered as
data noise. On the one hand, this noise information interferes with model learning; on
the other hand, these redundant sentence segments occupy input positions that do not
belong to them. Due to the length limitation, the BERT model must abandon other more
important sentence segments, which results in poor performance of the BERT model in long
text classification scenarios. Therefore, it is an important method to use label embedding
to filter sentence segments irrelevant to the topic in long text, and how to better learn to
obtain the label embedding is also a key step.

Label embedding represents the vector representation of label words obtained by
model learning. At present, the mainstream label word learning methods include label-
word joint embedding methods [15], multi-task label-embedding methods [16], interactive
mechanism-based methods [17], and some improvements have also been made on the basis
of these methods.

However, there are two main problems with these methods. The first problem is that
these methods do not learn the textual information of domain-specific data, because they
are all methods derived from the idea of word embedding. Word embedding refers to
embedding a high-dimensional sparse word space into a low-dimensional dense word
vector space. The training corpus of word embedding is mainly from general domain data,
such as Wikipedia, Gigaword Dataset, etc. [18]. In the process of obtaining word vectors
based on word embeddings, these methods are not further trained for specific domain
data, so they cannot learn the unique text information in specific domain data. The second
problem is that these methods do not alleviate the problem of “polysemy”. For example,
the word “apple” might represent both a fruit and a brand name. If the word “apple” is
directly embedded without a prompt template, the obtained word vector is not accurate
enough. However, if a prompt template is added in front of the word that needs to be
represented, for example, a prompt template of “the brand of this electronic product is” is
added in front of “apple”, then the word mapping of “apple” we obtain is obviously related
to electronic products. By introducing a prompt template, the problem of “polysemy” will
be subtly alleviated.

For problem one, Howard and Ruder proposed a general paradigm ULMFiT [19]. The
ULMFiT paradigm mainly divided model training into three stages. The first stage trained
the language model on a large number of general corpora, the second stage continued
to train the language model on the specific domain data, and the third stage carried out
specific tasks on the specific domain data. After the first stage, we can obtain a pretrained
model, which made the convergence of the second stage much faster. In the second stage,
domain-specific data were used as the pretraining object, so the model can quickly adapt
to the characteristics of the target data, so as to fully learn the context information of the
specific domain data. For problem two, Schick and Schütze proposed a semi-supervised
model: pattern-exploiting training (PET) [20]. By introducing a prompt template, PET
reformulated the model input into cloze-style phrases, which can help the language model
understand the given task. At the same time, PET added a prompt template before the user
input, which was equivalent to limiting the semantic range corresponding to the user input
in a prompt manner. This method enabled word embeddings to accurately represent the
user input, thus effectively alleviating the problem of polysemy.

Inspired by this, we propose the LTTA-LE algorithm. First, two prefix templates are
constructed to prompt user input, which effectively limits the semantic range corresponding
to user input. Then, an adaptive filtering threshold equation is designed, which dynamically
determines the filtering amount of each long text. Next, the similarity between the label
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embedding and each segment in the long text is calculated, effectively filtering out invalid
information in the long text. Finally, a three-stage model training architecture is introduced,
which significantly improves the classification performance and generalization ability of
the model. The main contributions of this paper are as follows.

1. Unique prefix template design, which can alleviate the problem of polysemy. This
paper constructs a pretraining prefix template and a label word mapping prefix
template. By constructing the pretraining prefix template, the joint training of label
words and long texts is realized. During the pretraining process, the long text and the
label words are fully interacted to avoid the gap between them. With the help of the
label word mapping prefix template, the label word embedding can more accurately
describe the real semantics expressed by the user input, which effectively alleviates
the problem of polysemy.

2. More efficient long text noise filtering scheme. Considering that there are a large
number of redundant sentence segments irrelevant to the topic in long texts, we can
filter invalid information in long texts by calculating the similarity between the label
embedding and each sentence segment in long texts. On the one hand, it can meet
the limitation of the BERT model on the length of the input corpus. On the other
hand, it can effectively filter the noise and improve the classification performance of
the model.

3. Adaptive filtering threshold equation. By designing an adaptive filtering threshold
equation, the filtering quantity of each long text is dynamically determined, which
avoids the problem of incomplete information filtering caused by too long text or
serious information loss caused by too short text after filtering.

4. A general and efficient three-stage model training scheme. This paper introduces a
three-stage model training scheme, which mainly includes: in-domain pretraining,
finetuning, and prediction. Among them, the in-domain pretraining stage can help
the model learn the characteristics of specific domain data in advance and improve
the model’s ability to represent sentences. The finetuning stage enables the model to
be quickly applied to downstream tasks and improves the generalization ability of
the model. In the prediction stage, the pseudo-label method is used to predict the test
set, and the test set is filtered based on the obtained pseudo-label, which can avoid
the interference of the model by the noise data in the test set. Through this three-stage
model training scheme, the classification performance and generalization ability of
the model can be significantly improved.

In the experimental phase, we verify and compare the algorithm performance on
three public datasets. In terms of overall algorithm performance, our proposed LTTA-LE
algorithm surpasses other long text processing methods.

