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Abstract: Supervised image denoising methods based on deep neural networks require a large
amount of noisy-clean or noisy image pairs for network training. Thus, their performance drops
drastically when the given noisy image is significantly different from the training data. Recently,
several unsupervised learning models have been proposed to reduce the dependence on training
data. Although unsupervised methods only require noisy images for learning, their denoising
effect is relatively weak compared with supervised methods. This paper proposes a two-stage
unsupervised deep learning framework based on deep image prior (DIP) to enhance the image
denoising performance. First, a two-target DIP learning strategy is proposed to impose a learning
restriction on the DIP optimization process. A cleaner preliminary image, together with the given
noisy image, was used as the learning target of the two-target DIP learning process. We then
demonstrate that adding an extra learning target with better image quality in the DIP learning
process is capable of constraining the search space of the optimization process and improving the
denoising performance. Furthermore, we observe that given the same network input and the same
learning target, the DIP optimization process cannot generate the same denoised images. This
indicates that the denoised results are uncertain, although they are similar in image quality and
are complemented by local details. To utilize the uncertainty of the DIP, we employ a supervised
denoising method to preprocess the given noisy image and propose an up- and down-sampling
strategy to produce multiple sampled instances of the preprocessed image. These sampled instances
were then fed into multiple two-target DIP learning processes to generate multiple denoised instances
with different image details. Finally, we propose an unsupervised fusion network that fuses multiple
denoised instances into one denoised image to further improve the denoising effect. We evaluated
the proposed method through extensive experiments, including grayscale image denoising, color
image denoising, and real-world image denoising. The experimental results demonstrate that the
proposed framework outperforms unsupervised methods in all cases, and the denoising performance
of the framework is close to or superior to that of supervised denoising methods for synthetic noisy
image denoising and significantly outperforms supervised denoising methods for real-world image
denoising. In summary, the proposed method is essentially a hybrid method that combines both
supervised and unsupervised learning to improve denoising performance. Adopting a supervised
method to generate preprocessed denoised images can utilize the external prior and help constrict the
search space of the DIP, whereas using an unsupervised method to produce intermediate denoised
instances can utilize the internal prior and provide adaptability to various noisy images of a real scene.

Keywords: image denoising; deep image prior; two-target learning; multiple instances; unsupervised
fusion network
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1. Introduction

Image denoising is an essential issue in the field of image processing that aims to
recover a clean image from a noisy image. A noisy image is generally formulated as follows:

y = x + n (1)

where y is the observed noisy image, x is the corresponding clean image for recovery, and n
is the additive noise. Here, n is typically assumed to satisfy the zero-mean normal Gaussian
distribution, where the standard deviation reflects the level of image interference by noise.

While traditional image denoising models (e.g., BM3D [1], NLM [2], and WNNM [3])
have achieved state-of-the-art peak signal-to-noise ratio (PSNR) performance, deep neu-
ral network (DNN)-based methods have achieved great success. In the past few years,
DNN-based image denoising methods have shown a strong capability to learn natural
image priors from a large number of example images, thereby significantly improving
the denoising effect. Numerous DNN-based image denoisers have been proposed, such
as DnCNN [4], FFDNet [5], GANID [6], and CBDNet [7]. In DnCNN [4], Zhang et al.
introduced batch normalization and residual learning to enhance the network training
performance and speed up the training process. DnCNN achieved superior performance
compared with traditional non-learning-based methods for additive white Gaussian noise
(AWGN) removal. Subsequently, numerous modified representative neural networks have
been proposed for image denoising, such as U-Net [8], non-local networks [9], and wavelet
transform networks [10]. FFDNet provides a flexible solution for dealing with spatially
variant noise and AWGN with different noise levels. FFDNet uses both the noisy image
and its tunable noise level map as the network input and achieves satisfactory results
on both synthetic and real noisy images. Although the denoising performance of the
aforementioned methods is significantly improved compared with non-learning-based
methods [1–3], they generally suffer from the limitation of convolution operations. Con-
volution kernels cannot flexibly adapt to different image contents because of their static
filter weights, and the convolution operator has a small receptive field, which limits its
applicability to long-range dependency modeling. Therefore, transformer-based denoising
models have been proposed to mitigate the shortcomings of DNN-based methods [11,12].
SwinIR [11] employs a convolution layer to extract shallow features and a stack of residual
Swin transformer blocks to extract deep features. Restormer [12] is also a transformer-based
image restoration method that can process high-resolution images and model the global
context using self-attention across channels instead of the spatial dimension to alleviate the
computational bottleneck. The supervised learning studies mentioned above [4,5,11,12]
have improved the image denoising performance to some extent. However, these denois-
ers critically depend on the quantity and diversity of noisy-clean image pairs, which are
extremely difficult and expensive to collect in real-world scenarios. For example, collecting
high-quality noiseless images as training datasets is essential for medical image processing.
However, high-quality labels are often derived from long scan durations and high doses,
which are limited in clinical practice. Moreover, most supervised DNN methods learn
the denoising model using abundant training data and only lead to promising denoising
performance on specific datasets. The performance of these denoisers drops dramatically
once the unseen noisy images are reconstructed.

