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Abstract: Neural architecture search (NAS) is a popular branch of automatic machine learning
(AutoML), which aims to search for efficient network structures. Many prior works have explored
a wide range of search algorithms for classification tasks, and have achieved better performance
than manually designed network architectures. However, few works have explored NAS for object
detection tasks due to the difficulty to train convolution neural networks from scratch. In this
paper, we propose a framework, named as FastDARTSDet, to directly search on a larger-scale object
detection dataset (MS-COCO). Specifically, we propose to apply differentiable architecture search
method (DARTS) to jointly search backbone and feature pyramid network (FPN) architectures for
object detection task. Extensive experimental results on MS-COCO show the efficient and efficacy of
our method. Specifically, our method achieves 40.0% mean average precision (mAP) on the test set,
outperforming many recent NAS methods.

Keywords: neural architecture search; object detection; automatic machine learning

1. Introduction

Machine learning has achieved great success in various tasks, including computer
vision [1–3], nature language processing [4,5], and digital image and signal processing [6–8].
Neural architecture search aims to automatically find the best neural network architecture
in some search space instead of manually design based on a large amount of trails and
expert knowledge. Several approaches for NAS have been explored, including reinforce-
ment learning, evolutionary algorithm, and differentiable NAS (DARTS). The works [9–12]
adopt reinforcement learning by considering the generation of an architecture as the agent’s
action. Another reinforcement learning based method [13], named ENAS, proposes weight
sharing strategy among the same operations in different architectures, which can signifi-
cantly reduce the time cost during the search process. Another work [14] adopts maximum
flow in graph theory to address NAS task. Other works [15–20] adopt genetic algorithms
by first encoding the neural architecture and then proposing a group of architectures as a
population. Population of architectures are selected according to their performance and
then new individuals are generated by crossover and mutation strategies. Apart from the
above methods, one-shot neural architecture search [21] has been one of the most popular
searching paradigms of neural architecture search (NAS) for its high efficiency. Unlike
reinforcement-learning-based methods [9–12] and evolutionary algorithms [15–20] that
generate one candidate network at a time, one-shot-based methods construct a supernet
containing all the connections in the search space and jointly train all operation weights.
DARTS [22] further introduces architecture parameters and address NAS as a bi-level
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optimization problem which is solved by stochastic gradient descent (SGD). After the
gradient-based search phase, DARTS discretizes the supernet and infers the final archi-
tecture simply according to the value of architecture parameters, which is referred to as
the discretization procedure. Some works [23,24] notice the huge memory cost of one-shot
NAS and are dedicated to more efficient searching methods. Moreover, the works [25,26]
attempt to improve the optimization algorithm for more stable searching. Differentiable
architecture search [22] has taken the dominance with a myriad of follow-up works [26–30]
to reduce the search cost.

However, for object detection task, due to the complexity of network and difficult to
train models, the above methods that focus on classification task can not directly search
on object detection dataset. Unlike classification models, object detection models contain
two modules: backbone and feature pyramid network (FPN). To reduce the search cost,
recent works only search for the architectures of backbone [31,32] or FPN [33–35] separately.
This problem has aroused widespread concern in the industry, because in practice, manually
adjusting each module based on the standard detection model is inefficient and suboptimal.
It is difficult to use and evaluate the trade-off between reasoning time and accuracy and
the presentation ability of each module in different datasets. In particular, authors in
SM-NAS [36] find that “the combination of cascade RCNN and resnet18 (not the standard
detection model) is faster and more accurate than the combination of FPN and resnet50 in
coco [37] and BDD [38] (automatic driving data set)”. Though many prior works have been
dedicated to exploring neural architecture search for object detection tasks, they suffers vast
GPU memory cost and searching time, e.g., 44 GPU-days for DetNAS [31]. The above NAS
methods for object detection adopt RetinaNet and Faster-RCNN framework. However,
few NAS methods adopt YOLO framework [39–42], which are more efficient detector.
EAutoDet [43] proposes an efficient architecture search method for YOLO framework and
is able to discover effective architectures in a few GPU-days. Inspired by the above methods,
we refer to YOLOv5 framework and propose to apply DARTS [22] to jointly search for the
architectures of backbone and FPN. Our method aims to discover optimal architectures in
a few GPU-days.