In addition, we also design an experimental scheme to conduct an in-depth analysis
of the main modules of the algorithm. We compare the performance of the algorithm on
the Arxiv Dataset under different max_len, where max_len refers to the maximum text
length of the model input. It is found that for most max_len, our algorithm achieves the
best performance due to its superior filtering effect on long text, which means that we can
reduce max_len as much as possible to save memory on the premise of fixed precision
requirements. Meanwhile, we compare the impact of four label-embedding schemes on
the final performance of the algorithm. The LTTA-LE algorithm uses the prefix template to
jointly train the long text and the label word, and it fully learns the interaction information
between them. Therefore, the LTTA-LE algorithm achieves the best result.

2. Related Work
2.1. Long Text Classification

The appearance of BERT has greatly improved the state-of-the-art performance of text
classification tasks. However, in the face of chapter level or even longer text data, due to
the limitations of input length and computational overhead, the text data input into the
BERT model must be simplified to meet the requirements of the model. The maximum
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input length is required, and a lot of useful information will be lost if handled improperly.
Therefore, how to effectively process long text data and avoid information loss has become
the key to improving the performance of long text classification tasks.

Sheng and Yuan [10] truncated long text by combining the BERT model and BiGRU
network, and they applied an attention mechanism to obtain the core information in long
text, which improved the micro and macro F1 scores of the baseline model by 1.68% and
1.53%, respectively. Zhang et al. [11] used a two-layer sliding window to model long
texts, which achieved a 1.9-point improvement on the NQ long answer task and a 1.6-
point improvement on the TyDi QA passage answer task. Beltagy et al. [21] proposed
Longformer. On the one hand, Longformer can model local contextual representations
by introducing local window attention. On the other hand, Longformer model enables
sequence representation by introducing global attention. Therefore, this kind of model can
achieve the purpose of processing long texts. Later, Dai et al. [14] put forward Transformer-
XL in 2020, which can solve the problem of long text by learning dependencies beyond a
fixed length without breaking temporal coherence. So far, the Transformer-XL has achieved
the state-of-the-art results on some datasets such as enwiki8 and WikiText-103.

2.2. Label Embedding

Label embedding refers to converting label words in text classification into text vectors
through vectorization learning. Wang et al. [15] proposed the label-embedding attentive
model (LEAM), which can learn the representation of words and labels in the same space.
Zhang et al. [16] developed multi-task label embedding (MTLE), which mapped the label
of each task into a semantic vector, thereby transforming the traditional text classification
task into a vector matching task. Du et al. [17] constructed the explicit interaction model
(EXAM) and incorporated word-matching signals into text classification by introducing an
interaction mechanism.

2.3. Prompt

Liu et al. [22] summarized the NLP technology into pre-neural network stage, neu-
ral network stage, pretraining–finetuning stage, and the pretraining–prompt stage. The
prompt algorithm built a prefix template that can predict specific tasks without finetun-
ing downstream tasks. Logan IV et al. [23] proposed prompt-based finetuning, which
had two advantages: (1) it was robust to the selection of different prompt templates, and
(2) prompt-based finetuning was 1000× more memory efficient with comparable per-
formance to finetuning all parameters. Later, Hu et al. [24] proposed knowledgeable
prompt-tuning (KPT), which expanded the verbalizer in prompt-tuning using the external
knowledge bases. This method achieved good results in zero and few-shot text classifica-
tion tasks. Han et al. [25] proposed prompt tuning with rules (PTR) for multi-class text
classification. This method can encode prior human knowledge into prompt tuning by
combining sub-prompts into task-specific prompts according to logical rules. Ultimately,
the method achieved state-of-the-art performance.

In traditional long text classification algorithm, researchers often fail to make full
use of the label word information when processing long text data, which may lead to an
excessive loss of useful text information and reduce model performance.

Compared with the traditional pretraining–finetuning mode, the pretraining–prompt
paradigm has the following main advantages:

1. Pretraining introduces a lot of prior knowledge into pretrained language models, and
the prompt algorithm motivates this knowledge by constructing prefix templates.

2. Due to different training methods, there is usually a gap between pretraining and
downstream tasks, and the prompt algorithm alleviates this gap to a large extent.

3. Compared with the traditional method, the prompt method enables the model to
capture more contextual information by adding a template prefix to the beginning of
the text.
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In short, our method focuses on obtaining accurate label word embedding through
the joint training of long text data and label words and then filtering the long text data to
avoid an excessive loss of useful information to the greatest extent.

3. Method

As an improved compression method for the long text classification algorithm, the
basic idea of the LTTA-LE algorithm is to first learn the similarity measure of each sentence
segment and the label word after cutting the long text and then filter out the sentence
segments with low similarity and recombine the remaining sentence segments into a new
short text. Finally, the obtained new short text and original labels are input into the model
for training. Through these steps, the purpose of compressing long text into the BERT model
is achieved while minimizing the semantic loss. Figure 1 shows the whole framework. As
can be seen from Figure 1, our proposed LTTA-LE can be summarized into three parts. The
details are as follows.

Long Text

𝑆!,# 𝑆!,$ 𝑆!,% 𝑆!,& 𝑆!,'…

Sentence Embedding

𝐸!,# 𝐸!,$ 𝐸!,% 𝐸!,& 𝐸!,'…

Label

Label
Embedding

𝐶!

Cosine Similarity Calculator

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝐸!,& , 𝐶!)

