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Abstract: Network virtualization (NV) is considered a promising technology that may solve the
problem of Internet rigidity. The resource competition of multiple virtual networks for shared
substrate network resources is a challenging problem in NV called virtual network embedding (VNE).
Existing approaches do not consider the differences between multi-tenant requests and adopt a
single embedding method, resulting in poor performance. This paper proposes a virtual network
embedding algorithm that distinguishes the network types requested by tenants. This method divides
virtual network requests into ordinary requests and delay-sensitive requests according to the delay
constraints, provides personalized mapping strategies for different networks, and flexibly responds
to the resource requirements and quality of service (QoS) requirements of the virtual network. The
simulation results show that, compared with other algorithms, the proposed algorithm improves
the request acceptance ratio by about 2% to 15% and the substrate network resources are more
effectively utilized.

Keywords: network virtualization; virtual network embedding; NP-hard; heuristic algorithm; integer
linear programming

1. Introduction

With the rise of various new network services and applications, the demands of users
for the network show a diversified trend. However, deploying new businesses under
the traditional network architecture requires not only redeployment of hardware but also
consensus among device providers, which is difficult to cope given the diverse, customized,
and differentiated applications. The proposal of network virtualization is to overcome the
impasse of the Internet [1]. As one of the important technologies for promoting current
network innovation [2], network virtualization has been actively applied in many research
testbeds and projects [3], such as CABO [4], 4WARD [5], and G-Lab [6]. Through network
virtualization, multiple isolated networks can be virtualized in the shared underlying
network infrastructure. Each virtual network can customize the network structure or
run different network protocols according to business requirements. Different users can
use their network resources independently without interfering with each other, thereby
improving the utilization of network resources, satisfying the diverse demands of users,
and realizing an elastic network.

In network virtualization, the Internet service providers (ISPs) in traditional networks
are divided into infrastructure providers (InPs) and service providers (SPs). This decoupling
method that separates resources and services is more flexible. InPs are responsible for
providing underlying infrastructure and managing underlying network resources. SPs
rent physical resources from InPs, build and operate virtual networks, and offer services
through virtual networks. Embedding the requests of SPs onto underlying infrastructure
depends on efficient embedding algorithms.
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The software defined network (SDN) [7] proposed by Professor Nick McKeown of
Stanford University in the United States realizes the separation of forwarding and control.
The centralized control plane can flexibly program the network and easily obtain a global
view, which provides a natural advantage for the realization of network virtualization.
Facing the diversified and personalized network requirements, Hu [8] proposed a full-
dimensional defined polymorphic smart network architecture. In the polymorphic network
environment, the resource requirements of diversified services are different. Specifically, in
the substrate network, this is manifested as competition for the same resources between
different networks—in other words, how to effectively allocate the substrate network
resources to virtual network requests and satisfy the constraints of nodes and links at the
same time. This problem is called virtual network embedding (VNE) and is one of the key
problems of network virtualization. The definition of node constraint is that the resource
requirements of the virtual node must not exceed the physical resources of the mapped
entity node. The definition of link constraint is that the resource requirements of the virtual
link must not exceed the physical resources of the mapped entity link.

VNE aims to provide an optimal resource allocation scheme for each virtual network,
which proves to be an NP-hard problem [9]. In the existing research, the solutions to
VNE problems can be divided into three categories [10], namely exact solutions, heuristic
solutions, and meta-heuristic solutions. The exact solution method is used in [11–14] to
solve the VNE problem. The exact solution uses mixed integer programming (MIP) or
integer linear programming (ILP) to establish a mathematical model, which is commonly
solved by solution software such as GLPK [15] and CPLEX [16]. However, the computa-
tional complexity of the exact solution increases exponentially with the expansion of the
network scale. In contrast, heuristic solutions can solve the virtual network embedding
scheme in a shorter time, but the mapping results are approximate optimal solutions. Some
typical studies [17–22] focus on designing different heuristic algorithms to obtain better
embedding solutions. Some meta-heuristic solutions, like simulated annealing [23], particle
swarm optimization [24], ant colony optimization [25], or genetic algorithm [26], are also
used in the field of VNE.

However, in real network scenarios, different tenants have different network require-
ments. For example, a virtual network that provides VoIP services has high CPU, medium
bandwidth, and low link propagation delay requirements, and a virtual network that
provide P2P services has medium CPU, medium bandwidth, and no propagation delay
constraints [3]. Considering that different virtual network requests have different resource
requirements and QoS requirements, a single virtual network embedding method cannot
effectively serve differentiated requests.

