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Abstract: With the rapid development of service-oriented computing, an overwhelming number
of web services have been published online. Developers can create mashups that combine one or
multiple services to meet complex business requirements. To speed up the mashup development
process, recommending suitable services for developers is a vital problem. In this paper, we address
the data sparsity and cold-start problems faced in service recommendation, and propose a novel
multi-relational graph convolutional network framework (MRGCN) for service recommendation.
Specifically, we first construct a multi-relational mashup-service graph with three types of relations,
namely composition relation, functional relation, and tagging relation. These three relations are
indispensable and complement each other for capturing multi-view information. Then, the three
relations in the graph are seamlessly fused with various strategies. Next, graph convolution is
performed on the fused multi-relational graph to capture the high-order relational information
between mashups and services. Finally, the relevance between mashup requirements and services
is predicted based on the learned features on the graph. We conduct extensive experiments on the
ProgrammableWeb dataset and demonstrate that our proposed method can outperform state-of-the-
art methods in recommending services when only mashup requirements are available.

Keywords: service recommendation; mashup application; graph convolutional network

1. Introduction

Service-oriented computing (SOC) has become a significant paradigm for developing
low-cost and reliable software applications in software engineering and cloud comput-
ing [1]. Web services are the basic build blocks of service-oriented computing, which
encapsulate application functionalities and can be accessed through standard interfaces [2].
Nowadays, an increasing number of web services, mainly in the form of RESTful Web
APIs, have been published online. According to the recent statistics of ProgrammableWeb,
the largest Web API portal, there are over 24,000 Web APIs available online. However,
the functionality of an individual service is limited and cannot satisfy the complex require-
ments of developers. As a result, it is common for developers to compose existing services
and develop value-added services, also called mashups [3,4]. For example, a developer
may create a new mashup that can display ratings and reviews of restaurants on a region
map by integrating Google Map service and Yelp Service. However, creating a mashup can
be difficult and time-consuming for the inexperienced developer due to the overwhelm-
ing number of services on the Internet. Therefore, it is vital to proactively recommend
appropriate services that can satisfy the developer’s complex requirements and ease the
selection burden.

Previous studies on service recommendation can be classified into three categories:
collaborative filtering-based approach, content-based approach, and hybrid approach [5].
Collaborative filtering-based approaches utilize the historical composition data between
mashups and services [6–10]. Content-based approaches exploit the information of user
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requirements and service descriptions, which could be in the form of structured text
such as Web services description language (WSDL) or unstructured natural language
descriptions [11–14]. Hybrid approaches combine collaborative filtering and content-based
approaches by exploiting both content information and composition history [15–18].

However, despite the recent research progress in service recommendation, it still faces
several challenges: (1) Sparsity of the mashup-service composition relation. The number of
services is large and most mashups are composed of a few services; as a result, the mashup-
service composition matrix is extremely sparse. Take ProgrammableWeb as an example;
the sparsity of the matrix is 99.87%. Traditional approaches such as matrix factorization
are difficult to model the extremely sparse mashup-service relation. (2) Cold-start problem
for mashups and services. When a developer creates a new mashup, it has no component
services; as a result, it is difficult to recommend existing services using the traditional
collaborative filtering model due to a lack of historical information. A similar issue occurs
for a new service that has no composition history. (3) Integration of multiple information
sources. Mashups and services have diverse information available, such as the composition
relation between mashup and service, functional descriptions, and annotated tags of the
mashup and service, etc. How to comprehensively utilize and fuse the available information
for service recommendation is a non-trivial task.

In this paper, we propose a multi-relational graph convolution network (MRGCN)
service recommendation approach to address the above challenges. To address the first
challenge, we adopt a neural graph convolution network model that has been widely
used for modeling graph-structured data. Compared with the traditional collaborative
filtering approaches like matrix factorization, the graph convolution network exploits the
high-order relations between mashup and service with a nonlinear interaction. Therefore,
it has a more powerful representation capability and can capture more complex relations
between mashups and services. To address the second challenge, we propose to model
the historical composition record and functional content of the mashup and service as
a multi-relational graph. The nodes are mashups and services and the edges belong to
one of the three relations: composition relation, functional relation, and tagging relation.
The three relations complement each other and all mashups and services are connected
in the multi-relational graph, thus obviating the cold-start issue. To address the third
challenge, we propose to fuse the multi-relational graph with three relations using several
fusion strategies. The fused graph effectively captures the prominent information of the
three relations. In particular, our model is extensible and can incorporate different kinds of
relations when other side information is available.

The main contributions of this article are threefold:

1. We construct a multi-relational graph that incorporates the composition history, func-
tional descriptions, and annotated tags of the mashup and service;

2. We propose to fuse the multi-relational graph and utilize the graph convolutional
network to capture the high-order relation for service recommendation;

3. We conduct a series of experiments on real-world services from ProgrammableWeb,
and the results demonstrate the effectiveness of our proposed approach;

The rest of this article is organized as follows: Section 2 presents the related work
of service recommendation. Section 3 introduces the details of our proposed approach.
Section 4 reports the experimental results and analysis. Section 5 concludes this paper with
future work.

2. Related Work

Web service recommendation for mashup construction has been widely researched
in recent years. Similar to the taxonomy of general recommender system approaches [5],
the service recommendation approach can be divided into three categories: collaborative
filtering (CF) based approach, content-based approach, and hybrid approach [19].