…

…

𝑆!,#
( 𝑆!,$( 𝑆!,)

( 𝑆!,*(… …

New Shorter Text Label

Top-𝑘 filter

In-domain Pretraining & Finetuning & Prediction

Part1: Embedding

Part2: Filter

Part3: Train

Figure 1. The whole framework of LTTA-LE. In this figure, Si,j, i ∈ [1, m], j ∈ [1, n] represents
the sentence segment after the original text data xi, i ∈ [1, m] is divided by the text segmentation
dictionary Text_SD (Text_SD=[‘,’, ‘:’, ‘;’, ‘.’, ‘?’, ‘!’, ‘\t’, ‘\n’]). Ei,j, i ∈ [1, m], j ∈ [1, n] indicates
the sentence vector representation obtained after sentence embedding. Ci means the label word
vector representation. The similarity(Ei,j, Ci) is used to calculate the similarity between Ei,j and Ci.
S′i,r, i ∈ [1, m], r ∈ [1, k] refers to the sentence segment obtained after similarity filtering.

• The first part is the text encoding layer, which includes two sub-modules: the vec-
torized representation of long text and the vectorized representation of label words.
To fully learn the contextual semantic information of the label words, the pretrained
corpus data are reconstructed by constructing the prefix template, and the label word
vector is retrained and extracted based on the mask language model (MLM).

• The second part is the long text filtering module. This module first calculates the cosine
similarity between each sentence segment of the long text and the label word; then, it
filters and retains the most similar top-k sentence segments and finally recombines the
top-k sentence segments to form a new shorter text. With the help of this module, the
purpose of compressing the long text is realized.

• The third part is the model training strategy module, which inputs the compressed
text data together with the text classification labels into the model for training and
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prediction. This module consists of three parts: in-domain pretraining, finetuning and
prediction. By learning the semantic information of a specific dataset, the gap between
upstream and downstream tasks is eliminated.

3.1. Label Embedding

Label word representation methods mainly include one-hot embedding representation,
static word vector representation (such as word2vec [26]), and word vector extraction based
on the pretrained BERT model. In comparison, one-hot embedding and static word vectors
find it difficult to capture contextual information, while the word vector extraction method
based on pretraining model finds it difficult to capture the interaction information between
long text and label words. In order to better obtain the vector representation of label words
and alleviate the problem of polysemy, the method of constructing a prefix template is
improved on the basis of the BERT model. Figure 2 shows the whole framework of label
embedding.

This article is an about [label] Origami structures enabled by folding… application. .

Template Original long text

This article is an about [label] .[CLS]

cs.DL
cs.CV

…
cs.DS

Label words

BERT

Start End

Mean pooling

Label embedding

Template

Pretrained model

Word embedding

Label embedding

Step1: Pretrain 

Step2: Predict 

Figure 2. The whole framework of label embedding. In this figure, [CLS] is the sentence vector
representation slot, which outputs the sentence vector representation. [label] is the label word filling
slot, which fills the label word to associate the label word with the long text.

As can be seen from Figure 2, this framework consists of two steps.
Step 1: Label word pretraining based on prefix template constructing
Firstly, we construct training sample pairs which shows as:

T = [(x1, y1), (x2, y2), . . . , (xi, yi), . . . , (xm, ym)],

where xi is the long text, and yi is the corresponding label.
Secondly, for each sample pair (xi, yi), define the pretraining prefix template pt1 as:

“This is an article about: [yi].xi”.
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Thirdly, fill the training sample pair data into the prefix template to obtain the new
text data Textnew, which contains the original long text and label words.

Finally, the new text data Textnew are input into the BERT model for in-domain pretrain-
ing to fully learn the interaction information between long text and label words. Through
in-domain pretraining, we obtain a pretrained model H, and the steps of in-domain pre-
training will be described in detail in Section 3.3.1.

Step 2: Label word representation
In order to obtain the vector representation of each label word, the forward propaga-

tion method is used to predict the label word vector based on the BERT model trained in
the previous step.

Firstly, construct a new label word mapping prefix template pt2 as below:

“This is an article about: [yi].”

In this step, by constructing a label word mapping prefix template, richer context
information is introduced into the label word, and the semantic range corresponding to the
label word is limited, so that the problem of polysemy can be alleviated.

Secondly, as shown in Figure 2, the prefix template containing the label word is input
into the pretrained model H. Then, we can obtain the embedding of each word in the prefix
template.

Finally, due to the unpredictability of the text category during word segmentation, a
label word may occupy multiple characters, so we simultaneously record the start and end
positions of the label word: labelstart and labelend. For all vectors in the range of labelstart
and labelend, mean pooling is conducted to obtain the embedding of each label word.

In addition, in order to make the reader understand this process more clearly, we
summarize the process of label embedding in Algorithm 1.

Algorithm 1 Label-embedding algorithm.

Input: The traning sample pairs T = [(x1, y1), (x2, y2), . . . , (xi, yi), . . . , (xm, ym)];
The pretraining prefix template pt1 and the label word mapping prefix template pt2.

Output: Label word vector C = [C1, C2, . . . , Ci, . . . , Cm].
1: Fill the sample pair consisting of xi and yi into the pt1 to obtain new text data Textnew.
2: Input Textnew into the BERT model for in-domain pretraining, and obtain the pretrained

model H.
3: Fill yi into pt2 to obtain label prompt data, and record the start position labelstart and

end position labelend of the label word.
4: Input the label prompt data in step 3 into H to obtain the corresponding embedding

vector.
5: For all vectors in the range of labelstart and labelend in step 4, perform mean pooling to

obtain the label embedding Ci.