To solve the inefficient utilization of underlying network resources caused by the single
virtual network embedding method, this paper proposes an algorithm that distinguishes
network types and adopts different mapping strategies to efficiently map differentiated
virtual network requests. The advantage of this method is that it provides a personalized
mapping scheme for virtual network requests by classifying network types and flexibly
responds to the resource requirements and QoS requirements of the virtual network. Ex-
perimental results show that our method can accept more virtual network requests and
improve the utilization of underlying network resources.

The main contributions of this paper are as follows:

1. For the sake of efficiently mapping differentiated virtual network requests, maximiz-
ing the utilization of substrate network resources, and improving the success ratio of
virtual network embedding, we classify virtual network requests. The classification
standard of virtual network is whether the virtual network has link delay constraints,
which is divided into ordinary requests and delay-sensitive requests.

2. A two-stage embedding sub-algorithm is used for ordinary virtual network requests.
In the node mapping stage, the resource-rich nodes are selected based on the greedy
strategy, and the adjacent link resources are considered in the resource measurement
to improve the success ratio of the next stage. Moreover, the consumption balance
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between different resources of nodes is considered to avoid the early exhaustion of
a single resource affecting the embedding of subsequent virtual requests. Then the
k-shortest path algorithm [27] is used for link mapping.

3. A constrained integer linear programming sub-algorithm is used for delay-sensitive
virtual network requests. Inspired by Ref. [14], we construct candidate node set and
candidate link set to reduce the solution scale of linear programming, aiming to find
the optimal embedding solution with delay constraints in polynomial time.

The rest of this paper is organized as follows. The related work is introduced in
Section 2. In Section 3, we introduce the problem and model of virtual network embedding.
In Section 4, we describe the proposed VNE algorithm in detail. The Section 5 shows the
evaluation results. Finally, Section 6 concludes this paper.

2. Related Work

In order to solve the NP-hard problem of VNE, scholars have proposed many heuristic-
based algorithms. According to the relationship between node mapping and link mapping,
these can be divided into one-stage embedding algorithms and two-stage embedding
algorithms. The one-stage algorithm embeds virtual nodes and virtual links at the same
time. Ref. [17] proposed a subgraph isomorphism detection algorithm which splits the
VNR into subgraphs and embeds nodes and links at the same time, but this will lead to
a lot of backtracking. Yu et al. [18] proposed a classic heuristic two-stage algorithm that
has been used so far. Nodes are sorted according to the CPU and the total adjacent link
bandwidth, and nodes in the virtual network are greedily mapped to the substrate nodes.
Yu introduces the concept of path splitting. In the next stage, links are mapped by the
k-shortest path algorithm [27] or the multi-community flow (MCF) algorithm [28]. This
algorithm had a profound impact on the research of virtual network mapping algorithms.
Ref. [29] effectively reduces the virtual network request rejection rate through path splitting.
Ref. [19], considering node degree, and [20], considering time window, are variants of [18].
Inspired by the Google PageRank algorithm, Ref. [21] applies a Markov random walk
model to rank nodes according to resources and topological attributes. The link mapping
method is similar to [18]. However, these algorithms only consider the node capacity and
link bandwidth and do not consider the complexity of network resources in the actual
network, so they cannot be extended to practical network applications.

Chowdhury et al. [11,12] used MIP for mathematical modeling in the VNE problem for
the first time, and relaxed integer constraints to obtain linear programming. They proposed
two node-embedding algorithms: deterministic rounding and random rounding. When
the solution of node embedding is feasible, the MCF or shortest path algorithm is used
to embed virtual links. Melo [13] proposed an algorithm to solve VNE using ILP with
the goal of minimizing resource consumption and load balancing, adding node distance
and link propagation delay constraints, but it is not described in detail in the paper. As
far as we know, pure ILP has high computational complexity. Cao [14] proposed an ILP
algorithm based on candidate assistance, which reduces the computational complexity
of linear programming by adding location and delay constraints to limit the range of
solutions, enabling linear programming to be applied in medium-scaled networks. Ref. [22]
proposed a three-dimensional virtual network embedding model based on computing,
storage, and bandwidth resources. Compared with the previous VNE model that only
considers node computing resources and link bandwidth resources, this model is closer to
the real network attributes, such as SDN flow table resources and ICN node content cache,
all need to occupy node storage resources. In addition, considering some services with QoS
requirements, such as telemedicine, online game, Internet of Vehicles, industrial Internet
remote control, and other delay-sensitive services, link delay should also be considered as
a network attribute in the model.