CF-based approaches recommend services from the historical composition data of
the constructed mashups and their services. It can be further divided into neighborhood-
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based approaches and model-based approaches such as matrix factorization. For example,
Xu et al. propose a coupled matrix factorization model to predict the multi-dimensional
relations among users, mashups, and services [6]. Gao et al. propose using a generalized
manifold ranking algorithm on the graph with relations among mashups and services [20].
Liang et al. measure the similarity between mashups based on a heterogeneous information
network (HIN) with various meta-paths, and make recommendations similar to user-
based CF [7]. Based on this model, Xie et al. propose to measure functional similarities
between mashups based on the word vectors of content learned with the word embedding
technique [8]; Xie et al. propose a mashup group preference-based service recommendation
on HIN, where mashup group preference is utilized to capture the rich interactions among
mashups [9].They also propose to use factorization machines to model the features of
mashups and services learned from different kinds of meta-paths on HIN [10].

Content-based approaches recommend services by matching the content similarities
between candidate services and the mashup requirements. It can be further divided into
three categories: keyword-based approach, latent semantic-based approach, and deep
learning-based approach. Keyword-based approaches extract keywords or salient entities
from the content and use them to match user requests. For instance, Meng et al. propose to
extract keywords from a keyword-candidate list and domain thesaurus to indicate users’
preferences [11]. Latent semantic-based approaches usually extract content features using
topic models. For instance, Aznag et al. propose Correlated Topic Model (CTM) to extract
topics from semantic service descriptions and model their correlations [12]; Gao et al.
propose to extract textual features with latent dirichlet allocation (LDA) [21]. Deep learning-
based approaches provide a more powerful representation capability for modeling content;
thus, they have been widely adopted in recent work. For instance, Bai et al. propose
to use stacked denoising autoencoders (SDAE) to perform feature extraction from the
content and impose the composition records as a regularization [13]; Shi and Liu propose a
Long Short-Term Memory-based (LSTM) model to recommend services with a functional
attention mechanism and a contextual attention mechanism [14].

Hybrid approaches recommend services by incorporating various factors including
mashup-service composition history, functionalities of mashups and services, and other
contextual information. Yao et al. unify both collaborative filtering and content-based rec-
ommendations with both rating and content data of services using a probabilistic generative
model [16]. Jain et al. incorporate three factors, namely service functionality, usage history,
and popularity for recommendation using topic models, matrix factorization, and Bayes’
theorem [17]. Xiong et al. propose a model that integrates collaborative filtering and textual
content into a deep neural network [18]. Ma et al. propose a multiplex interaction-oriented
service recommendation approach where they extract hidden structures and features from
various types of interactions between mashups and services and incorporate them into a
deep neural network [19]. Xiong et al. propose a service recommendation approach via
merging semantic features extracted from descriptions using NLP pipelines, and structural
embeddings from the mashup-service network learned from biased random walks [22].
Wang et al. design a knowledge graph to encode the mashup-service relations and ex-
ploit random walks with restart to assess their similarities [23]. Later, they learn implicit
low-dimensional embeddings of entities in the knowledge graph from truncated random
walks [24]. Dang et al. propose a deep knowledge-aware approach for service recommen-
dation that learns text and knowledge graph embeddings and use an attention mechanism
to model tags [25]. Nguyen et al. learn the context of mashups and services by using
Doc2Vec and enhance the traditional PMF with attentional mechanism to weight their
latent features [26].

Our model also falls into the hybrid category. Different from other works, our method
naturally merges the different types of information as interactions between mashups and
services on a graph, and uses GCN to further exploit the high-order relatedness between
mashups and services. Previous works [27,28] also adopt GCN-related techniques for
service recommendation. In [27], Zhang et al. propose an end-to-end approach based on
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GCN, where they utilize the service composition relationship in the mashup to construct
the service graph, with the textual description as side information, and use a variational
graph auto-encoder model as a link prediction task in the graph. However, their method
constructs a homogeneous graph of services, and can only detect potential composition
patterns in the service network. Our method constructs a multi-relational graph with
both mashups and services, and can address the task when only mashup requirements are
available without any composing service. In [28], Lian and Tang propose a neural graph
collaborative filtering technique for API recommendation. However, their method only
exploits high-order connections between users and APIs, and neglects other potentially
relevant side information. Therefore, they cannot deal with the cold-start issue where no
mashup-service connection information is available.

3. Multi-Relational GCN Based Service Recommendation Model

In this section, we will describe our multi-relational graph convolution network-based
service recommendation model in detail. First, in Section 3.1, we describe the service
recommendation for the new mashup development problem. Next, we present the overall
framework in Section 3.2, and the main components of the model, namely multi-relational
graph construction, graph convolution with relation fusion, and model prediction are
described in Sections 3.2.1–3.2.3, respectively. Finally, we describe the training process and
the model complexity in Section 3.3.

3.1. Problem Definition

In this section, we formulate our problem with necessary notations. Let M =
{m1, m2, . . ., mNM} be a set of NM mashups, and S = {s1, s2, . . ., sNS} be a set of NS
services. N = NM + NS represents the total number of mashups and services. MS =
{(m1, s1), (m1, s2), . . .} represents the set of mashup-service pairs that have a composition re-
lation. For each mashup and service, we also collect its textual descriptions and tags. MD =
{(m1, dm1), (m2, dm2), . . ., (mNM, dmNM )} denotes the set of mashups and their textual de-
scriptions, where dm = w1, w2, . . . represents the sequence of words after pre-processing the
descriptions of mashup m. Similarly, SD = {(s1, ds1), (s2, ds2), . . ., (sNS, dsNS)} denotes the
set of services and their textual descriptions. MT = {(m1, T1), (m2, T2), . . ., (mNM, TNM)}
represents the set of mashups and annotated tags, where Tm = {t1, t2, . . .} is the set of tags
of each mashup m. Similarly, ST = {(s1, T1), (s2, T2), . . ., (sNS, TNS)} represents the set of
services and their annotated tags.

