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Abstract: Recently, particle manipulation in non-Newtonian fluids has attracted increasing attention
because of a good particle focusing toward the mid-plane of a channel. In this research, we proposed
a simple and robust fabrication method to make a microchannel with various T-shaped cross-sections
for particle focusing and separation in a viscoelastic solution. SU-8-based soft lithography was
used to form three different types of microchannels with T-shaped cross-sections, which enabled
self-alignment and plasma bonding between two PDMS molds. The effects of the flow rate and
geometric shape of the cross-sections on particle focusing were evaluated in straight microchannels
with T-shaped cross-sections. Moreover, by taking images from the top and side part of the channels, it
was possible to confirm the position of the particles three-dimensionally. The effects of the corner angle
of the channel and the aspect ratio of the height to width of the T shape on the elasto-inertial focusing
phenomenon were evaluated and compared with each other using numerical simulation. Simulation
results for the particle focusing agreed well with the experimental results both in qualitatively
and quantitatively. Furthermore, the numerical study showed a potential implication for particle
separation depending on its size when the aspect ratio of the T-shaped microchannel and the flow
rate were appropriately leveraged.

Keywords: T-shaped cross-section; self-alignment; plasma bonding; elasto-inertial focusing; viscoelasticity

1. Introduction

Microfluidic techniques for separating and manipulating particles or cells using var-
ious forces generated as fluid flows in a microchannel have been attracting increased
attention over recent decades. These techniques can separate and manipulate particles
without the use of external forces and are low-cost, have high processing efficiency and
reduced sample consumption, and so have been used in various fields, such as medicine,
chemistry and biology. Particle focusing and separation are important for preprocessing in
biomedical analysis.

Viscoelastic microfluidics has been widely used to manipulate particles and cells
using nonlinear elastic forces without any external force [1–4]. That is, particles can be
focused and separated depending on their sizes in a viscoelastic fluid. Viscoelasticity causes
elastic lift force on particles to drive them laterally to equilibrium positions, typically the
center of the microchannel [5]. Compared with inertial focusing in a Newtonian fluid, true
3D particle focusing can be easily obtained in simple straight channels in a viscoelastic
non-Newtonian fluid [6], due to the coupling of inertial effect and elastic effect (i.e., elasto-
inertial focusing) [7–9]. Such elastic force results from an emergence of the first normal
stress differences across the channel. Several studies on the first normal stress have been
carried out to evaluate the effect of flow rate, channel geometry and corner angles on
focusing patterns through numerical simulations and experiments [7,9–11]. Recently, it
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was found that the elastic force increases at the obtuse corner of a channel cross-section,
so that the particle focusing increases prominently. Raoufi et al. proposed a new complex
straight channel to obtain a tighter focusing band for smaller particles and a wider range
of flow rates than can be achieved with conventional straight channels [12]. The complex
microchannels with a reflex angle in the corner of the channel cross-section were fabricated
using micro-milling and micro-molding, and the behavior of particles in viscoelastic fluids
was explored through experiments and simulations. It was shown that the corner angle of
the cross-sectional shape of the microchannel influenced the particle focusing.

In general, microchannels can be easily fabricated using a polydimethylsiloxane
(PDMS) replica molding process based on the classical soft-lithography technique, but
their cross-sectional shapes are restricted to squares and rectangles due to the micro-
mold shapes. Recently, microchannels with non-rectangular cross-sections, such as a
circle, half-circle, triangle and trapezoid, have been presented [3,11,13,14]. In a previous
study [15], we fabricated microchannels with various cross-sectional shapes, such as a
parallelogram, rhombus, pentagon and hexagon. They were fabricated using basic micro-
electro-mechanical systems (MEMS) processes, such as photolithography, reactive ion
etching (RIE) and anisotropic potassium hydroxide (KOH) wet etching of Si followed by
self-alignment between the Si channel and PDMS mold. However, it is not easy to fabricate
microchannels with a reflex angle in the corner part of the channel cross-section using a
conventional soft-lithography technique.