Ref. [30] combined with the novel neural network of the graph convolution network,
proposed a virtual network embedding algorithm based on deep reinforcement learning.
Ref. [31] introduces simulated annealing into the particle swarm optimization algorithm
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to solve the VNE problem and proposes a particle initialization allocation strategy for the
shortcomings of the particle swarm optimization algorithm in initializing particles’ posi-
tions. Ref. [32] formulated the VNE problem as multi-objective integer linear programming
and designed an algorithm based on an artificial immune system to solve this problem.
Compared with exact solutions and heuristic solutions, meta-heuristic solutions are not the
mainstream of VNE research [3].

Generally speaking, the resource requirements and QoS requirements of the virtual
network requests of different tenants are differentiated. However, the current VNE algo-
rithm adopts the same mapping algorithm for the virtual network request types of different
tenants. This single mapping method will lead to the waste of substrate resources and
low mapping efficiency. Therefore, this paper comprehensively considers node computing,
storage, link bandwidth, and delay constraints, and proposes a virtual network embedding
algorithm for differentiated tenant requests.

3. Virtual Network Embedding Problem Formulation
3.1. Network Model

When modeling the VNE problem, the previous approaches either do not consider link
propagation delay or only consider node CPU resources, which is insufficient to a certain
extent. In order to be closer to the actual network environment, this paper comprehensively
considers node computing resources, storage resources, link bandwidth resources, and link
propagation delay constraints in order to model the substrate network and virtual network.

3.1.1. Substrate Network

The notations and meanings of the virtual network embedding problem are
shown in Table 1. The substrate network is modeled as a weighted, undirected graph
Gs = (Ns, Ls, As

n, As
l ) where Ns represents the sets of substrate nodes, Ls represents the sets

of substrate links, and As
n represents the sets of substrate nodes attributes, which mainly

refers to the computing resources (such as CPU resources) and storage resources (such as
flow table resources) of substrate nodes. As

l represents the sets of substrate links attributes,
which mainly refers to the bandwidth and delay of substrate links.

Table 1. Notations in VNE.

Notation Description

Gs/Gv substrate/virtual network
Ns/Nv the set of substrate/virtual nodes
Ls/Lv the set of substrate/virtual links

ns
i substrate node

nv
j virtual node

ls
mn substrate link from node m to node n
lv
pq virtual link from node p to node q

ps
mn substrate path from node m to node n

Rc(ns
i ) available computing resource of substrate node ns

i
c(ns

i ) computing resource of substrate node ns
i

c(nv
j ) computing demand of virtual node nv

j
Rs(ns

i ) available storage resource of substrate node ns
i

s(ns
i ) storage resource of substrate node ns

i
s(nv

j ) storage demand of virtual node nv
j

Rb(ps
mn) available bandwidth resource of substrate path ps

mn
Rb(ls

mn) available bandwidth resource of substrate link ls
mn

b(ls
mn) bandwidth resource of substrate link ls

mn
b(lv

pq) bandwidth demand of virtual link lv
pq

delay(ps
mn) path propagation delay of substrate path ps

mn
delay(ls

mn) link propagation delay of substrate link ls
mn

delay(lv
pq) link propagation delay constraint of virtual link lv

pq
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In addition, Ps represents the set of all loop-free paths in the substrate network. A
path contains one or more substrate links. ps

mn represents a path from substrate node ns
m

to substrate node ns
n. Ps

mn represents the set of paths from substrate node ns
m to substrate

node ns
n.

3.1.2. Virtual Network

The virtual network is also modeled as a weighted undirected graph Gv = (Nv, Lv, Cv
n, Cv

l ),
where Nv represents the sets of virtual nodes, Lv represents the sets of virtual links, Cv

n
represents the sets of virtual nodes constraints, which mainly refers to the computing and
storage requirements of virtual nodes, and Cv

l represents the sets of virtual link constraints,
which mainly refers to the bandwidth requirements of virtual links. The virtual network
link constraints with delay requirements should also include delay constraints.

3.2. Mapping Model

Based on the above description, the virtual network embedding problem can be
abstracted as the mapping operation M of embedding a virtual network Gv into an entity
network Gs, which is expressed as follows:

M(Gv) : (Nv, Lv)→ (N′s, L′s), N′s ∈ Ns, L′s ∈ Ls, (1)

Therefore, the VNE problem can be divided into two sub-problems: virtual node
mapping (VNM) and virtual link mapping (VLM). VNM and VLM can be solved separately
or together.

3.3. Measurements of Substrate Network Resources

The available computing resource of a substrate node Rc(ns) is defined as follows:

Rc(ns) = c(ns)− ∑
nv∈N

c(nv), (2)

The available storage resource of a substrate node Rs(ns) is defined as follows:

Rs(ns) = s(ns)− ∑
nv∈N

s(nv), (3)

where ns denotes a substrate node and nv denotes a virtual node; N represents all virtual
nodes mapped to ns.