The contributions of our approach can be summarized as: (1) applying DARTS to
object detection task and supporting search for the architectures of backbone and FPN;
and (2) strong performance on COCO dataset outperforming many recent manually-
designed networks.

2. Related Work

This section introduces the prior works related to our method. We first introduce
some classic object detection methods in Section 2.1. Then, we introduce the efficient neural
architecture search methods, most of which aims at classification task. Finally, we introduce
the recent NAS methods for object detection task.

2.1. Object Detection

Existing framework of object detector usually consist of several parts: a CNN backbone
to extract features, a feature fusion module to fuse extracted features at different scales, a
region proposal network (RPN) to generate candidate target region (two-stage detectors [2]),
and a detection head to predict and classify bounding boxes. Since each module plays an
important role in object detectors, recent advances focus on the designing of each module.
For example, except for directly using the existing backbone for classification, such as the
VGG [44] and ResNet [1], some researchers put forward a new backbone specially for the
detectors (DetNet [45]). FPN [46] is one of the typical networks exploring the design of the
feature fusion neck, which designs a top–down architecture to fuse features at different
scales. Though great progress has been made through these designing, many of these
detectors just focus on one module and ignore the relationship between the backbone and
head which may cause the sub-optimal result. R-CNN [47] considers region proposals
and achieves high accuracy, it can not detect the object in real-time speed even with Fast
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R-CNN [48] and Faster R-CNN [2] due to the region generation process. Apart from the
above classic object detection methods, there are also some manually-designed detectors
for rotation detection either, including regression-based methods [49,50] and classification-
based models [51–53], especially for high-precision detection of small objects [54–56].

2.2. One-Shot Architecture Search

One-shot NAS [21] regards neural network architectures as Directed Acyclic Graphs
(DAG), and constructs a supernet containing all types of operations and connections in the
search space. Each candidate neural network architecture can be seen as a sub-graph of the
supernet. Based on one-shot NAS, [22] involve architecture parameters to represent the
importance of candidate operations and connections, which are then optimized alternately
with the network weights based on SGD. XNAS [57] address NAS as an online selection
task, and adopt the prediction with experts advice (PEA) theory to select operations
and connections from the search space. Other methods [30,58] propose to reduce the
GPU memory requirement by gradually removing connections in the supernet. Ref. [30]
proposes to prune the connections with low confidence and increase the depth of the
supernet (the number of cells). Ref. [23] proposes PC-DARTS to reduce the GPU memory
requirement by sampling 1/K channels for each operation in the one-shot model, where
K is a hyperparameter controlling the rate of activated channels of each convolution at
each iteration. PC-DARTS also introduces to accumulate the architecture importance of
different iteration to stablize the optimization. Ref. [58] utilizes the Bayesian learning and
compression to compute the entropy of the connections, according to which the architecture
could be pruned to reduce the GPU memory cost and accelerate the searching phase.

2.3. NAS for Object Detection

DetNAS [31] refers to DARTS and propose to search neural architectures for object
detection by SGD. However, it requires vast GPU memory and search time to discover an
architecture. Recently, researchers [27–29] proposed the adoption of a single-path searching
strategy to reduce the memory cost of searching for image classification. However, such
a single-path searching strategy increases the difficulty of training supernets. Since the
object detection neural architectures are more complex and hard to train, the single-path
strategy is not quite suitable for searching object detection architectures. Moreover, object
detection networks have feature pyramid networks (FPN) to fuse features at different scales,
which differs from those for classification. Since FPN plays an important role in object
detection networks, many works are dedicated to searching architectures for optimal FPN.
NAS-FPN [33] aims to search FPN architecture for RetinaNet [59], a popular one-stage
detection framework. Specifically, FPN architectures are generated by an RNN controller,
which is trained by reinforcement learning (RL). However, NAS-FPN requires vast GPU
memory and search time. EAutoDet [43] proposed an efficient architecture search method
for YOLO framework and achieves great performance on COCO dataset. Inspired by the
above related works, we propose to search on YOLO framework and propose to directly
apply DARTS [22] to joint search for backbone and FPN architectures.