In the present work, we propose a novel yet simple fabrication method for a mi-
crochannel with a T-shaped cross-section, which is based on soft lithography, followed by
self-alignment with two PDMS molds. We carried out experiments to confirm the elasto-
inertial focusing position of particles for three kinds of microchannels with different sizes
of T-shaped cross-sections in non-Newtonian fluid according to the flow rate and particle
size. By taking images from the top and side parts of the microchannel, it was possible to
confirm the position of the particles three-dimensionally. The effects of the corner angle of
the channel as well as the aspect ratio of the height to width of the T-shaped microchannel
on the elasto-inertial focusing phenomenon were evaluated and compared with each other
using numerical simulation.

2. Materials and Methods
2.1. Fabrication of a Microchannel with a T-Shaped Cross-Section

In this research, we fabricated three kinds of microchannels with different T-shaped
cross-sections. The fabrication method for microchannels with T-shaped cross-sections
is briefly presented in Figure 1. The microchannels were simply formed using basic soft
lithography as follows: (i) two kinds of SU-8 photoresists (SU-8 2050 and SU-8 2075,
Kayaku Advanced Materials, Inc., Westborough, MA, USA) were spin-coated on Si wafers,
and then patterned by UV lithography; (ii) two PDMS molds were made from two SU-8
master molds; (iii) self-alignment and O2 plasma bonding between two PDMS molds
were achieved. A small amount of DI water was sprayed between the two PDMS molds
during self-alignment. Finally, the DI water was evaporated on a hotplate to complete the
formation of the microchannels.

The details of the relationship between the width and height of two PDMS molds are
shown in the inset of Figure 1. Table 1 shows the experimental conditions for SU-8 patterning
for three kinds of microchannels with different T-shaped cross-sections and their dimensions.
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Figure 1. (a) Schematic 3D view of fabrication process; (b) design parameters between two PDMS
molds (top and bottom) in microchannels with T-shaped cross-sections.

Table 1. Experimental conditions for SU-8 patterning and microchannel dimensions.

Top Layer (W, H) Bottom Layer
(Wt, Ht)Type 1 Type 2 Type 3

Photoresist SU-8 2050 SU-8 2075 SU-8 2075 SU-8 2075

Coating speed (rpm) 3000 3000 2100 1300

Width (µm) 50 50 50 150

Height (µm) 35 52.5 70 105

2.2. Sample Preparation and Experimental Setup

In this research, PEO (polyethylene oxide) solution was used as the viscoelastic so-
lution. To make 500 ppm PEO (PEO500) solution, PEO (Mw = ~2 MDa, Sigma-Aldrich,
Burlington, MA, USA) was dissolved in DI water. Fluorescent polystyrene (PS) particles
(Thermo Scientific Inc., Waltham, MA, USA) with 5 µm and 13 µm diameters were placed
in the experimental solution (0.05–0.1 wt% concentration). To prevent particle aggrega-
tion during the particle focusing and separation experiments, Tween 20 (Sigma-Aldrich,
Burlington, MA, USA) was added to the solution at 0.1 wt% as a surfactant. The estimated
mean viscosity of the PEO500 solution was about 1.85 mPa·s (DI water: 0.89 mPa·s), and its
relaxation time was estimated from the previous empirical relaxation time (λe), measured
with a capillary breakup extensional rheometer (CaBER) [9,16]. The relaxation time for the
PEO500 solution was estimated to be 3.78 ms on the basis of the empirical formula [9].