The available bandwidth resource of a substrate link is defined as follows:

Rb(ls) = b(ls)− ∑
lv∈L

b(lv), (4)

where ls denotes a substrate link and lv denotes a virtual link; L represents all virtual links
mapped to ls. Note that a virtual link can be mapped to one or more substrate links, which
depends on the hops between the substrate nodes mapped by both ends nodes of the
virtual link. The available bandwidth resources of a substrate path are defined as follows:

Rb(ps) = min
ls∈ps

Rb(ls), (5)

where ps denotes a substrate path including the substrate link ls.

3.4. Performance Metrics

There are many performance metrics to evaluate the virtual network embedding
algorithm. Our goal is mainly to improve the success ratio of virtual network requests and
reduce the cost of virtual network embedding. The following is a detailed introduction to
several commonly used metrics in research.
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3.4.1. VNR Acceptance Ratio

The VNR acceptance ratio is defined in Equation (6). It is determined by the number of
successfully embedded virtual networks and the number of total virtual network requests,
which can directly reflect the ability of the virtual network embedding algorithm, and it is
an important metric to evaluate the virtual network embedding algorithm.

Raccept =
Nsuccess

Ntotal
, (6)

where Nsuccess represents the number of successfully embedded virtual network requests,
and Ntotal represents the number of total virtual network requests.

3.4.2. Revenue–Cost Ratio

The revenue of a virtual network is defined as:

R(Gv) = ∑
nv

j ∈Nv

(α · c(nv
j ) + β · s(nv

j )) + λ · ∑
lv
pq∈Lv

b(lv
pq), (7)

Equation (7) indicates that the revenue of VNR is the sum of the computing and storage
requirements of all virtual nodes of the VNR and the bandwidth requirements of the virtual
link. Weight factor (α, β, λ) is used to balance different types of network resources.

The cost of a virtual network is defined as:

C(Gv) = ∑
nv

j ∈Nv

(α · c(nv
j ) + β · s(nv

j )) + λ · ∑
lv
pq∈Lv

∑
ls
mn∈Ls

ypq
mn · b(lv

pq), (8)

Equation (8) indicates that the cost of VNR is all nodes and link resources occupied by
the VNR, which is 1 when the substrate link ls

mn allocates resources to the virtual link lv
pq

and 0 in other cases.
The revenue–cost ratio provides a metric of revenue and cost which is used to evaluate

the utilization efficiency of the substrate network resources, and its value is less than or
equal to 1. If each virtual network embedding algorithm can successfully map a virtual
network to the substrate network, then the revenue of the virtual network is the same,
and the algorithm with a larger revenue–cost ratio indicates that the substrate network
resources are consumed less. Equation (9) gives the definition of revenue–cost ratio.

R/C(Gv) =
R(Gv)

C(Gv)
, (9)

3.4.3. Resource Utilization

In order to qualify the resource consumption of a node or a link in the substrate
network, the resource utilization is defined as follows:

U(Rs) =
occupied(Rs)

total(Rs)
, (10)

where Rs could be the computing or storage resource of the substrate node or the bandwidth
resource of substrate link, occupied(Rs) represents the consumed resources, and total(Rs)
represents the total amount of resources.

4. Proposed Algorithm
4.1. Virtual Network Request Classification

In order to flexibly respond to virtual network requests with differentiated resource
requirements and QoS requirements, we propose a virtual network embedding algorithm
that distinguishes network types. The algorithm flow chart is shown in Figure 1. When a
virtual network request arrives, the virtual network type is first classified. According to
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whether the virtual network has delay constraints, virtual network requests are divided
into ordinary requests and delay-sensitive requests, and the sub-algorithms mentioned
in Sections 4.2 and 4.3 are used to solve them, respectively. Before embedding the virtual
network, it is necessary to judge whether the substrate network resources satisfy the
demands and constraints of the virtual network. After the embedding is successful, update
the substrate network, wait for the arrival of next virtual network request, and start timing
the virtual network lifetime. When the virtual network request leaves, release the occupied
substrate network resources and update the substrate network.
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4.2. Two Stage Embedding Sub-Algorithm

In this section, we propose a node mapping algorithm based on greedy strategy, which
considers both node resource value and node resource balance. For ease of understanding,
Algorithms 1 and 2 give the pseudocode of the algorithms. We measure nodes value and
sort the virtual nodes and substrate nodes in non-increasing order. Simply considering node
resources is not conducive to the success of link mapping in the next stage, and adjacent
link resources should be additionally considered when measuring the node resources’
value, which helps to improve the success rate of link mapping. When sorting nodes, we
comprehensively consider node computing resources, node storage resources, and adjacent
link resources and expand them based on the article [18], defining the resource value of
nodes as follows:

NRV(ns
i ) = (Rc(ns

i ) + Rs(ns
i ))× ∑

ls∈Ls(ns
i )

Rb(ls), (11)

where Ls(ns
i ) represents the set of all substrate links set adjacent to node ns

i .
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Algorithm 1 Node Mapping Algorithm.

