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Abstract: In the Ruhrstahl–Heraeus (RH) vacuum degassing process, we propose a real-time pre-
diction model for the carbon content in molten steel, and show that the decarburization endpoint
can be accurately determined using this model. Firstly, we applied a novel off-gas analyzer that can
measure the carbon oxide concentration produced in the decarburization reaction faster and more
accurately. Next, we generate decarburization curves using the off-gas components measured by the
new analyzer. The decarburization curve describes the carbon content profile well during operation,
and shows good agreement with the actual carbon content. In order to predict the carbon content
during operation in real time, we create an artificial neural network (ANN) using the decarburization
curves and operation data. By comparing the endpoint carbon content measured at the end of the
operation with the predicted values, we confirmed the excellent predictive performance of the ANN
model. Finally, we show that it is possible to accurately determine the decarburization endpoint
using the prediction model. We expect that the proposed real-time prediction model can increase the
productivity of the RH process.

Keywords: artificial neural networks; decarburization; endpoint carbon concentration; non-dispersive
infrared spectroscopy; Ruhrstahl–Heraeus (RH) vacuum degasser; tunable diode laser absorp-
tion spectroscopy

1. Introduction

The Ruhrstahl–Heraeus (RH) vacuum degassing process is a kind of secondary steel-
making process between the Basic Oxygen Furnace (BOF) and the Continuous Casting
(CC) process [1–4]. It aims to improve the cleanliness of steel by reducing impurities
such as hydrogen, nitrogen and oxygen. It also controls the temperature of the molten
steel to achieve the requirement of the CC process. In particular, due to the excellent
decarburization capability of the RH process, it is the most popular vacuum steel refining
unit for the production of Ultra-Low Carbon (ULC) steel and Interstitial Free (IF) steel for
automobiles [5–8].

In order to produce high-quality ULC steel, it is important to estimate the decarbur-
ization rate of the molten steel during the operation and to determine the decarburization
end time exactly. If the operation is terminated too early due to the incorrect prediction
of the decarburization rate, the mechanical and chemical properties of steel products may
deteriorate due to the high carbon content and additional work may be required to remove
the residual carbon in the melt. In contrast, if the operation time is delayed longer than
necessary, the consumption of utilities such as circulation gas, ejection steam and electricity
increases and the erosion of refractory materials in the vacuum chamber and submerged
snorkels accelerates. Since the temperature of the molten steel may become too low due
to the excessively long operating time, it may take additional energy and time to reheat
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the molten steel. In addition, some ULC steels, such as Bake Hardened (BH) steel [9], have
very narrow upper and lower limits of target carbon content, so it is necessary to determine
the decarburization end time through more accurate estimation of the decarburization rate.

Because it is difficult to measure the dissolved carbon content of the molten steel in
real time, process operators typically rely on intermittent sampling measurements or their
long experience to estimate the dissolved carbon content during the RH process. So there
have been various studies to predict the decarburization rate accurately and to understand
the degassing reaction in the RH process.

Based on mass and thermal balance, the decarburization reaction can be expressed
as a first-order equation with the apparent rate constant of decarburization [10–13]. Many
studies have attempted to determine the influence of various factors affecting the apparent
rate constant of decarburization, such as circulation flow rate, initial carbon and oxygen
concentration, internal pressure of vacuum chamber and flow rate of Top Oxygen Blowing
(TOB) [11,14–18]. In addition, they have tried to obtain sophisticated prediction models
by identifying decarburization mechanisms according to the reaction zone where the
decarburization reactions take place and by analyzing changes in decarburization rates
over operating time [5,14,17,19–21]. However, the RH process involves multidimensional
physicochemical phase changes at high temperature and the model parameters may change
depending on the capacity and conditions of the equipment. Therefore, it is difficult to
obtain a generalized model through experiments, especially in large-scale commercial
facilities where experiments are time-consuming and expensive.

Some researchers have used Computational Fluid Dynamics (CFD) to calculate nonlin-
ear reactions in the RH processes, taking into account various operating conditions that are
difficult to test directly. CFD is particularly effective in identifying decarburization rates
according to reaction area or operating time and in finding optimal process conditions such
as circulation flow rate, oxygen blowing and snorkel dimensions [22–24]. However, the
CFD models have limitations to account for all important responses due to computational
power, lack of prior knowledge of the system, or modeling complexity. In addition, they
are often not suitable for real-time prediction due to inaccurate or excessive assumptions
used in the model [15,25].