The particles in the microchannel with a T-shaped cross-section were observed using
optical microscopes (BX-60, Olympus, Tokyo, Japan). The flow rates were controlled from
1 to 150 µL/min with a syringe pump (LEGATO 111, KD Scientific Inc., Holliston, MA,
USA), and the focusing positions of the particles were recorded and captured at 1 cm, 4 cm
and 7 cm downstream from the inlet using a CMOS camera (ZWO Co., Ltd., Suzhou, China).
For the precise analysis of the particle focusing behavior, bright-field and fluorescent images
were captured from the top and side of the microchannel with exposure times of 20 ms
and 500 ms. All the analyses and postprocessing of the images were achieved using the
open-source ImageJ software. In this research, the fluorescent intensity profiles across the
microchannel were obtained and fitted with a Gaussian distribution.
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2.3. Simulation for Viscoelastic Flow

The current simulation aimed to explore the influence of T-shaped cross-sections
with varying aspect ratios (i.e., H/W) on elasto-inertial particle migration, mainly when
the particle was suspended in a viscoelastic fluid. This numerical study was designed
to corroborate the results of the experimental study and thus provide an underlying
mechanism for particle migration. To this end, we used a finite-volume-based flow solver
(ANSYS Fluent) to assess the equilibrium position of the inertial particles, where all the
forces acting upon the particles balance each other in the microchannel. In this numerical
study, we utilized two types of channels (i.e., Type 2 and Type 3), with an aspect ratio (i.e.,
H/W see Figure 2) of 1 and 1.4, respectively. Each microchannel had an axial length of
1 mm to ensure a fully developed condition at the downstream measurement location. The
physical dimensions of each channel cross-section are shown in Table 1, and they were
kept identical to those used in the experimental works for an appropriate comparison. The
x origin resided on the symmetric plane for both cross-sections. In contrast, the y origin
was at the half-height of the bottom channel, corresponding to 25 µm and 15 µm away
from the bottom wall for Type 2 and Type 3, respectively. Note that the Type 2 channel was
considered as a baseline for comparison since it had an aspect ratio of unity. Due to the
larger aspect ratio, the Type 3 channel was characterized by a shallow channel depth (i.e.,
30 µm) and a long neck (i.e., 70 µm). Thus, a coupled effect between the bottom wall and
the sharp edge at the junction could be promoted as compared to the case of the Type 2
channel. Furthermore, it should be noted that the vertical length for both Type 2 and Type
3 channels was slightly shorter than those used in the present experiment. We intentionally
used this shorter length to keep the H/W as 1 and 1.4 for each microchannel. Nonetheless,
the difference in Dh between the numerical and experimental studies was less than 5% for
all cases and was thus negligible.

Figure 2. Cross-sectional shape and dimensions of (a) Type 2 and (b) Type 3 microchannel considered
in the numerical simulation. x and y on a cross-plane represent a horizontal and a vertical axis in the
Cartesian coordinate system considered in the numerical simulation.

In this numerical study, uniform velocity and pressure were applied for each inlet
and outlet. Four selective flow rates (i.e., 1, 10, 100 and 150 µL/min) were used, corre-
sponding to the centerline velocity, Umax, in a range of 0.0037–0.59 m/s. Flow parameters
and the resulting channel Reynolds number (Re = ρ Umax Dh/µ, where ρ is the fluid
density, Umax is the characteristic velocity, Dh is the hydraulic diameter of the current mi-
crochannels, µ is the mean viscosity, respectively) are summarized in Table 2. Two particle
diameters (i.e., d = 5 and 13 µm) were considered similar to the experiments. The particle
Reynolds number (Rep = Re (d/Dh)2, where d is the particle diameter) was thus in a range
of O(10−2)–O(100). The exact value of the particle parameters in this numerical study are
also reported in Table 2.
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Table 2. Flow and particle parameters in the numerical simulation.