3. Method
3.1. Search Space

This work designs search spaces for backbone network and feature pyramid network
separately. Specifically, for backbone, we consider efficiency and effectiveness and refer
to DARTS [22] to construct a backbone by stacking normal and reduced cells. Each cell
contains two input nodes and four intermediate nodes. Each intermediate nodes are
connected with all their predecessors. For FPN, we resort to PANet [60] and design search
spaces for both top–down and bottom–up fusion modules.
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3.1.1. Search Space for Backbone

The macro architecture of backbone is shown in Figure 1, and we propose to search
operation types and connections for each cell. The backbone consists of 3N normal cells and
three reduced cells. Unlike DARTS where normal/reduced cells share the same architecture,
we independently search each of the cells, i.e., all cells can have different architectures. The
importance of candidate operations and connections are represented by the architecture
parameters α, which is trained by SGD algorithm during the search stage. After searching,
we derive the final architecture according to the magnitude of α. Specifically, for each
intermediate node, we preserve two connections sourced from different predecessors, and
select the best operation on the two connections.

Stem Normal Reduce Normal Reduce Normal Reduce

×𝑁 ×𝑁 ×𝑁

Features with three spatial scales 
are fed into FPN module

Down-sampling 
ratio: 4

Down-sampling 
ratio: 8

Down-sampling 
ratio: 16

Down-sampling 
ratio: 32

Figure 1. Macro architecture of the backbone supernet. Each cell is independently searched. N is the
number of repeated normal cells, which affects the model size.

3.1.2. Search Space for FPN

We extract three features of different spatial sizes from the backbone and pass them
through FPN. As shown in Figure 2, we adopt nodes to denote feature maps and edges to
denote operations. Each normal cell is a supernet that is independently searched during the
search process. Similar to the search space of backbone, there are 7 candidate operations.
Similar to the backbone, we introduce architecture parameters γ̂ to denote the importance
of candidate operations for each normal cell, whose normalized weights are denoted as
γ = so f tmax(γ̂). To introduce the feature of nodes in a normal cell, we take the j-th node as
an example without loss of generality. The feature of node vj is zj = ∑i<j ∑o∈O γo

i,j · eo
ij(zi),

whereO is the candidate operation set, zi is the feature of node vi (a predecessor of node vj),
and eo

ij denotes the operation o on edge eij that connects node vi and vj. After searching, only
two connections are preserved for each node, and only one operation for each connection
is selected according to the magnitude of γ.

3.2. The Proposed FastDARTSDet

Based on DARTS [22], we build a supernet containing all candidate operations and
connections in the search space. Nodes of supernet represents feature maps and edges
denotes operations. We utilize eij to denote the edge from node vi to vj, and utilize
{eo

ij, o ∈ O} to denote candidate operations on edge eij, where O is an operation candidate
set for each edge. Similar to prior works [21,22], we designO = {zero, identity, max pooling,
average pooling, 3 × 3 convolution, 5 × 5 convolution, 3 × 3 dilated convolution, and
5× 5 dilated convolution}. To search architectures via gradient-based method, we follow
DARTS [22] and define the architecture parameters α̂o

ij to represent the importance of
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different candidate operations on each edge. The output of operations eo
ij are averaged with

weight αo
ij to obtain the output of edge eij, represented as oj(xi):

oj(xi) = ∑
o∈O

αo
ije

o
ij(xi), αo

i,j =
exp(α̂o

i,j)

∑o′∈O exp(α̂o′
i,j)
∈ [0, 1] (1)

where α denotes the normalized architecture parameters, xi denotes the output of vi, and,
thus, the output of vj can be computed as follows:

xj = ∑
i<j

oj(xi) (2)

/8

/16

/32
Normal

Normal

Normal

Normal

Normal

Normal

Inverse Fusion Block Fusion Block

Figure 2. Macro architecture of the supernet for feature pyramid network (FPN). Features in three
spatial scales are fed into the FPN module. Each normal cell is a supernet independently searched
during the search process.

Similar to DARTS [22], we address NAS as a bi-level optimization problem and solve
it by SGD algorithm. The optimization problem is formalized as follows:

min
α,γ

Lval(W
∗(α, α, γ)) (3)

s.t. W∗(α, γ) = arg min
W

Ltrain(W , α, γ)

where W denotes the supernet weights, α denotes normalized architecture parameters
for backbone following Equation (1), γ denotes normalized architecture parameters for
FPN module.