Other researchers have studied data-driven modeling that combines real-time data col-
lected from various sensors and machine learning algorithms. Kim et al. [26,27] use Fuzzy
logic to predict the end point of decarburization in the middle of the RH operation. They
have selected the main factors affecting the operating time through correlation analysis
and multiple regression analysis and have constructed separate Fuzzy models according
to the steel type. The prediction model learns the actual decarburization endpoint by the
operator and does not account for changes in dissolved carbon content during operation.
Kleimt et al. [28,29] propose a dynamic model of the RH process for online observation
and model-based control. They calculate thermodynamic equilibrium and reaction kinetics
by considering the cyclic process data and acyclic event data. The model shows excellent
performance in predicting the decarburization rate as well as impurities and temperature
changes of molten steel. However, there is a limit to obtaining a generalized model because
the parameter identification of the physical model must be preceded. Zhang et al. [30] at-
tempt to calculate the dissolved carbon content in real time during RH operations using the
operator’s experience, metallurgical knowledge and operational data. Jianwen et al. [31]
tried to predict the endpoint carbon content using the Radial Basis Function (RBF) neural
network in a Vacuum Oxygen Decarburization (VOD) vacuum steel refining process. How-
ever, these studies show relatively large prediction errors due to the lack of consideration
for the actual change in dissolved carbon content during operation. In addition to the
RH process, the data-driven models are actively used in various fields of the steelmaking
process and studies have been reported to predict the change of impurities [32–34] and
temperature [35] of the molten steel. However, the difficulty of collecting dissolved carbon
content data poses an obstacle to developing real-time prediction models in the RH process.
In other words, it is not only difficult to measure the continuous change in the dissolved
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carbon during operation, but it is also time-consuming and expensive to obtain the actual
carbon content under various operating conditions.

In this work, we proposed a real-time prediction model for carbon content in molten
steel using real-time operation data and the carbon oxide content in off-gas and showed
that the decarburization end time could be accurately determined using the model. The
main idea of this study is that carbon oxides emitted through the off-gas in the RH process
come only from molten steel. If we know exactly the amount of carbon oxides in the off-gas
at any given time, we can accurately infer the decarburization reaction rate at that time.
However, the off-gas analyzer used in the general RH process is installed far from the
vacuum chamber where the decarburization reaction takes place, so it is difficult to capture
the decarburization reaction in the molten steel in time. So we firstly introduced a new
type of gas analyzer, Tunable Diode Laser Absorption Spectroscopy (TDLAS), to the RH
process and showed that the off-gas components emitted from the vacuum chamber could
be measured faster and more accurately by using it. Next, we introduced a decarburization
curve to estimate the carbon concentration in the molten steel using carbon monoxide
and carbon dioxide concentrations in the off-gas measured by the TDLAS analyzer and
confirmed the similarity between the results of the decarburization curve and the actual
sampling data. Since the decarburization curve can be obtained after an operation is over, it
cannot be used for online prediction. Instead, we used Artificial Neural Networks (ANNs)
as an online prediction model for carbon content in the molten steel. We had trained the
ANN model by using the process data obtained during operations and the decarburization
curves as input and output values, respectively. Finally, we compared the actual carbon
concentrations at the end of decarburization with the predicted values of the ANN model
to confirm the validity of the prediction model.

This paper is organized as follows. Section 2 describes the use of the TDLAS analyzer
in the RH process and the method of developing a real-time prediction model for dissolved
carbon content using off-gas measurement. Section 3 evaluates the measurement perfor-
mance of the TDLAS analyzer and validates the accuracy of the carbon concentrations in
molten steel using the proposed prediction model. Section 4 provides conclusions and
future scope.