Input: Ns, Nv
Output: the node mapping results for Nv

1: for all virtual nodes nv
j ∈ Nv do

2: candidates(nv
j )← substrate nodes fulfilling computing demand c(nv

j ) and store
demand s(nv

j )

3: for all substrate nodes ns
i ∈ candidates do

4: calculate nodeVal by Algorithm 2
5: sort nodeVal
6: end for
7: chosen(nv

j )← the substrate node with maximum nodeVal in candidates
8: end for
9: perform node mapping

Algorithm 2 Calculate Node Value Algorithm.

Input: Ns, candidates(nv
j ), nv

j
Output: nodeVal

1: for all substrate nodes ns
i ∈ candidates do

2: calculate NRV(ns
i ) (defined in Equation (11))

3: calculate RBc (defined in Equation (12))
4: calculate RBs (defined in Equation (13))
5: bal(ns

i )← max(RBc/RBs, RBs/RBc)
6: nodeVal ← NRV(ns

i )/bal(ns
i )

7: end for

In addition, considering that the virtual node has different node resource requirements,
it may lead to the excessive use of a certain resource. Due to the Cask Effect, it is difficult to
satisfy the demands of other nodes which affects the success rate of embedding. In order
to solve this problem, the load consumption balance of the two resources should also be
considered. Define the node computing resource demand balance as follows:

RBc = Rc(ns
i )/c(nv

j ), (12)

Similarly, the node storage resource demand balance is:

RBs = Rs(ns
i )/s(nv

j ), (13)

The resource demand balance reflects the relationship between the remaining resources
of the substrate node and the virtual node demand. The substrate node with the closest
RBc and RBs should be selected first to avoid the imbalance of resource consumption and
help to accommodate more virtual network requests. Figure 2 gives a typical example.
The numbers in the circles represent the available computing and storage resources, the
numbers over the links represent the available bandwidth, and the numbers in the hexagon
represent the computing and storage requirements. When selecting the substrate node
for virtual node a, the NRV of A is (20 + 40)× (10 + 20 + 10) = 2400, and the NRV of
B is (30 + 30) × (10 + 20 + 10) = 2400. Obviously, if A is selected for embedding, A
can no longer provide services for subsequent virtual networks due to the exhaustion of
computing resources, even though the available storage resource of A is still abundant.
After combining the balance factor, the nodeVal of A is 2400÷ (2÷ 1) = 1200, and the
nodeVal of B is 2400÷ (1.5÷ 1.5) = 2400. B is selected for embedding. In this case, both A
and B can continue to provide services for the subsequent virtual networks.
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In link mapping, some algorithms assume support for path splitting, which means that
when a single substrate path cannot satisfy the virtual links’ requirements, a virtual link is
allowed to be allocated to multiple substrate paths. Although path splitting can improve
the utilization of the substrate links, it will cause some additional burdens, such as the
switch needing to reorganize packets, the additional delay caused by multiple links, and
the additional flow table resource used to save flow rules in SDN. Therefore, path splitting
is not considered in this paper. When the node mapping is over, the virtual link mapping
is transformed into a resource-constrained shortest path solution problem between fixed
nodes. Algorithm 3 describes our link mapping algorithm.

Algorithm 3 Link Mapping Algorithm.

Input: Ns, Nv, k, node mapping results for Nv
Output: the link mapping results for Nv

1: for all virtual links lv
pq ∈ Lv do

2: find two substrate nodes ns
src and ns

dst corresponding to link lv
pq from Nv

3: search k-shortest paths from ns
src to ns

dst with increasing k
4: if exist path satisfying Rb(path) ≥ b(lv

pq) then
5: perform link mapping
6: else
7: reject Nv
8: end if
9: end for

4.3. ILP Sub-Algorithm

This section introduces a constrained integer linear programming algorithm that we
use to solve delay-sensitive virtual network requests. The algorithm first calculates the
candidate node set and the candidate link set to reduce the scale of the ILP solution and then
calculates the optimal solution of the embedding under the objective function. Algorithm
4 describes the selection process of candidate sets. D in Line 2 represents the location
constraints of the virtual network. We assume that the position of the node is defined by
coordinates (x, y). Equation (14) defines the distance between nodes.

dist(nv
j , ns

i ) =
√
(xv

j − xs
i )

2 + (yv
j − ys

i )
2, (14)
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Algorithm 4 Candidate Sets Construction Algorithm.