Compared with supervised methods, unsupervised learning is much more valuable for
many real-world applications where no ground-truth image is available [13,14]. Recently,
several unsupervised [15–23] approaches have been proposed to eliminate the depen-
dence on clean images. Rather than using noisy-clean pairs for training, the Noise2Noise
method [15] uses multiple noisy images of the same scene to train a denoising DNN.
Its performance is close to that of DNNs trained on noisy-clean pairs. Subsequently,
Noise2Void [16] and Noise2Self [17] were proposed to train DNNs using only unorga-
nized noisy image pairs. To avoid learning identity mapping, the blind-spot networks
proposed in Noise2Void only utilize the neighboring pixels to predict each pixel. Similar
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strategies were used in the parallel work of Noise2Self. Although Noise2Noise, Noise2Void,
and Noise2Self achieved good denoising results, the noisy images used for model training
were heavily correlated to the observed noisy image. Collecting such noisy images is also
challenging and costly in practice. Unlike blind-spot methods, the training pairs used in
Noisier2Noise [18] and Noisy-as-Clean [19] are generated by adding synthetic noise to
the observed noisy image. However, it is difficult to specify a noise-generating model for
real-world scenarios. Similar to Noiser2Noise and Noisy-as-Clean, R2R [20] corrupts noisy
images with specific noise levels to generate training pairs. However, prior knowledge
of the noise levels required in R2R is difficult to collect in real-world scenarios. Another
method, Self2Self [21], proposed a dropout denoiser that was trained on Bernoulli sampled
noisy image pairs. Self2Self generates multiple recovered images and uses the average of
the recovered images as the final reconstructed result. This method has achieved better per-
formance in real-world image denoising; however, it still cannot handle low-illumination
images. To improve denoising performance, Neighbor2Neighbor [22] constructs a noisy
pair by subsampling a given noisy image. However, its performance still relies heavily on a
large-scale training dataset to a great extent.

In contrast to the aforementioned unsupervised image-denoising methods, deep
image prior (DIP) [23] has received much attention. DIP adopts a generator network
to capture low-level image statistics prior without the need for pretraining or additional
data. The network parameters were optimized by considering the given noisy image as
the learning target with a random noise input. Although the DIP demonstrated that the
trained DNN can represent a well-recovered image, its performance is relatively weak
compared with state-of-the-art supervised methods, especially for synthetic image de-
noising. The main reason for this is that the image quality of the DIP learning target is
relatively low, which leads to a large search space and slow convergence. Moreover, the two
DIP learning methods cannot generate identical denoised images even given the same
network input and the same targeting noisy image due to the randomly initialized network
weights. For different noisy images, the reconstruction processes lead to more diverse
recovery results.

In this study, aiming at improving the denoising performance of DIP, we propose
a two-stage unsupervised image denoising framework that achieves better performance
than state-of-the-art supervised models. In contrast to DIP, which generates only one
denoised image, we try to reconstruct a set of intermediate denoised images across the
image space using multiple DIP learning processes and take the fusion of the intermediate
images as the final denoised image. In our study, we first propose a two-target DIP learning
strategy to improve the denoising effect. A preliminary image, together with the given
denoised image, is taken as a DIP learning target. Through the proposed up- and down-
sampling strategy, multiple sampled images of a denoised image, which is generated by a
supervised denoising method, can be obtained. These preliminary images were learned by
several two-target DIP optimization processes to generate multiple intermediate denoised
instances. The intermediate denoised images, which contain different recovered details, are
complementary. To further improve the denoising effect, we developed an unsupervised
image fusion network to generate weight maps for the intermediate denoised instances,
which we used to fuse the DIP-recovered instances into a single denoised image. We show
that superior denoising results can be achieved using our method compared to the standard
DIP method and state-of-the-art supervised image denoising methods.