The problem can be formulated as follows: Given mashup-service composition relation
MS, textual descriptions of mashups and services MD and SD, tags of mashups and
services MT and ST, for a mashup m, we aim to recommend a list of services that are likely
to be composed by m. In this paper, we consider the case where the mashup is newly created
by the developer, i.e., no composition record is registered and only textual descriptions and
tags are available. As a concrete example, a developer tries to develop a mashup that can
make music recommendations and provide explanations by using linked data and semantic
web techniques. He or she can input the requirement in the form of text, and specify a set of
tags such as “music”, “recommendation”, “semantics” to refine the requirements. The system
aims to recommend suitable services that can meet the developer’s requirements. In this
case, Last.fm service which can retrieve music resources from lastfm (https://www.last.fm/),
and DBpedia service which organizes the music metadata as a structured knowledge web
can be recommended.

3.2. Overall Framework

We present an overall framework of our proposed approach, which is shown in
Figure 1. Our approach consists of three main components: multi-relational graph construc-
tion, graph convolution with relation fusion, and model prediction. Firstly, we construct
three graphs with three different relations between mashup and service based on mashup-
service composition relation, textual descriptions, and annotated tags of mashup and

https://www.last.fm/
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service. Then, we use three strategies to fuse the three types of relations and adopt a graph
convolutional neural network (GCN) architecture to propagate high-order relational infor-
mation between mashups and services. Finally, the embeddings of mashups and services
from different propagation layers are combined and the model outputs a preference score
between a mashup-service pair.

Figure 1. Overall framework of MRGCN for service recommendation.

3.2.1. Graph Construction

To fully exploit different kinds of relations between mashups and services and alleviate
the sparsity and cold-start problem of the mashup-service composition record, we construct
a multi-relational mashup-service graph G = (V , E ,R,W), where the node set V = M ∪ S
includes all mashups and services, and E denotes the edges between the nodes if there exist
a certain relation. R denotes the relation types of edges, andR = {RC,RD,RT} represents
the three types of relations: composition relation, functional relation, and tagging relation.
W denotes the weights of edges for each relation type. Next, we describe the construction
process of the three types of relations in detail:

• Composition Relation. The composition relation between the mashup and service can
be modeled as a bipartite graph, where an edge of type RC exists between mashup
m and service s if (m, s) appears in MS. The composition relation is represented
as an adjacency matrix AC ∈ {0, 1}N×N with AC(i, j) = 1 if nodes i and j have a
composition relation in MS and 0 otherwise. Note that the matrix AC is extremely
sparse as most mashups typically only invoke a few services to meet their demands.
In addition, there exist some mashups and services that have no composition history,
i.e., the rows and columns of matrix AC of the cold-start mashups and services are zero
vectors. To mitigate the sparsity and cold-start issues of the composition relation, other
features of services and mashups such as textual descriptions and tags are utilized.

• Functional Relation. The textual descriptions of mashups and services provide func-
tional properties and can alleviate the sparsity and cold-start problem of the compo-
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sition relation. For instance, for a new mashup, m has no composition record, and
we can still recommend a possible service s if mashup m′ is functionally similar to
m and m′ invokes service s. We represent the functional relation as a graph where
two nodes are connected with type RD if their textual descriptions are similar to
each other. It is crucial to measure the similarities of textual descriptions between
mashups and services. In this paper, we adopt two approaches for learning the feature
representations from textual descriptions and the similarity between them:

– LDA [29]. Latent Dirichlet Allocation (LDA) is an unsupervised generative
model that can discover topics in a collection of documents and assign topic dis-
tributions to each document. We collect the textual descriptions of all mashups
and services as a document corpus. After training, the textual description of
each mashup/service will have a distribution over all topics, and each topic will
have a distribution over all words. Specifically, each mashup/service is mapped
to a latent topic space and represented as a topic distribution d ∈ RNK, where
NK is the number of topics.

– Doc2vec [30]. Different from LDA that processes documents as “bag-of-words”
where the order of words is ignored, the doc2vec model learns a distributed vec-
tor representation for a piece of document. It follows the idea of word2vec where
the target word is predicted given context words. Concretely, it concatenates the
document vector with several word vectors from the document and predicts the
following word in a context window. Compared to word2vec, the only change
is the addition of the document vector that acts as a memory of the topic of
the document. After training, the textual description of the mashup/service is
represented as a dense vector d ∈ RND, where ND is the dimension size.