2. Materials and Methods
2.1. Method Overview

The procedure performed in this paper to develop a real-time decarburization model
can be summarized as follows:

1. A new method to measure CO and CO2 concentrations in the off-gas

(a) Application of a new off-gas analyzer close to the vacuum chamber
(b) Comparison and verification of measurement results

2. Offline decarburization model

(a) Construction and verification of decarburization curves of molten steel

3. Online prediction model

(a) Training the ANN model using the decarburization curve as the target value
(b) Verification using endpoint carbon contents

4. Determination of the decarburization endpoint using online predictive model

2.2. RH Vacuum Degassing Process

The RH vacuum degasser consists of a vacuum chamber with two snorkels at the
bottom, vacuum facilities consisting of Water Ring Pumps (WRPs) and steam ejectors and
alloy hoppers for injecting alloy ores (Figure 1). Once the ladle containing the molten steel
is located under the vacuum chamber, the chamber descends to submerge the snorkels into
the melt. The circulation gas (typically argon) is introduced into one of the two snorkels
through gas lines installed in a circumferential direction of the snorkels and at the same
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time, the pressure inside the vacuum chamber is finally lowered to 1 kPa or less by using
vacuum facilities. Due to the buoyancy of the circulation gas and the low pressure inside
the vacuum chamber, the molten steel in the ladle rises to the vacuum chamber through
the snorkels into which the circulation gas is injected.

In the vacuum chamber, impurities such as nitrogen, hydrogen and carbon present
in the molten steel are removed in a gaseous state due to the difference of gas partial
pressure between the atmosphere and the melt. The molten steel inside the vacuum
chamber is returned to the ladle through the opposite snorkel and this circulation process
is repeated until the impurities in the molten steel are lowered to the desired level. The
carbon component combines with oxygen present in the molten steel and is emitted in the
form of carbon monoxide (CO) or carbon dioxide (CO2). In some cases, the TOB installed
on the top or side of the vacuum chamber can accelerate the decarburization reaction by
supplying additional oxygen to the surface of the molten steel at high speed [15,36].

Gas

cooler

WRPs

Ladle

Vacuum 

chamber

Steam ejectors

S
ta

ck

NDIR

analyzer

TDLAS

analyzer

Off-gas

Condenser

Condenser

Water recycling

Figure 1. Schematic diagram of the RH vacuum degasser.It shows the installation locations of the
TDLAS and NDIR analyzers (filled circles).

The main decarburization reactions are as follows:

[C] + 1
2{O2} −→ {CO}

[C] + [O] −→ {CO} (1)

{CO}+ 1
2{O2} −→ {CO2}

where the brackets and braces represent the dissolved and gaseous states of their corre-
sponding components, respectively. In actual operations, operators use the CO and CO2
concentrations contained in the off-gas as an auxiliary means to predict the decarburization
rate in the molten steel.

2.3. Measurement of the Carbon Oxide Concentration

As shown in Figure 1, we measured CO and CO2 concentrations in the off-gases
using two types of gas analyzers: Non-Dispersive Infra-Red (NDIR) and TDLAS. Both
are IAS (Infrared Absorption Spectrograph), meaning they use the property that different
gas species absorb different wavelengths of light. The concentration of a specific gas is
measured by detecting the intensity of the light emitted by the analyzer being absorbed or
transmitted by the gas component. Analyzers using IAS are classified according to the type
of light source and signal processing method.

The NDIR spectrograph [37–39] is the most commonly used analyzer for measuring
the concentration of gas components in the RH process. It consists of an infrared source,
a sample cell containing the gas of interest, a reference cell containing an inert gas and
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a detector. The light emitted from the broadband light source is split into two branches
and passes through the sample cell and the reference cell, respectively. We can calculate
the concentration of the gas of interest using the difference in intensity between the two
beams passing through the two cells. Even though this method is an easy and inexpensive
method widely used for off-gas measurement in steelmaking processes, it is sensitive
to disturbances such as dust, humidity, temperature changes and pressure changes and
has limitations in harsh environments and in situ measurement. Therefore, the NDIR
analyzers are typically installed at the end of the exhaust line of the RH process to minimize
disturbances, which causes a time delay in detecting changes in the off-gas composition
occurring in the vacuum chamber.

The TDLAS analyzer has been expanding its applications in various industries such
as petrochemicals, power plants and steelmaking processes due to its excellent wavelength
selectivity and strong resistance to disturbances [40–52]. It emits a monochromatic laser
beam of a specific wavelength absorbed by the sample gas from the diode laser (transmitter)
and measures the intensity of light passing through the sample using a detector (receiver).
By measuring the absorption spectrum while varying the wavelength of the laser, it is
possible to reduce the influence of background noise and disturbance and improve mea-
surement accuracy. In addition, the TDLAS analyzer measures the gas concentration within
a volume determined by the laser beam width and Optical Path Length (OPL), which
reduces the measurement error due to the uneven gas mixtures, resulting in more reliable
gas composition. These features allow direct measurement of the off-gas concentrations
inside the exhaust line in situ, even in harsh environments.