Unlike DARTS that search on a rather simple classification task, we propose to search
on a much more complex computer vision task, object detection. The major differences lie
in two aspects: (1) the detection datasets are larger than classification datasets, and (2) the
detection models are more complex than the classification datasets. Specifically, detection
models usually contain multiple parts, including backbone, feature pyramid network, and
detector head. In this work, by defining the joint search space of backbone and FPN in
the Section 3.1, we adopt the differentiable-based neural architecture search algorithm to
search CNN architectures for object detection task.

4. Experiments
4.1. Protocols

The models are evaluated on MS-COCO 2017 dataset [37].
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4.1.1. MS-COCO Dataset

Ms-COCO dataset is a large-scale image dataset developed and maintained by Mi-
crosoft. The tasks of frequency aggregation include recognition, segmentation, and detec-
tion. In the classic case, the target location is determined through the bounding box. At the
beginning, it is mainly used for face detection and pedestrian detection. The dataset, such as
Caltech pedestrian dataset, contains 350,000 bounding box tags. Pascal VOC data includes
20 targets, more than 11,000 images and more than 27,000 target bounding boxes. Recently,
there are detection datasets obtained under ImageNet data, 200 categories, 400,000 images,
and 350,000 bounding boxes. Because some targets have a strong relationship rather
than existing independently, it is meaningful to detect a certain target in a specific scene.
Therefore, accurate location information is more important than bounding box.

4.1.2. Experimental Settings

All our models are trained from scratch, that is, no ImageNet pretrained weights are
adopted to initialize the our model. In the search process, A supernet with one normal
cell (N = 1) at each block is build, as shown in Figure 1. The architecture parameters
are defined to represent the importance of candidate operations and connections. The
training set of COCO is divided into two parts for training architecture parameters and
network weights, respectively. The final architecture is derived after alternately optimizing
architecture parameters and network weights for 30 epochs by SGD optimizer. In the
evaluation process, the discovered architectures are trained from scratch for 300 epochs by
SGD optimizer. The models are also deepened by increasing the number of normal cells
N to 2. The hyper-parameters are set as those provided by YOLOv5 for a fair comparison.
Our codes are based on PyTorch and all our experiments are conducted on V100 GPU.

4.2. Performance of the Supernet

Here, The performance curve of supernet during the search process is illustrated
in Figure 3, including the curve of loss functions, precision, recall, and mean average
precision (mAP). Blue lines in Figure 3 is the averaged value among all 80 classes in COCO
dataset. Three left columns report the tendency of bounding box loss, objectiveness loss,
and classification loss. Two right figures on the top report the precision and recall of
training set. Two right figures on the bottom report the mAP of validation set. Figure 3
shows that the supernet gradually converges during the search process, demonstrating the
great convergence ability of our search method.

The precision-recall, and F1-score curve of each classes are illustrated in Figure

4.3. Performance of the Searched Model

The performance curve of the searched model during the evaluation process is il-
lustrated in Figure 5. The model is trained from scratch for 300 epochs with the same
hyper-parameters as YOLOv5. The precision-recall and F1-score curve of each classes are
illustrated in Figure 6. Figure 7 illustrates the confusion matrix among 80 classes of the
searched model. 4.

To visualize the model performance, The ground truth bounding boxes and the pre-
dicted bounding boxes of several images is displayed in Figure 8a,b. Overall, our model
performs good and is able to detect most of the objects in the images. However, for small
objects and occluded objects, the performance of our model is barely satisfactory. In addi-
tion, our model may also be confused about similar categories. For example, in the fourth
image at the bottom, a boy takes a piece of paper, though our model detect the location of
the paper but it mis-classify it as a laptop since laptop is pretty similar to a paper.
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Figure 3. Illustration of the performance curves during the search process. The supernet is trained
for 30 epochs.

Figure 4. Curves of precision-recall and F1-score during the search process. The supernet is trained
for 30 epochs. Blue line denotes the averaged value among all 80 classes.