Case Cross-Section d Flow Rate Umax Re Rep

(µm) (µL/min) (m/s)

T2D5Q1 Type 2 5 1 0.0037 0.29 1.84 × 10−2

T2D5Q10 Type 2 5 10 0.037 2.90 1.84 × 10−1

T2D5Q100 Type 2 5 100 0.37 29.0 1.84 × 100

T2D13Q1 Type 2 13 1 0.0037 0.29 4.79 × 10−2

T2D13Q10 Type 2 13 10 0.037 2.90 4.79 × 10−1

T2D13Q100 Type 2 13 100 0.37 29.0 4.79 × 100

T3D5Q1 Type 3 5 1 0.0038 0.24 1.84 × 10−2

T3D5Q10 Type 3 5 10 0.038 2.42 1.84 × 10−1

T3D5Q100 Type 3 5 100 0.38 24.2 1.84 × 100

T3D5Q150 Type 3 5 150 0.59 37.6 2.94 × 100

T3D13Q1 Type 3 13 1 0.0038 0.24 1.84 × 10−2

T3D13Q10 Type 3 13 10 0.038 2.42 1.84 × 10−1

T3D13Q100 Type 3 13 100 0.38 24.2 1.84 × 100

T3D13Q150 Type 3 13 150 0.59 37.6 2.94 × 100

A single, rigid, spherical particle was set at a fixed location on the cross-plane for both
the Type 2 and Type 3 channels. Then, a net lift force acting on the particles was computed,
varying with the particle location along the horizontal and vertical axis as depicted in
Figure 2. Since the viscoelastic effect on the inertial particle was of particular interest in this
study, we simulated the viscoelastic fluid by leveraging the user-defined function (UDF)
provided by the software package. This UDF allowed us to model the viscosity of the
current working fluid (i.e., PEO500 solution) depending on a range of shear rates. Based on
the measured data of the viscosity varying with the shear rate [17], a power-law model was
specified and successfully applied to our simulation study, as was applied in our previous
works [9,18]. It should be noted that the flow rate greater than 100 µL/min considered
herein caused a shear rate (

.
γ) that exceeded the measured range of the shear rate reported

by [9]. However, Lim et al. [17] showed that the viscoelastic effect of the PEO500 solution
becomes negligible when the shear rate is greater than 100 (1/s) as its viscosity becomes
constant at 1 mPa·s. Therefore, the lower boundary of the present power-law model was
set to the one when

.
γ ≥ 1000. In this simulation, an unstructured non-uniform grid was

employed to discretize the entire computational domain, and the total number of grid
points was approximately 500,000 in all cases. In particular, the grid resolution around the
spherical particle was set to ∆/d = 0.1 (where ∆ is the grid resolution) for both particle sizes
(5 µm and 13 µm) for consistency.

3. Results and Discussion

The elasto-inertial particle focusing in viscoelastic non-Newtonian fluid flowing
through a straight microchannel is a result of competition between the inertial lift force and
elastic force [6]. It has also been clarified that the channel cross-section plays an essential
role in particle focusing. When flowing through a straight microchannel, initially random
suspensions of particles reach certain equilibrium positions.

The Reynolds number (Re) is defined as Re = ρ Umax Dh/µ (ρ is the fluid density, Umax
is the characteristic velocity, Dh is the hydraulic diameter, µ is the mean viscosity), which
is used to quantify the relative importance of the inertial and viscous effect for a given
flow condition. A dimensionless Weissenberg number (Wi) is defined as Wi = λ

.
γ = 2 λ

Umax/Dh (λ is the relaxation time of the polymer solution,
.
γ is the shear rate), which is used

to quantify the viscoelastic effects of a fluid and describes the ratio of elastic and viscous
forces. To compare the relative importance of the elastic effect to the inertial effect, the fluid
elasticity (El) is defined as the ratio of the Weissenberg number to the Reynolds number,
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i.e., El = Wi/Re = 2 λ µ/(ρ Dh
2) [19], which is a dimensionless number and can determine

the number of particle focusing points under a non-Newtonian viscoelastic fluid.
Figure 3 shows the SEM (scanning electron microscope) images of three kinds of

microchannels with different T-shaped cross-sections. They show that the two PDMS
molds were perfectly aligned and bonded thanks to their geometrical shapes, as shown in
Figure 1. The detailed dimensions of the fabricated microchannels are listed in Table 1.

Figure 3. SEM images of microchannels with a T-shaped cross-section. (a) Type 1, (b) Type 2, (c) Type 3.