Input: Ns, Nv
Output: candidate node set canN, candidate link set canL

1. for all virtual nodes nv
j ∈ Nv do

2. if dist
(

nv
j , ns

i

)
≤ D && c(nv

j ) ≤ Rc(ns
i ) &&s(nv

j ) ≤ Rs(ns
i )

3. cannv
j
.add(ns

i )

4. end if
5. canN.add(cannv

j
)

6. end for
7. for all virtual links lv

pq ∈ Lv do
8. select candidate substrate links of lv

pq which end points are in the corresponding
candidate node set and fulfilling the bandwidth and delay constraints of lv

pq, add
to canL.

9. end for

The candidate node set should be selected within the distance constraints and satisfy
the computing and storage requirements of virtual nodes. When constructing the candidate
link set, for each virtual link, select the substrate links whose bandwidth and delay between
the substrate candidate nodes corresponding to both ends nodes of the link satisfy the
constraints and add them to candidate link set, to reduce the calculation scale. The next
integer linear programming algorithm seeks the best embedding scheme from the candidate
sets. The ILP model is described as follows:

1. Variables

xj
i =

{
1, if nv

j is mapped into ns
i

0, else
, (15)

ypq
mn =

{
1, if lv

pq is mapped into ls
mn

0, else
, (16)

2. Restrictions
(1) virtual node constraints
Equation (17) is designed to ensure that each virtual node maps to only one sub-

strate node.
∀nv

j ∈ Nv, ∑
ns

i∈Ns

xj
i = 1, (17)

(2) substrate node constraints
Equation (18) aims to ensure that each substrate node can only accept the mapping of

one virtual node from the same virtual network.

∀ns
i ∈ Ns, ∑

nv
j ∈Nv

xj
i ≤ 1, (18)

(3) virtual link constraints
Equation (19) is meant to ensure that each virtual link is allocated to one substrate

path, and that the path endpoint corresponds to the substrate node selected by the virtual
link endpoint.

∀lv
pq ∈ LV , ∀ns

m ∈ Ns, ∑
ns

n∈Ns

ypq
mn − ypq

nm = xp
m − xp

n, (19)

(4) Node resource constraints
The chosen substrate node must satisfy the computing and storage requirements of

the virtual node, as defined in Equations (20) and (21).

∀ns
i ∈ Ns, ∑

ns
j∈Nv

xj
i · c(n

v
j ) ≤ Rc(ns

i ), (20)
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∀ns
i ∈ Ns, ∑

ns
j∈Nv

xj
i · s(n

v
j ) ≤ Rs(ns

i ), (21)

(5) link bandwidth constraints
The chosen substrate link must be able to provide sufficient bandwidth to satisfy the

bandwidth requirements of the virtual link, as defined in Equation (22).

∀ls
mn ∈ Lv, ∑

lv
pq∈Lv

ypq
mn · b(lv

pq) ≤ Rb(ls
mn), (22)

(6) link propagation delay constraints
Equation (23) is designed to ensure that the delay of the chosen substrate link delay(ls

mn)
does not exceed the propagation delay limit of the virtual link delay(lv

pq).

∀lv
pq ∈ Lv, ∑

ls
mn∈Lv

ypq
mn · delay(ls

mn) ≤ delay(lv
pq), (23)

3. objective

min : ∑
lv
pq∈Lv

∑
ls
mn∈Ls

(ypq
mn · b(lv

pq) + ypq
mn · delay(ls

mn)), (24)

For a virtual network embedding request, the substrate node resources cost of different
embedding strategies is the same, but due to different substrate paths chosen by different
embedding strategies, the link resources cost is different. Therefore, the definition of the
objective function only considers the link cost.

5. Performance Evaluation

In this section, we first describe the evaluation environment and then present our
performance evaluation results. Our performance evaluation includes the VNR acceptance
ratio, revenue–cost ratio, node resource utilization, and link resource utilization.

5.1. Evaluation Environment and Settings

To evaluate our proposed algorithm, we perform simulations in the following evalua-
tion environment: Intel (R) core (TM) i7-10875H CPU, 32.0 GB RAM. The open-source tool
GLPK [15] is used to solve integer linear programming.