4.4. Ablation Study

To demonstrate the advantage of collaborative search, The results that only search
Backbone and FPN are reported in Table 1 and illustrated in Figure 9. Specifically, the
default architecture of backbone is set as the architecture of DARTS [22] and the default
architecture of FPN is set as the architecture of PANet [60]. The depth of network is
controlled by the number of stacked normal cells N. The baseline (default architectures
of both backbone and FPN) only achieves 33.9% mAP when N = 1 and 38.1% mAP when
N = 2. If the backbone is searched independently, the performance of the discovered model
improves by 0.2% (for N = 1) and 0.6% (for N = 2); if the FPN is searched independently, the
performance of the discovered model improves by 1% (for N = 1) and 0.9% (for N = 2); If the
backbone and FPN are searched jointly, the performance of the discovered model improves
by 2.5% (for N = 1) and 1.8% (for N = 2). In general, we can obtain the following conclusions:
first of all, if compared with baseline only, it can be found that whether it is a separate
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search or a collaborative search, whether it is a Backbone search only or a FPN search only,
the final structure is significantly improved compared with baseline. The results also reflect
the effectiveness of our algorithm. Secondly, by comparing the collaborative search and
separate search, we can find that even if everyone is better than the baseline, the effect of
collaborative search is more obvious. From the empirical analysis, the results are consistent
with the conjecture. Previous studies tend to search only one part and fix the other part,
which will lead to ignoring the connections in different structures. End-to-end networks
should be regarded as a whole rather than a segmented part. Finally, we notice that the
increase in the result gradually decreases with the increase in the model size: for N = 1, the
performance of joint search surpasses that of independent search by nearly 2% mAP, while
for N = 2, the improvement is less than 1%. This is because the complexity of the model
search increases with the increase in the model size. If the same experimental parameters
are maintained, the effect will inevitably decrease.

Figure 5. Illustration of the performance curves during the evaluation process. The searched model
was trained for 300 epochs.

Figure 6. Curves of precision-recall and F1-score during the evaluation process. The searched model
was trained for 300 epochs. Blue line denotes the averaged value among all 80 classes.
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Figure 7. Confusion matrix among 80 classes of the searched model.

4.5. Comparison with Prior Methods

To show the effectiveness of our method, we compare the performance of searched
architectures with other state-of-the-art works on the COCO test-dev dataset in Table 2.
Our discovered models (FastDARTSDet) achieve the competitive and even better perfor-
mance compared with the peer NAS methods. Specifically, FastDARTSDet with N = 1
achieves 36.4 AP with only 5.8 M parameters, outperforming EfficientDet-D0 by 2.6%
AP. FastDARTSDet with N = 2 achieves 40.0% AP with 6.9 M parameters, surpassing
EfficientDet-D1 by 0.4% AP with similar parameters. Moreover, compared to prior NAS
methods for object detection, our method only requires 4.2 GPU-days, significantly faster
than prior NAS methods. Additionally, most of the prior methods independently search
either backbone (DetNAS, EfficientDet) or FPN modele (NAS-FPN, NAS-FCOS, Auto-FPN),
and only a few methods propose to jointly search both backbone and FPN (SM-NAS, Hit-
Detector). On the one hand, compared to independent search method, our search space
is much larger; on the other hand, compared to other joint search method, our method is
much more efficient and faster.
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(a)

(b)

Figure 8. Ground true (a) and predicted (b) bounding boxes of images from the validation set of
COCO. Different colors in each images denotes different categories. (a) Ground Truth; (b) Prediction.
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Table 1. Performance of joint and independent search for backbone and FPN on MS-COCO validation
set. The default architecture of backbone is the architecture by DARTS [22]. The default architecture
of FPN is the architecture of PANet [60]. Specifically, the ‘default’ backbone utilize the discovered
architecture searched on classification task, which cost 1.0 GPU-day. Consequently, for the setting
of ‘default’ backbone and ‘default’ FPN, the search cost is 1.0 GPU-day. For the setting of ‘default’
backbone and ‘searched’ FPN, the search cost is 5.2 GPU-day (1.0 GPU-day to search default backbone
and 4.2 GPU-days to search FPN). The best setting and the corresponding performance among each
block is in bold.

Number of Normal Cell
Architecture

mAP Number of Parameters Search Cost GPU-Days
Backbone FPN

N = 1

default default 33.9 5.81 M 1.0
searched default 34.1 5.93 M 4.2
default searched 34.9 5.87 M 5.2

searched searched 36.4 5.76 M 4.2

N = 2

default default 38.1 6.82 M 1.0
searched default 38.7 7.29 M 4.2
default searched 39.0 7.03 M 5.2

searched searched 39.9 6.94 M 4.2

N=1 N=2
Number of Normal Cells

30

32

34

36

38

40

42

M
A

P
on

C
O

C
O

va
lid

at
io

n
se

t

Baseline
Search Backbone
Search FPN
Joint Search

Figure 9. Performance of joint and independent search for backbone and FPN on MS-COCO validation set.