In this work, we used two TDLAS analyzers to measure both CO and CO2 concentra-
tions and installed them in a cross duct configuration to measure the gas concentration in
the center of the exhaust duct. We installed the TDLAS analyzers on the rear of the gas
cooler close to the vacuum chamber; there it was less affected by dust and also used the
existing NDIR analyzers installed near the stack at the end of the exhaust line.

2.4. Estimation of the Carbon Content in the Molten Steel

The RH process requires high airtightness between the vacuum chamber and the
exhaust line to obtain a high vacuum. Therefore, the amount of air flowing in or out of the
process is very small and we assume that CO and CO2 observed in the exhaust line only
occur inside the molten steel. That is, if we know the total amount of carbon oxides emitted
from the molten steel, it is possible to estimate the total amount of decarburization of the
molten steel. Using the real-time carbon oxide concentration during the RH operation, we
calculated the carbon concentration of the molten steel over time as follows:

[C]t = [C]t−1 − ({CO}t + {CO2}t)× α (2)

α =
[C]t0 − [C]t f

∑
t f
t=t0

({CO}t + {CO2}t)
(3)

where [C]t is the dissolved carbon concentration (ppm) in the molten steel at time t, {CO}t
and {CO2}t are the concentrations (%) of the carbon oxides in the off-gas measured at
time t and t0 and t f are the start and end time of the decarburization process, respectively.
Moreover, α is a conversion factor that converts the measured CO and CO2 concentrations
in the off-gas to the amount of decarburization in the molten steel.

We can obtain decarburization curves over time from the initial and final carbon
concentrations in the molten steel and the real-time measurement of CO and CO2 concen-
trations. In order to confirm the consistency of the decarburization curves obtained using
Equation (2), we selected 12 decarburization operations and sampled the molten steel at
intervals of 1–2 min during the decarburization operations to measure the actual amount
of dissolved carbon.
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2.5. Artificial Neural Network Model

To calculate the decarburization curves using Equation (2), it is necessary to know
the final carbon concentration in the molten steel and the total amount of carbon oxides
emitted during the entire operating period. Therefore, we cannot directly use Equation (2)
to predict the real-time decarburization rate during operation. Instead, we built a predictive
model that learns the decarburization curves for various operations using Artificial Neural
Networks (ANNs).

The ANN model consisted of an input layer with eight inputs, a hidden layer with
five neurons and an output layer with one output (Figure 2). We used the main factors
affecting the decarburization rate along with the carbon oxide concentrations in the off-gas
as inputs to the model and used the output value of the decarburization curve as the target
value. In Figure 2, the operation time is the time elapsed from the start of the operation
until each datum is collected and the CO and CO2 concentration means the sum of carbon
oxides measured at each time point. One thing to mention is the added carbon weight. In
some cases, operators may insert additional carbon into the molten steel during operation
in order to achieve the target carbon concentration in consideration of the composition,
temperature and operating time of the molten steel. Since the additional carbon directly
affects the final carbon concentration, we used it as an input to the ANN model.

Operating time (s)

Weight of molten steel (kg)

Initial carbon content (ppm)

Added carbon weight (kg)

Pressure in the chamber (kPa)

Circulation flow rate (Nm3/h)

CO & CO2 conc. (%)

TOB flow rate (Nm3/h)

Carbon content (ppm)

Figure 2. Input and output parameters of the ANN model. The target carbon contents are the result
of the decarburization curve. The unit of the carbon content is parts per million (ppm), which means
the weight fraction of carbon in molten steel.

The input variables can be categorized into four groups. The weight of molten steel,
initial carbon content and added carbon weight decide the total amount of dissolved carbon
content. The pressure in the vacuum chamber, circulation flow rate and TOB flow rate
indicate the control parameters which affect the decarburization rate. The operating time
is the main factor that has the greatest influence on the final dissolved carbon content, if
other conditions are equal. The CO and CO2 concentrations are the indicators which show
the current decarburization rate.