We implement a discrete event simulator to simulate the arrival and departure of
virtual networks. In the substrate network topology, the number of nodes is set to 40,
and each pair of substrate nodes is randomly connected with a probability 0.5, which
corresponds to this medium-scaled network. The setting is consistent with [14]. Nodes
are randomly distributed within a grid of (20 × 20). The computing resources and storage
resources of the substrate nodes are uniformly distributed between 50 and 100 units, the
bandwidth resources of the substrate links are uniformly distributed between 50 and
100 units, and the propagation delay of the substrate links is set to be uniformly distributed
between 1 and 3 units.

The arrival of virtual network requests follows Poisson distribution. In the experiment,
the results of the arrival rate from 2 to 6 virtual network requests per 100 time units
are evaluated. The virtual network survival time follows the exponential distribution,
the average value is set to 1000 time units. The number of virtual nodes is uniformly
distributed between 2 and 8, and the probability of connectivity between virtual nodes
is 0.5. The requirements of computing resources and storage resources of virtual nodes
are uniformly distributed between 1 and 20, and the bandwidth requirements of virtual
links are uniformly distributed from 1 to 50. The propagation delay of virtual links for
delay-sensitive requests is limited to 2 to 8 uniformly distributed. The value of D is set to 5.
The ratio of ordinary virtual network requests to delay-sensitive virtual network requests
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is 1:1. The weight factor α, β, λ is set to 1. In the experiment, the simulation time is set to
10,000 time units.

In our experiments, in order to avoid extreme situations such as a very high VNR
acceptance ratio or very low VNR acceptance ratio, we conducted 10 experiments for each
virtual network request arrival ratio, and each experiment generated a new set of VNRS and
a new substrate network. We recorded the arithmetic average of the results of 10 operations
as the final result.

In order to evaluate the algorithm performance, we compared the proposed algorithm
with [14,18,21,22] in the simulation experiment. We marked them as CAN-ILP, GR-SP, RW-
SP, and RCR-VNE, respectively, and kept the parameters consistent. The objective functions
of two types of virtual network requests in [14] are CAN-CF and CAN-CLDF, respectively.

5.2. Evaluation Results

In this section, the simulation results and the analysis of the experimental results
are given. The VNR acceptance ratio, average revenue, average cost, revenue–cost ratio,
node computing resource utilization, node storage resource utilization, and link bandwidth
resource utilization are evaluated and analyzed, respectively.

5.2.1. Virtual Network Request Acceptance Ratio

The virtual network request acceptance ratio is one of the most important metrics for
evaluating the VNE algorithm. Figure 3 reflects the result that the virtual network request
acceptance ratio of each algorithm changes with the virtual network request arrival ratio.
As can be seen from the figure, as the number of VNRs per unit time increases, the request
success ratio gradually decreases. This is consistent with our intuitive prediction because
the substrate network resources are limited. With the increase in the number of virtual
network requests, the acceptance ratio will inevitably decline. Obviously, our algorithm has
a better acceptance ratio than other algorithms. When the virtual network request arrival
ratio is 2 per 100 time units, our algorithm and that of [14] have acceptance ratios of 98.977
and 97.098%, respectively, while other algorithms are below 80%. Our algorithm shows
the best acceptance ratio at any arrival ratio, with a maximum improvement of about 15%
compared with other algorithms. Ref. [14] performs well when the arrival ratio of virtual
network requests is low, but the acceptance ratio decreases as the arrival ratio increases.
This is because the location constraints limit the range of solutions, which causes some
virtual nodes to have no suitable candidate nodes to embed, thus reducing the virtual
network requests’ success ratio to a certain extent.
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5.2.2. Revenue and Cost

Figures 4–6 describe the average revenue, average cost, and revenue–cost ratio under
different virtual network request arrival ratios. It can be seen that the algorithm of [14]
has the minimum average cost and the maximum revenue–cost ratio, the revenue–cost
ratio is 93.998% to 98.516%. This is because it adopts integer linear programming to solve
based on minimizing cost, so it performs well in the average cost. Compared with other
algorithms, our algorithm has the lowest average cost and the maximum revenue–cost
ratio. The revenue–cost ratio is 79.515% to 83.781%, which is about 5% to 10% higher than
other algorithms. Our algorithm has the largest average revenue among all algorithms.
The above indicates that our algorithm effectively utilizes the substrate network resources
and saves the available resource space for subsequent virtual network requests.
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5.2.3. Resource Utilization