We denote the description embedding matrix as D ∈ RN×NK or D ∈ RN×ND, where
each row represents the vector representation of the textual description of mashup or
service learned from LDA or doc2vec model. The cosine similarity is used to measure
the similarity between vectors. We denote the weight matrix for the functional relation
RD as WD ∈ RN×N , and the functional similarity between any two nodes i and j is

measured as WD(i, j) =
Di ·Dj

‖Di‖‖Dj‖ . In this case, each node is connected to all other

nodes in the graph of relation typeRD with weights equal to their functional similarity.
However, modeling the functional relation as a complete graph is unfavorable as a
mashup or service is generally only similar to a few mashups and services, as such,
a large proportion of edges with small weights will introduce a lot of noise and
increase the memory and computation costs. Therefore, we prune the graph where
only τ1 edges with the largest weights for each node are retained. In this way, each
mashup/service is connected to at least τ1 most similar mashups and services in
terms of textual descriptions, and the edge weights are the degrees of similarity.
The functional relation is represented as an adjacency matrix AD ∈ RN×N , which only
preserves the significant values of WD.

• Tagging Relation. There is a tagging relation RT between the nodes if two nodes
share at least one common tag. The tagging relation is represented as an adjacency
matrix AT ∈ {0, 1}N×N with AT(i, j) = 1 if nodes i and j have at least a common
tag, i.e., Ti ∩ Tj 6= ∅, and otherwise 0. As some popular tags are annotated by a lot
of mashups and services, a service may possess a large number of tagging relations.
To reduce the computational burden in the graph convolution, for each node, we
randomly sample τ2 nodes that share the same tag. In this case, the tagging relation
can still be preserved as the graph convolution process can learn the indirect tagging
relation between services.

In the end, we construct graphs with three relations represented as three adjacency
matrices AC, AD, and AT . Figure 1 shows an example of the graphs with three mashups and
three services. Different relations are denoted by different edge colors, and the functional
relation has associated weights. We can see that, while mashup m3 has no composition
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relation with other services, it has a rich interaction with other mashups and services in
terms of functional and tagging relations. Note that other types of relations between nodes
can be incorporated, such as services developed by the same company.

3.2.2. Graph Convolution

In the previous section, we enrich the information beyond mashup-service composition
record with content and tag information, and build a graph with three relations. In this
section, we propose to exploit the multi-faceted relations between mashups and services
with a graph convolutional network with relation fusion. Graph convolutional network
(GCN) extends the convolutional neural network to graph-structured data, and it exploits
the high-order interactions between the nodes [31]. The core idea behind GCN is to
iteratively aggregate feature information from local neighbors for each node using neural
networks. A single layer of GCN transforms and aggregates feature information from
the node’s direct neighbors, and by stacking multiple layers, feature information can be
propagated across long ranges, and the node features can be enhanced with sufficient
high-order neighbor information. The reason we use GCN is that it can leverage both
node features as well as graph structure, and it can explore the relation information among
nodes that are not directly connected. We first describe the GCN model for a single type of
relation, then we extend it with a fusion of multiple relations.

Given the mashup-service graph G = (V , E ,R∗,W) with a single relation, whereR∗
could be eitherRC,RD orRT , in each layer of GCN, the goal is to learn a function which
takes the features of every node and the graph structure represented as an adjacency matrix,
and produce the transformed features of each node. Supposing that the adjacency matrix
representing that relation is A, the function for the graph propagation step is:

H(l+1) = ReLU
(

D−
1
2 (A + I)D−

1
2 H(l)W(l)

)
, (1)

where H(l) ∈ RN×dl is the feature matrix at the l-th layer, W(l) ∈ Rdl×dl−1 is the weight
matrix for feature transformation in the l-th layer. I is the identity matrix, and D is the
diagonal degree of matrix A + I, which is calculated as Dii = 1 + ∑j Aij. ReLU is the
nonlinear activation function.

To write Equation (1) in a vector form for a single node i:

h(l+1)
i = ReLU

(
∑

j

1√
|Ni||Nj|

W(l)h(l)j

)
, (2)

where j is the neighboring node of node i including node i itself. Ni and Nj denote the
neighbors of node i and j. We can see that the feature propagation in each layer consists of
several steps: first, the feature of each node is transformed through the matrix W(l), then
the transformed feature is propagated to the neighboring node, and each node receives
the features from its neighboring nodes including itself and adds them together with a
normalization term to maintain the scale of the feature vectors. Finally, the aggregated
features are going through the ReLU activation function to encode only positive signals.

By stacking multiple propagation layers defined in Equation (1), each node is capable
of receiving features from nodes that are l-hop away, and the higher-order relation between
mashups and services can be explored. Such high-order relation information can encode
the potential relation between the mashup and service that are not connected directly but
are 2-hops or 3-hops away, and this latent relation can be crucial to infer the potential
composition relation between the mashup and service.

Figure 1 shows an example of a 2-layer GCN that computes the feature representation
h(2)m3 of mashup m3 in layer 2. It aggregates the features learned from the previous layer

h(1)m3 and its neighbors h(1)m1 , h(1)s2 , and h(1)s3 , and the feature representations in layer 1 are

aggregated from the initial node features. h(2)s3 are learned in the same way. The NNl
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module in the graph represents the feature transformation, aggregation, and nonlinear
activation process of layer l, and they share the same parameters W(l) for each layer.