All the features were min-max normalized. For simplicity, we assumed that the
concentration of CO and CO2 was between 0 and 100% and the pressure in the vacuum
chamber was between 0 and 101.3 kPa. We used the actual maximum and minimum values
for the other variables for the normalization.

From March 2016 to December 2017, we obtained a total of 626 operation data from the
300 ton-RH process of POSCO Gwangyang Works, of which 70% was used as training data
and the remaining 30% was used as test data. The data can be divided into three groups
according to when the data were collected; the second quarter of 2016 (Period 1), the first
quarter of 2017 (Period 2) and the fourth quarter of 2017 (Period 3).
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In the model, the activation function of the hidden layer was Rectified Linear Unit
(ReLU) and that of the output layer was a linear function. To train the model, we used
Adaptive Moment Estimation (Adam) as an optimizer and Mean Squared Error (MSE) as
a loss function. To obtain a generalized model, we trained the model using 10-fold cross
validation. We tested some combination of the number of hidden layers and the number of
neurons in each layer. The number of hidden layers was set to 1, 2 or 3 and the number of
neurons in each hidden layer was changed to 5, 10 and 15. The performance of the models
was compared using the Root Mean Squared Error (RMSE) values of the validation data for
all 39 cases.

3. Results and Discussion
3.1. Comparison of Off-Gas Measurements Using TDLAS and NDIR Analyzers

Figure 3 shows the concentration of carbon oxides in the off-gas measured in real-time
during the RH operations using TDLAS and NDIR analyzers during two representative
RH operations. Here, the concentration of carbon oxides means the sum of CO and CO2
concentrations. The change in the concentration of carbon oxides during the operations
showed similar values and trends in both analyzers. However, the TDLAS analyzer was
installed in situ closer to the vacuum chamber and due to its fast response characteristics, it
was able to detect the changes in carbon oxide concentration about one minute faster than
the NDIR analyzer. This shows that the TDLAS analyzer can measure the changes in the
off-gas composition quickly and accurately in the RH process with high temperature and
severe pressure changes.
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Figure 3. Changes in concentration of carbon oxides in the off-gas during two representative RH oper-
ations measured by TDLAS (solid lines) and NDIR (dotted lines) analyzers. Each graph represents the
sum of the CO and CO2 concentrations measured at each time point. (a) Secondary decarburization
is clearly shown. (b) Secondary decarburization did not occur.

Although the results of the measurements with the two types of analyzers showed
similar trends overall, the graph of the measured values of the NDIR analyzer was wide
and tended to decrease slowly toward the latter part of the operation. In general, the
degassing reaction occurs intensively in the early stages of the operation and the reaction is
significantly reduced after reaching a high vacuum [14,17,20]. Therefore, there should be a
point at which the carbon oxide concentration in the off-gas converges rapidly to zero as in
the graph measured by the TDLAS analyzer.

We assumed that one of the reasons why the measured value of the NDIR analyzer
decreased very slowly in the latter of the operations was the reduced flow rate of the
off-gas. Once the pressure is sufficiently low, the pressure in the vacuum chamber and
the exhaust line is similar, reducing the overall off-gas flow rate and speed. Accordingly,
at the end of the exhaust line, it takes a long time to detect the change in the off-gas



Appl. Sci. 2022, 12, 10753 8 of 16

composition occurring inside the vacuum chamber. Leakage in some of the long exhaust
lines of the RH degassing unit due to equipment aging may also be another reason for the
very slow decline of carbon oxide concentration measured by the NDIR analyzer late in the
operations. On the other hand, by installing the TDLAS analyzers relatively close to the
vacuum chamber, it was possible to reliably analyze the off-gas components regardless of
the aforementioned reasons.

The carbon oxides gradually decrease after a sudden occurrence at the beginning
of the RH operation, but in some operations, they tend to increase briefly in the middle
of operation (about 5 min after the start of the operation in Figure 3a). This is called
secondary decarburization. Although the exact cause is not known, we estimated that the
gas components trapped in the molten steel were rapidly discharged as the circulating flow
reached the maximum value. During this period, the flow rate of the off-gas increases and
the pressure in the vacuum chamber is kept flat or decreases slowly.