3.2. Long Text Filtering Based on Similarity Calculation

Since there are a large number of expressions unrelated to label words in long texts,
we propose a long text filtering scheme based on text and label similarity calculation to
filter more valuable texts in long texts, so as to shorten the text length and improve the long
text classification performance. The encoding of the label word has been introduced in the
previous section, and the label word vector is defined as Ci.

3.2.1. Similarity Calculation between Sentence Vector and Label Word Vector

In the encoding stage of the long text, considering that the length of the long text far
exceeds the length limit of the model, our method adopts the form of sentence vectors
for representation, as shown in Figure 1. Firstly, sentence Si,j is obtained by truncating
the long text according to the text truncation dictionary Text_SD (Text_SD = [‘,’, ‘:’, ‘;’, ‘.’,
‘?’, ‘!’, ‘\t’, ‘\n’]). Secondly, in order to ensure the model performance and objectivity of
the sentence vector, this scheme uses the pipeline function [27] in the Hunging Face open
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source transformer package to characterize the sentence segment Si,j to obtain the sentence
vector Ei,j. Finally, based on the obtained sentence vector Ei,j and label word vector Ci,
the similarity between the two is calculated to filter sentences with more relevant label
information. A cosine similarity equation is adopted for similarity calculation, which is
expressed as:

similarity
(
Ei,j, Ci

)
= cos(θ) =

∑d
k=1 Ei,j,k × Ci,k√

∑d
k=1

(
Ei,j,k

)2
×
√

∑d
k=1(Ci,k)

2
, (1)

where Ei,j,k represents the k-th dimension value in the Ei,j vector, Ci,k represents the k-th
dimension value in the Ci vector, d represents the BERT model output vector dimension,
and d = 768 is set in this paper.

3.2.2. Sentence Vector Filtering and Text Reorganization

According to the value of cosine similarity, sort all sentence vectors from large to
small, and select the top-k most similar sentence vectors. Then, the corresponding index is
obtained according to the selected sentence vectors. Next, keep the corresponding sentence
segments based on these indexes, and finally recombine these sentence segments into a
new short text. When choosing the value of k, we comprehensively consider the number
of sentences in the long text, the number of words and the maximum text length in the
input model for modeling. We specify the maximum text length of the input model as
max_len, the number of tokens in the long text as len(tokens), and the number of sentences
as len(sentences). By calculating the ratio of the maximum text length to the number of
tokens in the long text, the k value of each long text data is obtained. The adaptive filtering
threshold equation is:

k =
max_len

len(tokens)
× len (sentences). (2)

According to the equation, the value of k corresponding to each long text data is
calculated, the sorted sentence vectors are extracted, and the top-k sentence segments with
the highest correlation with the label words are selected. Finally, the sentence segments are
reorganized according to the original order of the sentences, so as to shorten the length of
the long text while preserving the original contextual semantics of the original long text. In
general, Algorithm 2 shows the detailed steps of the LTTA-LE algorithm.

Algorithm 2 LTTA-LE algorithm.

Input: The traning sample pairs T = [(x1, y1), (x2, y2), . . . , (xi, yi), . . . , (xm, ym)];
Text segmentation dictionary Text_SD = [‘,’, ‘:’, ‘;’, ‘.’, ‘?’, ‘!’, ‘\t’, ‘\n’].

Output: New shorter text.
1: According to Text_SD, truncate xi to obtain the truncated set Si = [Si,1, Si,2, . . . , Si,j, . . . , Si,n].
2: Use the pipeline function [27] to encode Si to obtain the sentence vector Ei =

[Ei,1, Ei,2, . . . , Ei,j, . . . , Ei,n].
3: Utilize label-embedding algorithm to embed the label to obtain label word vector Ci.
4: Based on Equation (1), calculate the similarity between Ei,j and Ci.
5: Calculate the threshold k according to Equation (2).
6: According to the similarity value, keep the indexes corresponding to the top-k Ei,j.
7: According to the index of Ei,j retained in step 6, filter out the corresponding Si,j (i.e.,

S′i,r in Figure 2), and splice it into a new short text.

3.3. Model Training

The training process of our model can be divided into three stages: in-domain pre-
training, finetuning and prediction.



Appl. Sci. 2022, 12, 9874 9 of 17

3.3.1. In-Domain Pretraining

In order to improve the model’s ability to learn in-domain knowledge, we need to
pretrain the model based on the experimental dataset. Therefore, the first step of the
in-domain pretraining stage is to construct an in-domain pretraining dataset.

As shown in Figure 1, at the end of part 2, we obtain the filtered new shorter text. Based on
the new shorter text, we build the in-domain pretraining dataset P = [x′1, x′2, . . . , x′i , . . . , x′m],
where x′i represents the i-th filtered text.

The in-domain pretraining stage includes two subtasks, namely next sentence pre-
diction (NSP) and MLM. In the NSP task, two sentences x′i and x′j are randomly selected
from the dataset P to construct the positive and negative splicing sample pairs according
to (3). We define that if x′i and x′j are adjacent sentences, the spliced sample is a positive
sample with label “1”; otherwise, the sample is negative with label “0”. By constructing
sentence-level positive and negative samples, the model can learn sentence-level contextual
information in the experimental dataset.