Table 2. Comparison with prior works on the COCO test-dev. Different blocks indicate models with
various inference speeds and prediction performance. ‘?’: the unit of search cost is TPU-days, while
the unit of other methods is GPU-days.

Method Backbone Resolution FPS #Params mAP AP50 AP75 APS APM APL Search
(M) (%) (%) (%) (%) (%) (%) Cost

EfficientDet-D0 [61] Efficient-B0 BiFPN 512 3.9 33.8 52.2 35.8 12.0 38.3 51.2 -
NAS-FPN [33] Res50 Searched 640 60.3 39.9 - - - - - 333 ?

NAS-FCOS@128 [35] Res50 Searched 1333 × 800 27.8 37.9 - - - - - 28
SpineNet-49S [62] Searched FPN 640 11.9 39.5 59.3 43.1 20.9 42.2 54.3 -
SM-NAS:E2 [36] Search the combination 800×600 - 40.0 58.2 43.4 21.1 42.4 51.7 187
EfficientDet-D1 [61] Efficient-B1 BiFPN 640 6.6 39.6 58.6 42.3 17.9 44.3 56.0 -
DetNAS [31] Searched FPN 1333 × 800 - 42.0 63.9 45.8 24.9 45.1 56.8 44
NAS-FPN [33] Res50 Searched 1024 60.3 44.2 - - - - - 333 ?

Auto-FPN [34] Res50 Searched 800 32.6 40.5 61.5 43.8 25.6 44.9 51.0 16
NAS-FCOS@256 [35] R-101 Searched 1333 × 800 57.3 43.0 - - - - - 28
SpineNet-49 [62] Searched FPN 640 28.5 42.8 62.3 46.1 23.7 45.2 57.3 -
SM-NAS:E3 [36] Search the combination 800 × 600 - 42.8 61.2 46.5 23.5 45.5 55.6 187
Hit-Detector [63] Searched Searched 1200 × 800 27.1 41.4 62.4 45.9 25.2 45.0 54.1 -
OPA-FPN@64 [64] Res50 Searched 1333 × 800 29.5 41.9 - - - - - 4

FastDARTSDet (N = 1) Searched Searched 640 5.8 36.4 53.4 38.0 18.6 39.4 45.3 4.2
FastDARTSDet (N = 2) Searched Searched 640 6.9 40.0 59.4 41.7 20.5 41.1 54.3 4.2
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5. Conclusions and Outlook

We have presented an efficient and effective search approach to discover optimal
architectures for object detection, which is a relatively less explored area. Unlike previous
works searching either backbone or FPN structure alone, our method can simultaneously
search backbone and FPN architecture. We adopt a differentiable-based algorithm in such
a complex search space and propose a kernel reusing technique to speed up the search
process stably. Our method can discover outstanding architectures in 4.2 GPU-days, whose
efficacy has been demonstrated by extensive experiments. In particular, the discovered
architecture achieves 40.0 AP on COCO test-dev with 6.9M parameters, and our light-
weighted model achieves 36.4 AP on COCO test-dev with 5.8M parameters, competitive
and even better than the state-of-the-art object detection NAS methods.

For future work, we would formulate the architecture search problem as a special case
of combinatorial optimization on graphs [65], which can be readily connected to the recent
advance in machine learning for combinatorial optimization [66]. In particular, it would be
interesting to see if some useful architectures can be quickly searched from the architecture
pool as more and more architectures have been found by experts and search algorithms. In
this sense, architecture matching, or essentially graph matching especially across multiple
graphs [67] to estimate the similarity, has been an important direction to explore as thus
one need not search a brand new architecture from scratch. We have noted a recent line of
research on using machine learning to achieve efficient and effective graph matching by
using graph neural networks [68,69]. Readers are referred to [70] for more comprehensive
review and we believe retrieval with fine search rather than search from scratch would be
an important direction for future NAS research.
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