Thus far, we have described the GCN framework on a single relation graph. As there
exist three kinds of relations, we propose to fuse the multiple relations into a single relation
with three fusion strategies. Inspired by [32], we take the symmetric normalized Laplacian
matrices of the graph for the fusion of multiple relations, which can enrich the structural
information propagated through nodes. Specifically, the symmetric normalized Laplacian

matrix of the composition relation AC is defined as LC = D−
1
2

C (AC + I)D−
1
2

C , where DC is
the degree matrix of AC + I. LD and LT are defined in a similar manner that corresponds
to the matrices AD and AT . We propose three fusion strategies: (1) The add strategy. It
integrates the graph structure of three relations through adding the Laplacian matrices,
i.e., Ladd = LC + LD + LT ; (2) The max-pooling strategy. It takes the maximum value of
the three Laplacian matrices in each entry—for example, if LC(i, j) = 0.9, LD(i, j) = 0.8,
LT(i, j) = 0.5, and Lmax−pool(i, j) = 0.9; (3) The weight-sum strategy. It adds three Laplacian
matrices with different weights, which can integrate relations with different levels of
importance. In particular, Lweight−sum = wc · LC + wd · LD + wt · LT , where wc, wd, and
wt are scalar values that multiply with each entry in the corresponding matrix, and we
treat them as model parameters. In this way, the three relations are jointly considered and
directly incorporated into a comprehensive relation by fusing the Laplacian matrices with
different strategies. Alternatively, we can perform GCN directly on the three graphs with
one single type of relation, and concatenate the final layer of the learned features of the
three graphs. However, it adds the computation complexity of GCN training, and it is hard
to tune the feature dimensions for each relation. We will evaluate different fusion strategies
in the experiments.

3.2.3. Prediction

As we perform GCN on a fused graph with L layers, we obtain multiple layers of fea-
ture representations for each mashup m and service s, namely h(1)m , . . ., h(L)

m and h(1)s , . . ., h(L)
s .

Since the feature representations obtained in different layers reflect the information aggre-
gated from different nodes, we concatenate them to constitute the final representation for
the mashup m, i.e., hm = h(0)m ‖ · · · ‖ h(L)

m , and ‖ is the concatenation operation. Similarly,
for service s, hs = h(0)s ‖ · · · ‖ h(L)

s . Note that h(0)m and h(0)s are the initial feature vectors for
mashup m and service s, which are the rows of the feature matrix H(0). In this case, we
enrich the initial representations for mashups/services with representations from all layers
of GCN capturing the higher-order relational information.

Once the final representations of mashup and service are obtained, we use the inner
product to estimate the composition preference of mashup m to service s. Since we aim to
output the possibility of service s being selected as a component of mashup m, we use the
sigmoid activation function to constrain the value between 0 and 1:

r̂ms = σ(hT
m · hs). (3)

3.3. Model Learning

We design a loss function which inputs a pair of a mashup and a service to learn the
model parameters. Pointwise and pairwise loss are two main types of loss functions used for
service recommendation. Since the mashup-service interaction matrix is extremely sparse
as most mashups only invoke a few services, we opt for the pointwise loss function [18].
Specifically, we use a binary cross-entropy loss function:

J = − ∑
(m,s)∈R+∪R−

(
rms log r̂ms + (1− rms) log(1− r̂ms)

)
+ λ||Θ||22, (4)

where R+ denotes the set of positive samples consisting of mashups and its invoked
services, and rms is labeled as 1; R− denotes the set of negative samples consisting of
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mashups and randomly sampled services without invocation record, and rms is labeled
as 0. r̂ms is the predicted score of mashup m invoking s, and λ controls the strength of
the L2 regularization to prevent overfitting. Θ denotes all trainable model parameters,
which consists of the initial node feature matrix H(0) and parameters W(0) ∼ W(L−1) in
the GCN propagation layer. We use mini-batch Adaptive Moment Estimation (Adam) [33],
a variant of stochastic gradient descent to optimize the model parameters. Concretely, for a
randomly sampled batch of mashup-service pairs, in the forward pass, we calculate the
node embeddings h(1) to h(L) through L steps of GCN propagation; in the backward pass,
the model parameters are updated using the gradients with respect to the loss function J .
The whole training process is depicted as pseudo codes in Algorithm 1.

Algorithm 1 Training algorithm of MRGCN

Input: Constructed Adjacency matrices AC, AD, AT

Output: Parameter set Θ

1: LC = D−
1
2

C (AC + I)D−
1
2

C ;

2: LD = D−
1
2

D (AD + I)D−
1
2

D ;

3: LT = D−
1
2

T (AT + I)D−
1
2

T ;
4: L f used = f usion(LC, LD, LT);
5: R+ = MS, R− = ∅;
6: for each m ∈ R+ do
7: Uniformly sample t uninvoked services R−m = {(m, s−1 ), . . ., (m, s−t )};
8: R− = R− ∪ R−m ;
9: end for

10: R = R+ ∪ R−;
11: Initialize H(0), W(0) ∼W(L−1) with Gaussian distribution N (0, 0.01);
12: for epoch = 1, . . ., Epochs do
13: shuffle R randomly and partition R into R1, . . ., Rbs;
14: for b = 1, . . ., bs do
15: for l = 1, . . ., L do
16: H(l+1) = ReLU(L f usedH(l)W(l));
17: end for
18: J = 0;
19: for each (m, s) ∈ Rb do
20: hm = h(0)m ‖ · · · ‖ h(L)

m ;
21: hs = h(0)s ‖ · · · ‖ h(L)

s ;
22: r̂ms = σ(hT

m · hs);
23: J = J + (−rms log r̂ms − (1− rms) log(1− r̂ms));
24: end for
25: J = J + λ||Θ||22;
26: Update model parameters with Adam;
27: end for
28: end for

Lines 1–4 show the graph fusion process, and different fusion strategies can be used
in line 4. Lines 5–10 prepare the training dataset including positive and negative samples.
Lines 11–28 show the training process for GCN. In each epoch, the training dataset is
divided into several batches, and in each batch, the GCN propagation step is performed
and the parameters are updated according to the loss function J .