[CLS] + token
(
x′i
)
+ [SEP] + token

(
x′j
)
+ [SEP], (3)

where [CLS] is the sentence vector representation slot used to output the sentence vector
representation. [SEP] is the representation notation used to separate two sentences in
NSP tasks.

In the MLM task, for each sentence x′i in the dataset P, we first randomly mask 15%
of the words; then, the masked words are used as labels. Finally, the unmasked context
information is used to predict the masked words. By re-predicting the masked words, the
model can learn word-level contextual information in the experimental dataset.

In general, with the help of NSP and MLM, we have completed in-domain pretraining,
and the model can fully learn the sentence-level and word-level context information from
the experimental dataset.

3.3.2. Finetuning

The input of the finetuning stage consists of the pretrained model and the finetuning
dataset. Specifically, we obtain the pretrained model H of the experimental dataset after
in-domain pretraining. Combining the dataset P and the original category label data, we
can construct the finetuning dataset D = [(x′1, y1), (x′2, y2), . . . , (x′i , yi) . . . , (x′m, ym)].

There are three steps in the model finetuning:

1. Input finetuning dataset into BERT model loaded with the pretrained model H.
2. Calculate the cross-entropy loss between the output [CLS] of the model hidden layer

and the real category label.
3. Update model parameters according to step 2.

In addition, the specific calculation equation of cross-entropy loss is:

H(p, q) = −
n

∑
i=1

p(xi) log(q(xi)), (4)

where p(xi) and q(xi) refer to the probability distributions of the true category label and
predicted category label of the i-th text, respectively, and H(p, q) is the value of cross-entropy.

After finetuning, we obtain the finetuned model N.

3.3.3. Prediction

The LTTA-LE algorithm needs to filter long text according to label data. However,
due to the lack of label data in the test set, the label data cannot be used to filter the noise
information in the prediction stage. Therefore, we need to take advantage of the pseudo-
label method [28] to make predictions on the test set and then complete the filtering of
the test set based on the obtained pseudo-labels. The specific implementation steps are
as follows.
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1. In order to make the length of the test set meet the input requirements of the BERT
model, we first shorten the test set by the head + tail truncation method, i.e., keep the
fixed-length words in the head and tail of the test set as the input of the BERT model.
Then, we use the model N trained in the finetuning stage to make predictions on the
test set to obtain the predicted pseudo-labels.

2. Based on our proposed LTTA-LE algorithm, the test set is filtered according to the
predicted pseudo-labels, and new shorter texts are obtained after filtering.

3. Use the model N trained in the finetuning stage to predict the new shorter text and
obtain the final predicted category label of the test set.

Through the above steps, the problem of missing labels in the test set can be solved
and the performance of the model can be significantly improved. Furthermore, the model
training process including the above three stages is summarized in Algorithm 3.

Algorithm 3 Model training algorithm.

Input: New shorter text P = [x′1, x′2, . . . , x′i , . . . , x′m];
Label dataset Y = [y1, y2, . . . , yi, . . . , ym].

Output: The predict label.
1: Input P into the BERT model for in-domain pretraining, and obtain the pretrained

model H.
2: According to P and Y, build the finetuning dataset D = [(x′1, y1),(x′2, y2), . . . ,

(x′i , yi) . . . , (x′m, ym)].
3: Input D into model H for finetuning, and obtain the finetuned model N.
4: Use N to make predictions on the test set and obtain pseudo-labels.
5: Based on the LTTA-LE algorithm and the predicted pseudo-labels in step 4, the long

texts in the test set are filtered to obtain new shorter texts.
6: Use N to predict the new shorter text in step 5 to obtain the final predict label of the

test set.

4. Experiments
4.1. Datasets

In order to verify the performance of our proposed model, we conduct algorithm
validation on three public datasets: Arxiv Dataset [29], 20NewsGroup [1], and IMDB
Review [30].

4.1.1. Arxiv Dataset

ArXiv Dataset is the largest open-source academic paper sharing platform, which has
collected more than 1.7 million scientific and technological papers. We randomly select
50,000 sample data from it (90% for training and 10% for testing), and the number of
data categories is 39. In order to verify the performance of our proposed model under
the condition of long text, we only keep the abstract of each academic paper and its
corresponding category label.

4.1.2. 20NewsGroup

20NewsGroup includes 18,000 news text documents covering 20 different news text
categories. Since we pay more attention to the performance of the model on the long text
dataset, we filter 8000 long text data from it, and the ratio of training set and test set in the
dataset is 9:1.

4.1.3. IMDB Review

IMDB Review is a well-known movie evaluation dataset, which contains a total of
50,000 annotated text data. The dataset has two types of labels: positive and negative. We
filter 20,000 long texts with annotations. The ratio of the training set and test set in the
dataset is 9:1.
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4.2. Experimental Details

We have completed the key part of the code development with the help of the trans-
former toolkit. The hyperparameter settings of the model are shown in Table 1. Some
symbols and setting are explained as follows:

• Epoch: one epoch refers to training once with all the samples in the training set.
• Batch_size: the number of samples grabbed for one training iteration.
• Learning rate: the rate at which the model learns the parameters.
• Model optimization: Adam optimizer [31].

Table 1. Hyperparameter settings for our proposed model.

Stage Epoch Batch_Size Learning Rate

Pretraining 50 64 2× 10−5

Finetuning 10 32 2× 10−5

In addition, in order to minimize the interference caused by randomness, five-fold
cross-validation is used for model training and performance evaluation.