3.2. Verification of the Consistency of the Decarburization Curve

We compared the decarburization curves obtained using Equation (2) with the actual
carbon concentrations measured through sampling in the molten steel (Figure 4). Three of
the 12 operations used in the comparison were the cases in which carbon was added to the
molten steel during the RH operation. We calculated the decarburization curves by using
the measured values of the TDLAS and NDIR analyzer, respectively.

In the decarburization curves using the TDLAS analyzer, it was possible to confirm
the point at which the decarburization rate changed rapidly. This is consistent with the
results of previous studies [14,17,20] dividing the operation stage into two to three stages
based on the period when the decarburization reaction changes rapidly in RH operation.
On the other hand, it was difficult to clearly distinguish the stages of the decarburization
reaction in the decarburization curve using the NDIR analyzer.
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Figure 4. Comparison of the decarburization curves and the actual carbon concentrations (filled
circles). Operations (a) without or (b) with additional carbon. The solid and dotted lines represent
the decarburization curves obtained using TDLAS and NDIR analyzers, respectively.

When carbon was not added during operation, Figure 4a shows that the decarbur-
ization curve using the TDLAS analyzer was similar to the actual amount of dissolved
carbon, but the decarburization curve using the NDIR analyzer did not reflect the change
in the actual values. From the results of Figure 3, we can deduce why the decarburization
curve using the NDIR analyzer is different from the actual carbon concentration. It is
difficult for the NDIR analyzer to immediately detect changes in the off-gas components
emitted from the molten steel even if the decarburization reaction occurs intensely due to
the installation location and its characteristics. In addition, even when the decarburization
reaction decreases rapidly, the measured value of carbon oxides tends to decrease very
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slowly. Therefore, the decarburization curves obtained using the NDIR analyzer changed
more slowly than the actual amount of dissolved carbon and showed relatively larger
values than the actual values when the decarburization reaction was slow.

When carbon was added during the RH operations, Figure 4b showed that the decar-
burization curves differed from the actual amount of dissolved carbon. Additional carbon
had been added about 3–4 min after the start of operation and the dissolved carbon content
measured at about 6 min had increased. The difference in values was reasonable because
we did not consider the effect of added carbon when calculating the decarburization curve.
It is a meaningful task to identify changes in the decarburization curve due to the addition
of carbon, but it is beyond the scope of this study. Instead, we used the weight of the added
carbon as an input to the ANN model to train the effect of added carbon on endpoint
carbon concentration.

Figure 5 shows the error between the predicted value of the decarburization curve
using the TDLAS analyzer and the measured value of the carbon concentration in the molten
steel for all the sampling values. At the early stage of the operations, the errors between the
predicted value and the actual value were very large, but decreased rapidly as time passed.
One of the reasons for the large prediction error in the early stages of the operations may
be the difference between the sampling time of the molten steel and the recording time of
the operation data. Since the decarburization reaction occurs very intensely in the early
stages of operation, the carbon concentration may change significantly within a short time.
Considering the manual sampling of the molten steel, even a small difference between the
sampling time and the data recording time may increase the prediction error. In addition,
the measured carbon concentration may vary depending on the sampling location because
the molten steel is not uniformly mixed during this period [23,24,53]. However, in the latter
stages of the operations, the decarburization reaction proceeds slowly and the uniformity
of the molten steel is good due to the multiple circulation of the molten steel. Therefore,
the influence of the sampling time and location is relatively small during this period. After
10 min from the start of the operations, the mean and standard deviation of the prediction
error were small regardless of whether carbon was added during operation (Table 1).
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Figure 5. Prediction errors between the output of the decarburization curves using the TDLAS
analyzer and the actual carbon concentrations. Empty diamonds and filled circles represent operations
with or without additional carbon, respectively. A prediction is considered excellent if the prediction
error is within ±5 ppm (green area).
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Table 1. Accuracy of the decarburization curves according to the carbon addition and operation time.
The prediction error means the difference between the output of the decarburization curve and the
actual amount of dissolved carbon obtained through sampling.

Processing Time
Error in Operations Error in Operations

without Carbon Addition with Carbon Addition

Mean Std. Dev. Mean Std. Dev.