Figures 7 and 8 describe the node computing resource utilization and storage resource
utilization, while Figure 9 describes the link bandwidth resource utilization. With the
increase of the virtual network request arrival ratio, the node resource utilization and
link resource utilization of all algorithms increase accordingly. Compared with other
algorithms, our algorithm has the highest resource utilization. Our node resource utilization
is approximately 80%, while other algorithms are less than 70%, indicating an optimization
of 10%. The link resource utilization is approximately 30%. The reason for the low link
resource utilization in all algorithms is that the existence of the link propagation delay
constraint and path splitting is not supported. The high resource utilization is because our
algorithm can receive more virtual network requests than other algorithms and can use the
substrate network resources for mapping more efficiently.
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5.2.4. Comparison with the Optimal Solution

PURE-ILP, the virtual network embedding algorithm based on ILP is an exact and
optimal algorithm. However, the NP-hard nature of PURE-ILP leads to high computational
complexity, making it unsuitable for medium- or large-scaled network scenarios. We
established a small network topology to evaluate the deviation between the proposed
algorithm and the optimization algorithm. The number of substrate nodes is set to 20. D
is set to 10. Other parameters are consistent with the description in Section 5.1. Figure 10
shows the numerical results of the VNR acceptance rate versus arrival rate. The acceptance
ratio of the proposed algorithm VNR is slightly lower than that of the optimal solution,
and the maximum deviation is about 3%, which shows that the proposed algorithm can
also play a better role in small networks.
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5.2.5. Computational Complexity

This section analyzes the computational complexity of the algorithm. In a two-stage
embedding sub-algorithm, node mapping is a polynomial algorithm in terms of and
|nodev|, and [18,22] are as well. Node mapping in [21] is a polynomial time algorithm in
terms of |nodes|, |nodev|, and max{1,− log ε} (ε is a desired precision). The k-shortest path
link mapping algorithm can be solved in O((|nodes|+ |links|) log(|nodes|+ k)) time [27].
The computational complexity of link mapping is the same as in [18,21,22]. PURE-ILP
has exponential time complexity. The solution increases exponentially with an increase
in network size. However, our constrained integer linear programming sub-algorithm
reduces the number of binary variables in linear programming by constructing a candidate
node set and candidate link set. Ref. [14] proved that the mapping can be completed in
a limited time by this method. Thus, the computational complexity of our algorithm is
between a heuristic algorithm and a linear programming algorithm.

5.2.6. Discussion

The proposed algorithm provides a practical choice for the use of VNE in the real
world with a model close to the real network and a good virtual request acceptance ratio
and resource utilization. In fact, different virtual network requests have different resource
requirements and QoS requirements. The advantage of our algorithm is that we have
modeled this key problem and designed embedding strategies for different virtual network
requests under different constraints and different optimization objectives, rather than using
multi-objective optimization functions, which leads to the needs of tenants being met in
a differentiated way and makes full use of the substrate network resources. The above
experimental results fully verify the effectiveness of the proposed algorithm.

6. Conclusions

In order to flexibly respond to virtual network requests with differentiated resource
requirements and QoS requirements, we propose a virtual network embedding algorithm
that distinguishes network types. We first divide virtual network requests into ordinary
requests and delay-sensitive requests according to the low latency requirements of virtual
networks. Next, we design different embedding strategies for different types of virtual
network requests. For ordinary requests, we adopt a heuristic two-stage embedding sub-
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algorithm based on greedy strategy and considering resource consumption balance. We use
a constrained integer linear programming sub-algorithm to solve delay-sensitive requests.

We conducted a comprehensive simulation and evaluation of the proposed algorithm.
Experimental results showed that our algorithm outperforms the compared algorithm. Our
algorithm can accept more virtual network embedding requests, reduce virtual network
embedding cost, and maximize the utilization of substrate network resources. In addi-
tion, the task of placing service function chain (SFC) in network function virtualization
(NFV) [33] can be seen as a virtual network embedding problem with network function
constraints. Therefore, the proposed algorithm in this paper can also be applied to other
network environments such as NFV.

In the next research stage, there are still some aspects to be improved. In order to
improve the persuasiveness of the algorithm, it is meaningful to evaluate the algorithm
in realistic traffic and network scenarios based on a real SDN substrate infrastructure and
tenant requests. The network environment is complex and changeable, and the traffic in
the network will change dynamically. In a future work, we should also consider resource
reallocation [34] in the case of dynamic network traffic. A preliminary idea is to combine
the global view of SDN, consider the state of resources allocated before, and reconfigure
network elements that do not satisfy resource requirements to maintain network stability.
Furthermore, considering the complexity of the actual network, the classification criteria
for virtual network requests may not be comprehensive. In the future, it is important
to consider other classification criteria for the actual network environment and propose
personalized embedding algorithm research for differentiated networks, such as the cost
demand network, delay demand network, bandwidth demand network, etc.
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