3.1. Viscoelastic Particle Focusing under Non-Newtonian Fluid

First, we investigated and observed the focusing and migration of particles under a
viscoelastic fluid in three kinds of microchannels with different T-shaped cross-sections.
Furthermore, experiments were carried out for two sizes of particles (5 and 13 µm diameter),
which is one of the important parameters for determining elasto-inertial particle focusing
behaviors [20].

Figure 4 shows the particle focusing at a flow rate of 100 µL/min according to the
location from the inlet of the Type 3 microchannel in non-Newtonian viscoelastic fluid
(PEO500). At the location near the inlet (1 cm), no focusing was observed for either
particle size due to the insufficient elastic forces developed. As the channel length was
increased to 7 cm, particles were focused in a single stream located at the center, with
a flow rate of 100 µL/min. The lateral migration speed was strongly dependent upon
particle size [21,22], so tighter particle focusing was obtained for the 13 µm particle 7 cm
downstream from the inlet.

Figure 5 presents the optical images of particle focusing (top and side view) in the
microchannel with different T-shaped cross-sections for different flow rates and particle
sizes in non-Newtonian viscoelastic fluid. All optical images were captured 7 cm down-
stream. The dotted lines are the boundaries of the microchannel from the top and side view,
which were obtained from the bright-field optical images. Figure 6 presents the normalized
fluorescent intensity profiles presenting the particle distribution at various flow rates in
the microchannel with different T-shaped cross-sections including a microchannel with a
square cross-section which was prepared for comparison.

As shown in Figure 5a,c,e, when viewed from the side, 13 µm particles were observed
to focus to a single line near the bottom side for all types of channels. Furthermore, the
effect of elasto-inertial force was dominant for low flow rates ((below 50 µL/min, Re ≈ 0
and Wi > 0) so the particles moved to the centerline for all types of channels (top view).
The experimental results show that there was only one stream from both front and side
views, meaning that true 3D elasto-inertial particle focusing was achieved for the tested
condition. On the other hand, when the flow rate increased and reached 50 µL/min (Re > 0
and Wi > 0), the single-line particle focusing changed to double-line focusing in the Type 1
channel, but there was no change in the Type 2 and Type 3 channels. For the higher flow
rate of 100 µL/min (inertial force dominant regime), due to the relatively strong inertial
force at the high flow rate [6], the focused particles were more or less dispersed around
the centerline in the Type 2 channel and the triple-line focusing was observed in the Type
3 channel. This implies that the lateral migration of particles in a non-Newtonian fluid is
strongly affected by the inertial force rather than the elastic force [20].
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As shown in Figure 5b,d,f, particles with a relatively small particle size (5 µm) were
randomly dispersed and not focused at specific points in the Type 1 and Type 2 channels
for low flow rates (below 50 µL/min, Re ≈ 0 and Wi > 0). In the case of the Type 3 channel,
however, small particles were slightly focused in the centerline for low flow rates. As the
flow rate increased up to 50 µL/min (Re > 0 and Wi > 0), the particles were focused in the
center of the microchannels under the influence of elasto-inertial force. However, unlike
the large particles (13 µm), the small particles were not completely focused in the center,
showing wider focused bands. This was due to the competition between the non-negligible
inertial lift force and the relevant elastic force under viscoelastic fluid flowing [6,20].

Consequently, the particle migration and focusing were more distinct for large particles
because the force on the particle induced by the normal stress was proportional to the
cube of the particle diameter [20]. In the cases of the Type 1 and Type 2 channels, tighter
focusing was generally observed for the large particles such as the square channel, but the
small particles were rather tightly focused in the center of the channel at high flow rates
(over 100 µL/min) in the Type 3 channel. Moreover, the Type 3 channel showed a peculiar
phenomenon in which large particles did not gather but moved to special focusing points.
In total, there were three focusing points.