4.3. Model Performance Evaluation
4.3.1. Evaluation Metrics

We utilize three evaluation metrics, precision, recall, and F1, to measure the perfor-
mance of long text classification methods. Among them, precision refers to the proportion
of correctly predicted positive samples to all predicted positive samples. Recall represents
the proportion of correctly predicted positive samples to all actual positive samples. F1 is
the harmonic mean of precision and recall, which can take into account both precision and
recall. Furthermore, they can be described by the following equation.

Precision =
TP

TP + FP
, (5)

Recall =
TP

TP + FN
, (6)

F1 =
2× Precision× Recall

Precision + Recall
. (7)

where TP = true positive, FP = false positive, TN = true negative, and FN = false negative.

4.3.2. Experimental Results

In order to verify the excellent performance of the LTTA-LE algorithm, this section
will compare different algorithms on three public datasets, setting the hyperparameter
of max_len as 256. An overview of each model approach involved in the comparison is
shown below.

BERT-base + head truncation: Keep sentence segments of max_len length from the
beginning of the text.

BERT-base + tail truncation: Keep sentence segments of max_len length from the end
of the text.

BERT-base + head & tail truncation: Keep a part at the beginning and end of the text;
in this experiment, keep half at the beginning and end of the text.

BERT-base + max pooling: The long text is first segmented into multiple short sen-
tence segments using the same method as LTTA-LE, and then, the sentence vector informa-
tion for each short sentence segment is extracted based on the BERT-based model. Finally,
max pooling is applied to the obtained [CLS] modules. After splicing, the text classification
results are obtained through a layer of a fully connected network.

CogLTX: Identify key sentences by training a judgment model, concatenate key sen-
tences for reasoning, and enable multi-step reasoning via rehearsal and decay [32].
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BERT-base + LTTA-LE (ours): The LTTA-LE method proposed in this paper.
Table 2 shows the performance of different methods on three public datasets, and the

last three columns of Table 2 show the average scores of precision, recall, and F1 on the
three datasets. According to the experimental results in Table 2, our proposed LTTA-LE
algorithm achieves the best results on both the Arxiv Dataset and IMDB Review, and it
achieves the second best results on 20NewsGroup. For the average F1 on the three datasets,
the LTTA-LE algorithm is 0.8698% higher than BERT-base + head truncation, 1.2289%
higher than BERT-base + tail truncation, 0.5705% higher than BERT-base + head & tail
truncation, 2.5441% higher than BERT-base + max pooling, and 0.0795% higher than the
state-of-the-art method CogLTX.

The experimental results demonstrate that the LTTA-LE algorithm proposed by this
paper can optimize the performance of the model on long text datasets. The specific reasons
can be summarized as the following three points: (1) The truncation method violently
roughly intercepts part of the information, which can result in the loss of a lot of useful
information. The longer the text, the more serious the loss of information. The LTTA-LE
algorithm proposed by us filters out the meaningless sentence segments according to the
similarity between the label word vector and each sentence segment of the long text. On the
one hand, the length of the text is shortened, and on the other hand, the noise information
in the long text is filtered, which can improve the performance of the model. (2) The max
pooling method divides the text into different sentence segments for processing, which
loses the connection between the sentence segments. The proposed LTTA-LE algorithm
filters the segmented sentence segments and then splices them again according to the
original word order, which can not only reduce the text length but also retain the contextual
semantic information between different sentence segments. (3) CogLTX does not use label
information when processing long texts, which may mistakenly delete sentence segments
related to the topic of the text, resulting in the loss of useful information. On the one
hand, our method introduces a pretraining prefix template, which enables full interaction
between long texts and label words. On the other hand, our method introduces a label
word mapping prefix template, which limits the semantic range of the label word in a
prompt manner and effectively alleviates the problem of polysemy.

4.3.3. Comparison under Different max_len

Limited by the memory size and device computing power, in some cases, the model
can only accept a smaller max_len input to save resources. To verify the performance of the
algorithm in this case, a comparative experiment is designed to evaluate the performance
of the model on the Arxiv Dataset with different max_len. Considering the sub-optimal
performance of BERT-base + head & tail truncation in previous experiments, BERT-base +
head & tail truncation is chosen as the comparison model.

Table 3 shows the performance of the LTTA-LE algorithm on the Arxiv Dataset with
different max_len hyperparameter settings. From Table 3, we have the following find-
ings: (1) with the decrease of max_len, the F1 of the model decreases to a certain extent.
(2) In most cases, the F1 of BERT-base + LTTA-LE (ours) is better than BERT-base + head
& tail truncation. (3) When max_len = 32, the F1 of BERT-base + LTTA-LE (ours) is lower
than that of BERT-base + head & tail truncation. When max_len = 128, BERT-base + LTTA-
LE (ours) has the best performance, which is 0.88% higher than BERT-base + head &
tail truncation.
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Table 2. Experimental results on different datasets ( ±indicates standard deviation).