<10 min 19.44 ppm 17.29 ppm 22.45 ppm 20.58 ppm
≥10 min 2.72 ppm 3.08 ppm 3.77 ppm 4.90 ppm

Since the decarburization curve obtained using the TDLAS analyzer explained the
change of the actual carbon content in the molten steel well, we concluded that the de-
carburization curves could be used as a target value for supervised learning. Measuring
dissolved carbon content over time is essential for creating a reliable, real-time prediction
model. However, it is very hard to continuously obtain the dissolved carbon content that
changes during operation due to time and cost limitations. This problem can be solved
by using the output values of the decarburization curves as the actual carbon content.
However, since the decarburization curve could be calculated after the end of operation, it
cannot be used directly as an online model. Instead, we used the ANN model as a real-time
prediction model of the dissolved carbon content.

3.3. Predictive Performance of ANN Model

Contrary to initial expectations, excellent results were obtained with an RMSE of
18.6 ppm in a simple structure using one hidden layer with five neurons. When there were
10 and 15 neurons in one hidden layer, the RMSE was 73.6 ppm and 43.8 ppm, respectively,
which gave poor results. The structure with three hidden layers showed the best results in
the multilayer neural network (10-15-15); the RMSE was 17.9 ppm, which did not improved
the performance significantly compared to the structure having one hidden layer.

Figure 6a,b shows the decarburization curves using the measured values of the TDLAS
analyzer and the prediction results of the ANN model for them. Although the prediction
results of the ANN model followed the decarburization curves well, the prediction values
at the beginning of the operations were somewhat unstable. In particular, the initial values
of the prediction curves often did not match the actual initial carbon concentrations already
known from the measurements. A reason for this result was that we could not constrain
the model so that the predicted value at the start of operation was the same as the actual
initial carbon concentration. It will be possible to improve the predictive performance in
the early stages of operations by training the model using data under various conditions.
However, since this study focuses on the prediction of the endpoint carbon concentration,
we leave it as a future challenge to improve the prediction performance in the early stages
of operation.

At about 4 min after the start of operation, the predicted value of the ANN model
showed a plateau, though the decarburization curve continued to decrease. Generally, the
decarburization curves plateau when the second decarburization occurs (Figure 3a). The
reason why the prediction error was relatively large around 4 min after the start of operation
was because the model predicted that the secondary decarburization occurred during this
period. The decarburization curve of Figure 6a shows no secondary decarburization and
Figure 6b shows the occurrence of secondary decarburization in the short term. In order to
accurately predict the secondary decarburization period, it seems that additional training
using more diverse data is needed.

Interestingly, in Figure 6b, even though we did not consider the amount of added
carbon when calculating the decarburization curves, some operations showed that the
predicted values of the ANN model increased near the time of carbon addition. These
results assumed that the predictive model had been trained to adjust the intermediate
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carbon concentration using the input information about the added carbon to follow the
final carbon concentration.
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Figure 6. Prediction results of the ANN model for the target decarburization curves in two example
operations (a) without and (b) with additional carbon. The solid and dotted lines represent the
decarburization curve using the TDLAS analyzer and the predicted values of the ANN model,
respectively.

Figure 7 shows the error distributions between the actual dissolved carbon concen-
tration at the end of decarburization of the RH process and the predicted values of the
prediction model for the test data.

In Figure 7a, the errors between the measured and predicted values of the endpoint
carbon concentration were within ±10 ppm. The Pearson coefficient of correlation was 0.436,
which means a moderate correlation between measured and predicted values. In general,
it shows that the predicted value is larger than the actual measured values. Considering
the measurement error of the actual concentration and the deviation between samples, the
predictive performance was relatively good.

In Figure 7b, the distributions of prediction errors were right-skewed, which means
that the actual dissolved carbon concentrations were somewhat smaller than the predicted
values. This suggests that the ANN model was under-fitted due to the lack of data for
various operating conditions, as there were many operations with similar initial carbon
concentration and the molten steel weight. However, if we determine the decarburization
end time using the predicted value, the actual carbon concentration is always below the
upper target range of the concentration. Thus, it is possible to determine the decarburization
end time for steels without a target lower limit.