Once the model is trained, for each mashup m that has no composition record, we
can calculate the probability score r̂ms for each candidate service s, which represents the
probability of s being composed by m. Finally, all scores are sorted and the top-K services
are recommended for the development of mashup m.
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We further analyze the computational complexity of our approach. In the graph
construction process, the construction of graph AC costs O(|MS|), AD costs O(N2), and AT

costs O(N2). The graph fusion process has the time complexity of O(|E|), where E are the
edges in the multi-relational graph. In the graph convolution layer, the time complexity is
O(∑L

l=1 |E|dldl−1), where dl and dl−1 are the size of matrix W(l) of the l-th GCN layer. In the
prediction layer, the process has the time complexity of O(∑L

l=1 dl). As the number of layers
L and the matrix dimension dl are constants, the cost of the graph fusion, propagation, and
prediction process is approximately linear to the number of edges including all relations in
the constructed multi-relational graph.

4. Experiments

In this section, we conduct a series of experiments to evaluate our model. In particular,
we aim to answer the following research questions:

• How does the proposed MRGCN model for service recommendation perform com-
pared to the state-of-the-art methods?

• Does incorporating the functional relation and tagging relation into the model improve
the performance of the model?

• Which graph fusion method has better performance in service recommendation?

All experiments were developed in Python and carried out on a personal PC with
Intel Core i7 CPU with 2.5 GHz and 16GB RAM, running the macOS High Sierra.

4.1. Dataset Description

The dataset is crawled from ProgrammableWeb (PW), the largest online web service
and mashup repository from June 2005 to October 2020, including all mashups and services,
the composition relation, textual descriptions, and tags of mashups and services. We
remove services and mashups that have no textual description. To facilitate the evaluation
process, we construct a multi-relational graph with services that have been invoked by at
least one mashup. In this case, 6300 mashups and 1609 services are used to construct the
graph, and the number of composition relation is 21,474. We use the category information
available for both mashups and services in the PW dataset and treat them as tags. We
filter out tags that are only used once by the mashup or service, as they are unable to form
tagging relation. Table 1 shows the detailed statistics of the dataset.

Table 1. Dataset statistics.

Statistics Value

Number of mashups 6300
Number of services 21,474
Number of services composed by mashup 1609
Average number of services in mashup 2.07
Sparsity of mashup-service composition matrix 99.87%
Number of tags 312
Average number of tags in mashups and services 3.4
Number of mashup-service interaction 13,219

We divide the mashups into the training set and test set. In particular, we randomly
select 20% of mashups and the corresponding composition records are used as the test set,
and the remaining 80% as the training set. We assume that the textual descriptions and
tags of the mashups in the test set are used as the developers’ requests for building new
mashups. We use the 5-fold cross-validation technique, where in each round, one fold is
used for testing and the others for training. The results of the five rounds are averaged as
the final result.
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4.2. Evaluation Metrics

In our work, developers write and submit their text requirements for mashup creation,
and the recommender system (RS) returns top-N most relevant services. Therefore, it can
be regarded as an information retrieval (IR) problem. We adopt two widely used metrics
in IR and RS to evaluate the recommendation accuracy: Recall@K and NDCG@K [18,34].
Intuitively, Recall measures whether the component service is in the recommendation list,
and NDCG gives more weight to correct predictions at the start of the recommendation list
and discounts correct predictions farther from the beginning of the list.

Recall@K is the ratio of the number of actual component services in the top-K recom-
mendation list to the number of services composed by the mashup. It is defined as:

Recall@K =
1
|MT| ∑

m∈MT

|rec(m) ∩ truth(m)|
|truth(m)| , (5)

where MT is the set of mashups in the test set, rec(m) is the recommendation list of services
of size K for mashup m. truth(m) is the ground truth list of services that are composed by
the mashup m in the test set.

Normalized Discounted Cumulative Gain (NDCG) [35] considers the ranking order
of the recommended services, and assigns different weights to each service in the top-K
recommendation list. it is defined as:

NDCG@K =
1
|MT| ∑

m∈MT

∑K
i=1

2I(i)−1
log2(i+1)

IDCG@K
, (6)

where I(i) indicates whether the service at position i of the ranking list is in truth(m).
IDCG@K is the ideal DCG score of the top K services that can be achieved.

4.3. Baseline Methods

To evaluate the effectiveness of our approach, we compare with seven baseline service
recommendation approaches that are designed to recommend services for new mashup de-
velopment.

• CF [36]. This is the basic collaborative filtering technique to recommend services by
identifying similar mashups. Given a new mashup m, we first calculate its textual
description similarity to other existing mashups using the doc2vec model and cosine
similarity measure, and select N(m) top-similar mashups of m. The recommendation
score between m and a candidate service s is calculated as:

score(m, s) =
∑m′∈N(m)sim(m, m′)× I(m′, s)

∑m′∈N(m)sim(m, m′)
, (7)

where sim(m, m′) is the cosine similarity between m and m′, I(m′, s) = 1 if m′ com-
poses s and 0 otherwise.

• CMF [6]. This approach builds multi-dimensional relationships among mashups,
services and topics with a set of coupled matrices, and performs a coupled matrices
factorization algorithm to predict unobserved relationships.