Figure 7 shows the positions of 5 µm and 13 µm particles distributed within the
channel at the flow rate of 100 µL/min for three types of channels. As the aspect ratio
increased (from Type 1 to Type 3), small particles were more tightly focused in the center.
However, there was not enough force acting on the large particles in the side part of the
channel to move them to the center, and they were focused in the side part of the channel.
This will be explained in the section reporting the simulation.

Figure 4. Optical images (top view) at a 100 µL/min flow rate in viscoelastic fluid at different
distances from the inlet for different particle sizes. (a) 1 cm, (b) 4 cm, (c) 7 cm from the inlet of the
Type 3 channel.
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Figure 5. Optical images and intensity graphs (top and side view) of particle focusing under vis-
coelastic fluid according to various flow rates for three types of channels.
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Figure 6. Fluorescence intensity under viscoelastic fluid (top view) for 5 µm and 13 µm particles in
(a) square channel, (b) Type 1 channel, (c) Type 2 channel and (d) Type 3 channel.

Figure 7. Positions of 5 µm and 13 µm particles distributed within the channel for the flow rate of
100 µL/min. (a) Type 1 channel, (b) Type 2 channel and (c) Type 3 channel.

3.2. Simulation Results

In order to first assess the flow pattern without the inertial particle on the channel
cross-plane, Figure 8a,b show contour maps of the axial velocity (U) at the flow rate of
10 µL/min as a representative case for Type 2 and Type 3, respectively. The axial velocity
was normalized by its maximum (Umax), while we used an actual physical unit for both the
horizontal and vertical axis. Figure 8 shows that the aspect ratio of the channel significantly
affects the mean flow structure on the cross-plane. For example, the horizontal location of
Umax for both Type 2 and Type 3 is the same, residing on the symmetric plane (i.e., x = 0).
However, the vertical location of Umax is different depending on the aspect ratio of the
channel cross-section. For Type 2, the local maximum in U occurs below the junction (i.e.,
y = 10 µm), whereas Type 3 has a local maximum above the junction on the vertical axis (i.e.,
y = 25 µm). This is because the shallow bottom channel for Type 3 induces a higher-pressure
zone that moves the location of Umax further away from the bottom wall. Furthermore, the
presence of the higher-pressure zone for Type 3 affects the mean flow topology, as shown
in Figure 8a,b. Since H/W = 1 for Type 2, most of the fluid travels through the bottom
channel, while the fluid in Type 3 mainly goes through the upper channel.
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Figure 8. Simulation results of the (a,b) axial velocity magnitude U, normalized by the maximum
axial velocity Umax, for Type 2 and Type 3 channels, and (c,d) shear rate,

.
γ for each Type 2 and Type 3

channels at the flow rate of 10 µL/min.

The contour maps of the shear rate for both channels are presented in Figure 8c,d. As
reported in the previous study [23], the shear rate as a differential of the fluid velocity plays
a crucial role in particle migration in the viscoelastic regime. This is because the shear rate
is closely correlated with the competing mechanism of the inertial lift force between the
shear gradient and wall interaction. Furthermore, previous studies [7,23] have shown a
preferential migrating pattern of the inertial particles toward the region where the shear
rate is zero, particularly when the second normal stress difference in a viscoelastic fluid
is negligible. With these notions, Figure 8c,d give a qualitative picture of the migration
pattern of the elasto-inertial particles for the cross-section shapes considered in this study.
It is clear that each wall created a relatively higher shear rate, whereas the center and each
corner of the channel cross-section had the lowest shear rate for both Type 2 and Type 3, as
observed in the previous studies [3,11,20]. Most importantly, the protruding sharp edges
at the junction caused the highest shear rate for both channels. The effect of these sharp
edges became more significant when they were coupled with the bottom wall effect as
the aspect ratio increased (see Figure 8d). For example, the topology of the low shear rate
(i.e.,

.
γ < 1000 s−1) seems bottleneck-like for Type 3. Based on these observations, it can be

expected that the migrating pattern of the elasto-inertial particles passing through the Type
3 channel would be different to those in the Type 2 channel.