Method
Arxiv Dataset 20NewsGroup IMDB Review Average

Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

BERT-base + head truncation 0.8419 ± 0.0176 0.8139 ± 0.0221 0.8276 ± 0.0197 0.8612 ± 0.0091 0.8392 ± 0.0122 0.8500 ± 0.0105 0.9588 ± 0.0039 0.9292 ± 0.0071 0.9437 ± 0.0051 0.8873 0.8608 0.8738
BERT-base + tail truncation 0.8393 ± 0.0199 0.8121 ± 0.0239 0.8254 ± 0.0211 0.8577 ± 0.0129 0.8321 ± 0.0134 0.8447 ± 0.0133 0.9567 ± 0.0028 0.9276 ± 0.0089 0.9419 ± 0.0042 0.8846 0.8573 0.8707
BERT-base + head & tail truncation 0.8477 ± 0.0139 0.8199 ± 0.0177 0.8335 ± 0.0152 0.8633 ± 0.0113 0.8411 ± 0.0098 0.8520 ± 0.0106 0.9579 ± 0.0019 0.9299 ± 0.0067 0.9436 ± 0.0029 0.8896 0.8636 0.8764
BERT-base + max pooling 0.8386 ± 0.0162 0.8101 ± 0.0267 0.8241 ± 0.0202 0.8482 ± 0.0219 0.8208 ± 0.0295 0.8343 ± 0.0253 0.9391 ± 0.0106 0.9019 ± 0.0186 0.9201 ± 0.135 0.8753 0.8443 0.8595
CogLTX 0.8487 ± 0.0137 0.8271 ± 0.0181 0.8377 ± 0.0155 0.8701 ± 0.0162 0.8493 ± 0.0076 0.8595 ± 0.0104 0.9591 ± 0.0016 0.9309 ± 0.0063 0.9448 ± 0.0025 0.8926 0.8691 0.8807
BERT-base + LTTA-LE (ours) 0.8512 ± 0.0116 0.8292 ± 0.0163 0.8401 ± 0.0133 0.8679 ± 0.0132 0.8489 ± 0.0081 0.8582 ± 0.0101 0.9601 ± 0.0017 0.9321 ± 0.0057 0.9458 ± 0.0020 0.8931 0.8701 0.8814

Table 3. Experimental results on the Arxiv dataset of different methods (±indicates standard deviation).

Method
max_len = 32 max_len = 64 max_len = 128 max_len = 256

Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

BERT-base +
head & tail
truncation

0.8145 ± 0.0101 0.7982 ± 0.0239 0.8062 ± 0.0143 0.8221 ± 0.0177 0.8029 ± 0.0241 0.8123 ± 0.0201 0.8279 ± 0.0112 0.8112 ± 0.0198 0.8194 ± 0.0146 0.8477 ± 0.0139 0.8199 ± 0.0177 0.8335 ± 0.0152

BERT-base +
LTTA-LE (ours) 0.8121 ± 0.0173 0.7977 ± 0.0301 0.8048 ± 0.0218 0.8268 ± 0.0149 0.8091 ± 0.201 0.8178 ± 0.0277 0.8372 ± 0.0136 0.8165 ± 0.0171 0.8267 ± 0.0152 0.8512 ± 0.0116 0.8292 ± 0.0163 0.8401 ± 0.0133
Improvement −0.29% -0.06% −0.18% 0.57% 0.77% 0.67% 1.12% 0.65% 0.88% 0.41% 1.12% 0.77%
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The reasons for the differences in model performance under different max_len settings
can be summarized as follows:

1. For the same model, with the increase of max_len, the effective information that
the model can receive is also increasing, which leads to the improvement of the
model performance.

2. For long texts, especially document-level text, there is a lot of useless redundant
text information, which will inevitably bring noise to model learning and restrict
the performance of the model. The LTTA-LE algorithm proposed by us makes use
of sentence vector filtering and text reorganization technology to filter out a large
number of redundant texts by calculating the similarity between text fragments and
topics so as to improve the performance of the model.

3. For max_len = 32 or even smaller, since our experiment focuses on long text, the
data we select are all long text data. When max_len is extremely small, only a few
important sentence segments can be retained and part of the head and tail information
is ignored, which results in slightly worse performance of the BERT-base + LTTA-LE
(ours) than that of the BERT-base + head & tail truncated method.

4.3.4. Comparison of Different Label-Embedding Methods

The core improvement of the LTTA-LE algorithm is the introduction of a pretraining
prefix template and a label word mapping prefix template. The pretraining prefix template
is used to realize the interaction between long text and label words, and the label word
mapping prefix template is used to limit the semantic scope of label words. Compared
with other traditional label word embedding methods, the LTTA-LE algorithm can better
utilize context information to extract the vector representation of label words, and it can
effectively alleviate the problem of word polysemy. In order to verify the performance of the
LTTA-LE algorithm, we conduct some experiments to compare the long text classification
effects under different label word embedding algorithms in this section. The label word
embedding methods compared are shown as follows.

One-hot embedding: Use the one-hot embedding method to encode the label words,
and filter the long text according to the label encoding vector to obtain shorter text data,
which are then input into the model for training and prediction.

Word2vec embedding: Use the word2vec method to vectorize label words and then
filter long text data.

Pretraining without prefix: A pretraining parameter package is used to encode the
label word vector directly without introducing the prefix template.

LTTA-LE (ours): The LTTA-LE method proposed in this paper.
The comparison experiments in this section will be performed on the Arxiv dataset

with max_len = 256. Table 4 shows the performance of various label-embedding strategies
on the Arxiv dataset. As shown in Table 4, LTTA-LE (ours) achieved the highest F1, which
is improved by 3.65% (one-hot embedding), 1.35% (word2vec embedding), and 1.14%
(pretraining without prefix), respectively.