• LDA [29]. It learns the representations of textual descriptions of mashups and services
with the LDA model and calculates the cosine similarity between mashup request and
service contents.

• Doc2vec [30]. It learns the representations of textual descriptions of mashups and
services with the doc2vec model and calculates the cosine similarity between mashup
request and service contents.

• PaSRec [7]. It is a CF-based approach where it builds a heterogeneous information
network (HIN) with mashups, services, content, tags, etc., defines meaningful meta-
paths, and calculates the similarities between mashups using the meta-path-based
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similarity measurement. It uses a Bayesian personalized ranking (BPR) algorithm to
learn the weights of meta-paths.

• DHSR [18]. It combines collaborative filtering and textual content with a multilayer
perceptron to capture the complex invocation relations between mashups and ser-
vices. It computes semantic similarities between contents with three kinds of feature
extractors and incorporates several pre-trained word embeddings.

• MRGCN. It is the proposed model in the paper, in which we implement two variants
for functional content modeling: MRGCN_LDA in which LDA is used for content
feature representation, and MRGCN_D2V in which Doc2vec is used for content feature
representation.

4.4. Implementation Details

The details of training and the settings of hyper-parameters are listed as follows:

• In learning the vector representations of textual descriptions of mashups and services,
we aggregate the textual descriptions of all 6300 mashups and 21,474 services into
one big corpus, and perform a series of pre-processing steps: (1) Tokenization, which
splits sentences into words; (2) Stop-words removal, which remove the insignificant
words and infrequent words that appear less than 5 times; (3) Lemmatization, which
transform words to their root forms. All pre-processing is done using the NLTK library.
After pre-processing, we feed the dataset to the LDA and doc2vec model in the gensim
library. The number of topics NK in LDA model and the vector size ND in doc2vec
model are both set to 64. The other parameters are set as the default value of the
gensim API. In building the functional and tagging relations, τ1 is set to 30, and τ2 is
set to 15.

• For each positive mashup-service pair, we sample t = 3 negative pairs. In training the
GCN model, the initial node features are set as the document representations learned
with the doc2vec model, and the parameters in GCN are initialized from a Gaussian
distribution N (0, 0.01). The batch size is set to 256, the learning rate is set to 0.005,
and the L2 regularization term λ is set to 10−4. The number of GCN layers L is set to
2, and in each layer, the feature dimension dl is set to 64. We stop the training process
when NDCG@20 on the test set does not increase for 10 successive epochs.

4.5. Experimental Results

Figure 2 presents the recommendation accuracy of different approaches on the two
metrics. As the results show, our approach exhibits improvements over all competing
methods for different values of K. In particular, we have the following observations:

• LDA and Doc2vec methods only exploit textual similarity to match mashup require-
ments and candidate services, and ignore the existing mashup-service composition
patterns. Therefore, they perform worse than the other methods that utilize both
content similarity and composition relation. Moreover, Doc2vec performs better than
LDA, indicating that learning the semantics of content with a distributed representa-
tion is better than the traditional bag-of-words model.

• CF and CMF methods achieve better performance than LDA and Doc2vec, due to
the simultaneous use of mashup-service composition history and textual relations
between mashups and services. Moreover, CMF performs better than CF. The reason
could be that CMF implicitly considers the semantic relations between mashups
and services through the shared topics, while only the semantic similarities between
mashups are considered in CF.

• PaSRec is a CF-based method that evaluates the similarities between mashups. Dif-
ferent from the plain CF model, it considers diverse kinds of relations (captured as
meta-paths) between mashups including mashups with similar contents, tags as well
as services, and combines them with a different set of weights learned from data. It
unsurprisingly achieves a better performance than CF.
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• DHSR is a state-of-the-art method for service recommendation. It uses a deep neural
network to combine the mashup and service features learned from the CF component
and content component. Its performance improvement could be attributed to the use
of deep networks to characterize the complex relations between mashups and services.

• Finally, our method MRGCN outperforms all these models in both Recall and NDCG.
For instance, the Recall@5, NDCG@5, Recall@10, and NDCG@10 of our model were
higher than DHSR by 9.9%, 13.1%, 7.3%, and 9.5%, respectively. On the one hand, it
effectively combines different kinds of relations between both mashups and services,
as opposed to PaSRec that only considers the relations between mashups; on the other
hand, it can propagate and aggregate higher-order features of mashups and services
with GCN, which can effectively deal with the problem of data sparsity. Moreover,
MRGCN_D2V outperforms MRGCN_LDA, which is consistent with the baseline
models and shows that empirically doc2vec has an advantage in modeling service
functionality.

(a) (b)

Figure 2. Performance comparison of different approaches. (a) Recall@K; (b) NDCG@K.

4.6. Discussion

In this section, we evaluate the performance for different parts of the MRGCN model
and hyper-parameters. Specifically, Section 4.6.1 evaluates the impact of different re-
lations in the multi-relational graph, Section 4.6.2 evaluates different fusion strategies,
Section 4.6.3 evaluates the impact of the number of layers and layer Dimensions in GCN,
and Section 4.6.4 evaluates the impact of thresholds τ1 and τ2.