Figure 7c shows the distribution of prediction errors according to the data collection
period. In Period 1, the prediction error was evenly distributed around zero, but in Periods
2 and 3, it is right-skewed. There was facility maintenance work between Periods 1 and 2,
so we estimated that changes in the facility and operating conditions might have affected
the training of the prediction model. In particular, the circulation rate of the molten steel
was increased due to facility improvement and as a result, the actual decarburization rate
could be faster than Period 1 in the operation of Periods 2 and 3. Therefore, we expect
that prediction accuracy will improve by iteratively training and upgrading the model by
acquiring data that can reflect changes in facility and operating conditions.

Figure 7d shows the distribution of prediction errors according to the target carbon
concentration. It was confirmed that the smaller the target carbon concentration, the
smaller the prediction error and deviation (Table 2). In general, the lower the target carbon
concentration, the longer the operating time and the longer the slow decarburization
reaction. In this case, the prediction error was small because the change in the carbon
concentration in the molten steel was slow and the operating conditions were stable. On
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the other hand, if the target concentration is large, the operation is terminated when the
variability in operating conditions and decarburization rate is relatively large. In this case,
it seems necessary to train the model with more diverse data.
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Figure 7. Predictive performance of endpoint carbon concentrations on test data. (a) Target vs.
predicted values of the ANN model (blue line: regression line with slope 0.478; black line: ideal
prediction line with slope 1.0; gray lines: the predicted values are within the ideal line ± 5 ppm);
(b) error distribution for all test data; (c) error distribution by the period of collected data; (d) box
plot of prediction error by target values (filled circles represent the mean values of each steel type).

Table 2. Prediction error of the ANN model according to the target carbon contents.

Prediction Error
Target Carbon Content

10 ppm 15 ppm 25 ppm

Mean −2.09 ppm −2.22 ppm −2.80 ppm
Std. dev. 3.56 ppm 3.96 ppm 4.47 ppm

Figure 8 shows the predicted and measured values of carbon concentration for each
steel type. In general, steels are classified into many types according to the target carbon
concentration and the allowable concentration range. As discussed above, the predicted
carbon concentrations in the molten steel were generally higher than the measured values,
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but both predicted and measured values were within the allowable concentration ranges.
In particular, for the steel types of (b), (d), (e) and (f), both the predicted and measured
values were much smaller than the upper limit of the allowable range, so it is possible to
reduce the operating time using the predicted values and prevent excessive decarburization
operations. For the steel types with small target values, the decarburization operations
generally ended near the target values and excessive decarburization operations were rare.
Therefore, it is necessary to further reduce the prediction errors in order to determine the
accurate decarburization end time in these steel types.
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Figure 8. Measured (filled circles) and predicted (empty triangles) carbon concentrations at the end of
decarburization by steel types. The target carbon content is: (a) 11 ppm, (b) 13 ppm, (c,d) 15 ppm and
(e,f) 25 ppm. Areas filled in green indicate acceptable ranges of carbon concentrations and dashed
black lines indicate target carbon concentrations. The X-axis of each plot represents the order of
operation for each steel type.

Finally, the total prediction error of the ANN model for the test data was −2.43 ppm
in the mean and 4.02 ppm in the standard deviation, which showed a good performance
compared to previous studies [29,30].

4. Conclusions

The RH vacuum degasser is a very important secondary steelmaking process that
determines the quality of the final product. In the RH process, it takes a lot of time to
remove the carbon contents from the molten steel, so many studies have been conducted to
reduce the decarburization time to improve productivity and reduce costs. In this paper, we
proposed a method to accurately determine the decarburization endpoint by continuously
predicting the dissolved carbon contents during the operation, which is difficult to measure
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directly. The decarburization curve, which continuously simulates changes in carbon
content, was a novel approach to develop accurate online predictive models. By comparing
the results of the real-time prediction model proposed in this study with the actual endpoint
carbon contents, we obtained better prediction performance than previous studies. The
total prediction error of the prediction model for the test data was −2.43 ppm in the mean
and 4.02 ppm in the standard deviation, which was an excellent result compared to the
other studies. Above all, we showed that the decarburization endpoint could be determined
using the prediction model and the processing time could be reduced without affecting the
final steel quality.

We expect that the methodology and real-time prediction model proposed in this
paper can be widely used in predicting the components and temperatures required in
various steel production processes. In addition, future challenges will involve improving
the model to make it more suitable for steel production processes, using various algorithms
such as Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) with
excellent time-series modeling performance.
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