Table 4. Experimental results of different label-embedding methods on the Arxiv dataset (±indicates
standard deviation).

Method Precision Recall F1

One-hot embedding 0.8201 ± 0.0227 0.8012 ± 0.0318 0.8105 ± 0.0267
Word2vec embedding 0.8471 ± 0.0132 0.8116 ± 0.0337 0.8289 ± 0.0191
Pretraining without prefix 0.8489 ± 0.0122 0.8131 ± 0.0297 0.8306 ± 0.0175
LTTA-LE (ours) 0.8512 ± 0.0116 0.8292 ± 0.0163 0.8401 ± 0.0133

The reasons for the differences in the scores of different label-embedding strategies on
the Arxiv dataset can be summarized into the following four points.
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1. One-hot embedding uses a simple and independent one-hot vector to represent
label word information, resulting in the loss of potential label information. Filtering
and extracting long text data based on the results of one-hot label embedding will
mistakenly miss important information.

2. Word2vec embedding is a static word vector, which cannot be dynamically adjusted
and optimized for specific datasets and tasks, so it cannot capture rich semantic
information between label words and long texts.

3. Pretraining without a prefix can capture contextual semantic information to a certain
extent. However, such models are only pretrained on a general corpus, so they are
not capable of representing text data in specific fields, especially professional datasets
such as the Arxiv dataset. Therefore, the ability of pretraining without a prefix to
represent label words is also insufficient.

4. On the one hand, the LTTA-LE algorithm builds a pretraining prefix template to
realize the interaction between long text and label words, so as to use the label word
information to filter the noise information in the long text. On the other hand, the
LTTA-LE algorithm builds a label word mapping prefix template to limit the semantic
scope of label words so as to alleviate the problem of polysemy.

4.3.5. The Results of iFLYTEK Text Classification Challenge

iFLYTEK is a well-known intelligent voice service listed company in the Asia-Pacific
region mainly researching intelligent voice, NLP, computer vision and other directions. It
held an academic paper classification challenge in July 2021. The task of the competition
was to use the title and abstract to predict the specific category of the paper. The competition
dataset consisted of 60,000 papers in total, including 50,000 in the training set and 10,000
in the test set. The competition used the accuracy as the evaluation index, and a total
of 473 teams participated in the competition. We applied the LTTA-LE algorithm to this
academic paper classification competition and achieved an accuracy of 86.32%, which was
0.76 percentage points higher than the second place.

5. Conclusions

In this paper, we propose a more efficient method to deal with the long text classifi-
cation task, namely the LTTA-LE algorithm. Compared with other mainstream long text
classification methods, our method makes four major contributions.

1. Two prefix templates are designed and used: a pretraining prefix template and a label
word mapping prefix template. With the help of the pretraining prefix template, the
model can better learn the interaction information between the long texts and labels.
With the help of the label word mapping prefix template, label embedding with more
accurate and rich semantic information can be obtained. In addition, through the
limitation of prefix templates, the problem of polysemy can be further alleviated.

2. By calculating the cosine similarity between the label embedding and the sentence
segment, the sentence segments that are not related to the semantics of the label words
are filtered out, avoiding the interference of the noise data to the model.

3. An adaptive filtering threshold equation is designed and used, which can dynamically
determine the filtering amount of each long text to avoid the problem of information
loss caused by excessive text filtering.

4. A model training method including three stages of “in-domain pretraining, finetuning
and prediction” is introduced, so that the model can fully learn the context infor-
mation of specific domain data, thereby improving the classification performance of
the model.

We test the performance of our LTTA-LE algorithm on three public datasets and
find that our proposed method is superior to some commonly used existing algorithms.
Meanwhile, we design some experiments to discuss the performance of our algorithm
with different max_len settings and label-embedding strategies, and we further quantify
the advantages of the LTTA-LE algorithm. Our method was applied to the iFLYTEK text
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classification challenge and won the first prize. In addition, in order to facilitate readers to
have a clearer understanding of the LTTA-LE algorithm, we summarize its advantages and
disadvantages in Table 5.

Table 5. Advantages and disadvantages of the LTTA-LE algorithm.

Advantages Disadvantages

Unique prefix template design, which can alleviate the
problem of polysemy

Not suitable for multi-label long
text classification tasks

More efficient long text noise filtering scheme
Adaptive filtering threshold equation
A general and efficient three-stage model training scheme

6. Future Work

In future work, we plan to apply the LTTA-LE algorithm to the multi-label long
text classification task. Based on the idea of the LTTA-LE algorithm, in the multi-label
text classification scenario, we need to filter the sentence segments that are not related to
the label. Since different label categories correspond to different task scenarios, the key
point of the problem is to take into account the needs of each scenario. Therefore, first
of all, a specific prompt template is constructed for the task scene corresponding to each
type of label to obtain the corresponding label representation. Then, the cosine distance
between the sentence segment and each label is calculated separately. Next, a weighted
sum operation is performed on these cosine distances, and the obtained value is used as the
retention coefficient of the sentence segment. Finally, according to our proposed adaptive
filtering threshold equation, the top-k sentence segments are retained and reorganized so
that the retained information takes into account the task scenarios corresponding to various
labels, thereby improving the model performance of multi-label classification tasks.
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