4.6.1. Impact of Different Relations

The MRGCN combines three types of relations: composition relation, functional
relation, and tagging relation. To demonstrate the necessity of the three relations in the
model, we designed several variants of the model for comparison: MRGCN_D model only
uses functional relation, the MRGCN_T model only uses tagging relation, the MRGCN_CD
model uses both composition and functional relation, the MRGCN_CT model uses both
composition and tagging relation, and the MRGCN_DT model uses both functional and
tagging relations.

The results of the comparison among the variants of our approach are shown in
Figure 3 when evaluated with K = 5, 10, 15, 20. We can observe that, when either relation
is dropped from the original model, the performance becomes worse, which suggests
that both three relations can indeed help improve the model performance. The more
relations are incorporated, the better the model performance we can obtain. Furthermore,
MRGCN_CT outperforms MRGCN_CD which in turn outperforms MRGCN_DT, which
shows that the composition relation is more important than the tagging relation and in
turn more important than the functional relation for achieving a better recommendation
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performance. However, when only a single relation is considered, MRGCN_D has a better
performance over MRGCN_T. We conjecture the underlying reason is that some services do
not have annotated tags, and they become “cold-start” services that have no connections
with other nodes in the graph when only tagging information is used. MRGCN achieves
the best performance as it jointly considers the three complementary relations, thereby
enriching the information from different sources and mitigating the cold-start effect in
the recommendation.

(a) (b)

Figure 3. Performance comparison of different variants of MRGCN. (a) Recall@K; (b) NDCG@K.

4.6.2. Impact of Different Fusion Strategies

Three strategies for relation fusion have been proposed: add, max-pooling, and
weighted-sum. We also evaluate the case when GCN is performed separately on three
graphs with one single type of relation, and concatenate the final layer of the three graphs
(denoted as concat). The results of the compared models are shown in Figure 4. We can
observe that: (1) Max-pooling strategy performs the best among them in all evaluated
cases, although the performance gain is quite marginal; (2) Weight-sum strategy performs
slightly better than the add strategy; (3) The concat strategy performs significantly worse
than the other three approaches. It shows that it is better to learn a single representation on
a unified graph rather than learning separate representations, which could add more noise
and model complexity.

(a) (b)

Figure 4. Impact of different fusion strategies. (a) Recall@K; (b) NDCG@K.

4.6.3. Impact of the Number of Layers and Layer Dimensions

In this section, we evaluate the effectiveness of introducing GCN for learning higher-
order mashup and service features. We vary the number of layers L in the GCN from 1 to 3
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and evaluate the performance. In addition, we evaluate the impact of feature dimension dl
on the performance, which varies in the set {8, 16, 32, 64, 128}. The results are shown in
Figures 5 and 6. From Figure 5, we can see that the performance of our model increases
from one layer to two layers because more layers can aggregate information from higher-
order neighbors to enrich mashup and service features. When the number of layers is 3,
the performance decreases, which indicates that too many layers can introduce noise and
cause the overfitting problem. From Figure 6, we can see that the performance initially
increases with the growth of the feature dimension, as a small dimension will probably
constrain the model capacity. When the dimension is over 64, the performance decreases
when we further increase the dimension, while the training time drastically increases.
Therefore, a moderate feature dimension set as 64 is sufficient for model learning.

(a) (b)

Figure 5. Impact of propagation layer number in GCN. (a) Recall@K; (b) NDCG@K.

(a) (b)

Figure 6. Impact of feature dimensions in GCN. (a) Recall@K; (b) NDCG@K.

4.6.4. Impact of the Threshold

When constructing graphs with functional relation and tagging relation, we set the
number of edges for each node to the threshold τ1 and τ2, respectively. To study the param-
eters’ effect on the recommendation performance, we adjust τ1 and τ2 from 5 to 40 with a
step size of 5. The results are shown in Figure 7. We can see that, for the functional relation,
the performance increases when τ1 increases from 5 to 30, which suggests that exploiting
more functional relation of mashup and service brings more beneficial information for
recommendation. However, when τ1 further increases, the performance plateaus and
starts to decrease. Perhaps too many neighbors for a mashup or service introduce noisy
information and harm the GCN learning. Therefore, we set τ1 as 30 in the experiment.
A similar trend can be seen for τ2 when constructing the tagging relation. We can see that
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optimal value of τ2 (15 in the experiment) is generally smaller than that of τ1, which might
indicate that the tagging relation is more susceptible to noisy links than functional relation.

(a) (b)

(c) (d)

Figure 7. Impact of the threshold τ1 and τ2. (a) Recall@K with τ1; (b) NDCG@K with τ1; (c) Recall@K
with τ2; (d) NDCG@K with τ2.

5. Conclusions

In this paper, we propose a multi-relational graph neural network model for recom-
mending services (referred to as MRGCN) when only the mashup composition requirement
is available. MRGCN addresses the three challenges faced in service recommendation:
First, it incorporates functional relation and tagging relation between mashup and service
into composition relation, and mashups and services become more densely connected. In
addition, each mashup and service can incorporate features from high-order neighbors
via graph convolution, which further alleviates the sparsity issue. Second, in the absence
of historical composition record, mashup and service can rely on functional and tagging
relations. All nodes in the multi-relational graph are connected, thereby obviating the cold-
start issue. Third, several fusion strategies are designed into the graph convolution process,
which is efficient and effective. The experiments on ProgrammableWeb demonstrate the
effectiveness of our proposed approach. In the future, we plan to explore other possible
relations that can further improve the recommendation performance, and extend the model
framework to the inductive setting so that the model does not need to be retrained when
new mashups or services are incorporated.
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