Figure 9 presents the variation in x- and y-directional net elasto-inertial force (Fnet) for
5 and 13 µm particles in the Type 2 channel along the aforementioned lines, as illustrated
in Figure 2. The normalization was made for Fnet by ρf Umax

2 d4/Dh
2, where ρf and Umax

denote the fluid density and the maximum velocity of the channel. As mentioned earlier,
the horizontal axis in Figure 9 used an actual physical unit, which is better for describing
the particle location with respect to the origin. Symbols for each case are denoted in the
legend in Figure 9. Solid lines connecting through the data points were made by piecewise
cubic interpolation to show a shape-preserving trend in Fnet along the x and y axis. Note
that the current simulation could not resolve a valid Fnet after a certain point when the
spherical particle resided in the proximity of the channel wall. It should also be noted that
the negative value in Fnet when x (or y) > 0 represents a directional force toward the origin,
while its positive value when x (or y) < 0 indicates a directional force toward the wall.
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Figure 9. Variation in (a,b) x-directional and (c,d) y-directional net elasto-inertial force exerted on
5 and 13 µm particles suspended in the Type 2 channel. Measurements were made for various particle
locations along the x and y axis illustrated in Figure 2.

For both the 5 and 13 µm particles shown in Figure 9a,b, Fx,net is always negative
and has a single zero crossing at the origin at a flow rate of 100 µL/min for Type 2 (i.e.,
T2D5Q100, T2D13Q100, red symbols). This indicates that both 5 and 13 µm particles
suspended in a viscoelastic fluid are likely to drift toward the origin in a lateral direction
when the fluid inertia is sufficient. This numerical observation agrees well with our
experiments, showing a single train of particles for both sizes at the same flow rate, as
shown in Figure 5c,d. However, at the lower flow rate (i.e., 1 and 10 µL/min) in Figure 9a,b,
a different pattern in Fx,net between two inertial particles can be observed. For example,
Fx,net for the larger particle (i.e., 13 µm) still shows a negative with a single equilibrium
point at the origin despite some fluctuations in Fx,net at the lowest flow rate (i.e., 1 µL/min).
This means the lateral drift consistently occurred for large particles (13 µm) independent
of the flow rate within our measured range. For the case of small particles (5 µm), on
the other hand, Fx,net has multiples of zero crossings at the lower flow rates, as shown in
Figure 9a, indicating wide dispersion of inertial particles along the lateral direction. These
numerical results confirm a unique migrating behavior of the inertial particles depending
on the particle size and the flow rate reported in our experiments (see Figure 5d).

Similar drifting patterns of elasto-inertial particles can also be observed for the vertical
direction in Figure 9c,d. For the large particle size (i.e., 13 µm), the equilibrium point in
Fy,net is made independent of the current flow rates and consistently resides at 10 µm away
from the vertical origin for all cases (see Figure 9d). The case of the small particle also
shows a similar trend in Fy,net and an equilibrium point at the highest flow rate, as shown
in Figure 9c. This observation in our numerical study explains the particle focusing when
the effect of the elasto-inertial force is large enough due to either a high degree of the flow
rate or a large particle surface area. Furthermore, the vertical equilibrium point observed
herein is where the local minimum

.
γ and the local maximum U are positioned.

In this study, our experimental result shows a different migrating pattern of particles
depending on their size, particularly in the Type 3 channel, and thus has a potential
implication for particle separation by leveraging the aspect ratio of the current T-shaped
channel. Therefore, in this numerical study, it is of particular importance to confirm such
migrating behavior can be observed in the Type 3 channel and explore their background
mechanism compared to the one in the Type 2 channel. Note that the x-directional net
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forces are only considered in this case since y-directional net forces for Type 3 have the same
trend and equilibrium point as those of Type 2. It should also be noted that the maximum
flow rate increases at 150 µL/min as the characteristic drift for the larger particles started
to occur at the flow rate of 150 µL/min in the present experiment.

Figure 10 shows the variation in the x-directional net force exerted on two different
particles varying with the flow rates. For the case of the 5 µm particle, the first two lowest
flow rates (i.e., T3D5Q1 and T3D5Q10) generate multiples of the zero crossing in the x-
directional force, indicating an absence of the particle focusing in the lateral direction, as
shown in Figure 10a. With an increase in flow rate, however, a consistent directional force
occurs and pushes the 5 µm particle toward the origin of Type 3, indicating a single train
of the particle focusing along the lateral centerline from 100 µL/min. These migrating
patterns for the smaller particle agreed well with the results of the experiment, as seen
in Figure 5f. The case of 13 µm particle, however, shows unique migrating behavior as
the flow rate increases. When increasing the flow rate up to 100 µL/min, as shown in
Figure 10b, Fx,net becomes more consistent, moving the particle toward the lateral origin
with a single equilibrium point. This is supported by our experimental observations,
shown in Figure 5e, that the intensity of the fluorescent particles focused at the lateral
centerline becomes higher, up to a flow rate of 100 µL/min. Interestingly, at the flow
rate of 150 µL/min, the migrating pattern in the lateral direction for 13 µm particle case
remarkably changes in the Type 3 channel. As shown in Figure 10b, Fx,net at the maximum
flow rate is characterized by two negative convexes and a positive plateau between them.
This indicates two possible points of the particle focusing each at x = 0 and x = 55 µm,
which is not observed in the case of 5 µm particles at the same flow rate. The interesting
pattern of the particle focusing in Type 3 depending on the particle size could be attributed
to the coupled effect between the sharp edge at the junction and the bottom wall (see
Figure 8d). As was discussed earlier, the shallow channel depth with a protruded sharp
edge as in Type 3 resonates with the effect of the shear rate on its cross-plane. Thus, the
Type 3 channel preferentially segregates the large particle (i.e., 13 µm) with two lateral
locations for the particle focusing. In contrast, the small particle (i.e., 5 µm) consistently
drifts toward a single focusing point at the lateral origin at a flow rate of 150 µL/min. This
numerical result has excellent agreement with our experimental result at the same flow
rate in the same microchannel. Furthermore, the current observation suggests a potential
implication of the particle separation depending on its size when the aspect ratio of the
T-shaped microchannel and the flow rate are appropriately leveraged.

Figure 10. Variation in x-directional net elasto-inertial force exerted on (a) 5 µm and (b) 13 µm
particles suspended in the Type 3 channel. Measurements were made for various particle locations
along the x axis illustrated in Figure 2.

4. Conclusions

In this work, three kinds of PDMS microchannels with different T-shaped cross-
sections were fabricated using SU-8 patterning, micro-molding and self-alignment of PDMS
molds. For three kinds of microchannels with different sizes of T-shaped cross-sections,
the elasto-inertial particle focusing behaviors in non-Newtonian fluids were investigated
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according to the flow rate and particle size as well as the position of the channel downstream
from inlet. From the images from the top and side part of the microchannels, it was possible
to confirm the position of the particles three-dimensionally. The effects of the corner
angle of the channel as well as the ratio of the top channel to the bottom channel of the
T-shaped microchannel on the elasto-inertial focusing phenomenon were evaluated and
compared with each other using a numerical simulation. The numerical studies showed
the coupled effect of cross-sectional geometry and viscoelasticity on the particle migration
pattern. Numerical results for the particle focusing agreed well with the experimental
results both in qualitatively and quantitatively. As a final comment, our observation both
in the experimental and numerical studies showed a potential implication for particle
separation depending on its size when the aspect ratio of the T-shaped microchannel and
the flow rate are appropriately leveraged. Specifically, the higher shear rate induced by a
sharp edge at the T junction and its close proximity to the bottom wall may play a crucial
role as a filter in particle separation. Therefore, our results suggest that two different sizes
of particles (i.e., 5 and 13 µm in this study) can be effectively separated if the Type 3 channel
is adapted together with the sheath flow.
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