2. Related Work

The image denoising problem can often be represented as an energy minimization
problem of

x∗ = min
x

E(x; y) + R(x) (2)

where y is a given noisy image, E(x; y) = ||x− y||2 is used to compare the generated image
to y, and R(x) is a regularizer. In [23], Ulyanov et al. proposed a randomly initialized DNN
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called DIP to solve image-denoising problems. In the DIP framework, the optimization
problem is expressed as follows:

θ∗ = argmin
θ

E( fθ(z); y), x∗ = fθ∗(z) (3)

where f denotes the DNN model, θ is the random initialized network parameter, z denotes
the random noise input of the network, θ∗ is the learned network parameter, and x∗ is the
result of the recovery process. Given a noisy image y, the DIP learning process attempts to
find the proper value of θ∗ that can reproduce the noisy image. It has been demonstrated
that a DIP network contains prior knowledge, such as the low-level structure of natural
images. It can remove noise from corrupted images with a certain number of iterations.
However, the denoising performance of DIP is not as satisfactory as that of state-of-the-art
methods; that is, a single run leads to a far lower PSNR value than state-of-the-art methods,
such as BM3D [1], especially for synthetic noisy image denoising. This is because the DIP
optimization process can be considered a process of finding the best-quality instance in
the image space. The distance between the low-quality target image and the clean image
was larger than that between the high-quality target image and the clean image. Figure 1
shows the variation in the PSNR values of the two denoised images generated from the DIP
optimization processes versus the number of training iterations. The two DIP optimization
processes used two different images as learning targets. One is a preliminary image, and
the other is a noisy image. The preliminary image was a denoised image generated using
a pre-trained supervised image denoising method. As shown in Figure 1, DIP achieves a
PSNR of 28.93 dB after 3083 iteration steps when using the preliminary image or the noisy
image as the learning target. The PSNR is increased to 30.16 dB in iteration 8999 when
using the preliminary image as the learning target; however, the PSNR decreases to 23.59
dB in iteration 8999 when using the noisy image as the learning target. This implies that
the denoised image generated from the DIP gradually converges to the target image as
the number of iterations increases. Therefore, using images with better quality as the DIP
learning target can avoid overfitting and help achieve a better denoising result.

Figure 1. Learning curves for the reconstruction task using natural and noise images. PSNR of a
natural looking image is higher compared to that of the noise image.

DIP shows that the unsupervised DNN is capable of capturing low-level image statis-
tics. However, given the same network input and learning target, DIP cannot generate
identical denoised images owing to the randomly initialized network weights. To illustrate
its uncertainty, we compared two denoised images generated from the DIP optimization
processes. Figure 2 shows the variations in mean square error (MSE) between the network
outputs of the two DIP optimization processes as the number of DIP iterations increases.
In the two DIP learning procedures, we used the same noisy image as the learning target
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and the same random noisy image as the input. We can see from Figure 2 that MSEs show
a downward trend before 4000 iterations, whereas MSEs remain 0.5× 10−3 to 1.5× 10−3

after 4000 iterations. It is apparent that different DIP optimization processes generate
different denoising results. It is impossible to obtain the same network output at the same
iteration steps, even when given the same network input z and the same learning target. To
investigate the detailed difference between the denoised images generated from different
DIP learning processes, we conducted experiments on noisy images, as shown in Figure 3.
The PSNR of the two instances generated from DIP is 27.40 and 27.43 dB, respectively.
Although the PSNR of the two denoised instances is similar, the contents of these instances
are different. To measure the reconstruction error (RE) r, we calculated the difference
between the denoised instance x∗ and clean image c with respect to the pixelri,j = 0,

∣∣∣x∗i,j − ci,j

∣∣∣ ≤ T

ri,j = 255,
∣∣∣x∗i,j − ci,j

∣∣∣ > T
(4)

where i = 1, 2, . . . , W and j = 1, 2, . . . , H are the pixel indices, W and H are the width and
height of the denoised instance, respectively, and T is the threshold for visualization.

Figure 2. Variations in the MSE between the network outputs obtained from two DIP optimization
processes along iteration steps.

Figure 3 shows a visual comparison of two denoised instances generated from two
DIP optimization processes with the same network input and the same target noisy image.
As shown in Figure 3c,d, the two denoised instances are similar. However, from Figure 3e,f,
there are evident differences between the two denoised instances. In Figure 3e,f, we also
zoom in on two regions for a better view. Clearly, the blue rectangle of RE–1 contains more
black points (ri,j = 0) than that in the blue rectangle of RE–2, whereas the black points in
the red rectangle of RE–1 are fewer than those in RE–2. The black points indicate that the
pixel at this point in the denoised instance has the same or similar intensity as the pixel at
the corresponding position in the clean image. We can conclude that the denoised images
generated from the different DIP learning processes are complementary to each other.
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Figure 3. Visual comparison of the denoised instances generated from two different DIP optimization
processes. The quantitative PSNR results are listed behind the noisy image and two instances.

3. Methodology

To utilize the diversity and complementation of denoised images generated from DIP
to obtain better denoising results, we propose certain preprocessing strategies to generate
a set of intermediate denoised instances of the noisy image and then fuse them into the
final denoised image. An overall flowchart of the proposed method is shown in Figure 4.
As shown in Figure 4, the proposed method comprises two main steps. In the first step, we
propose a two-target DIP learning strategy to produce an intermediate denoised image, di.
Specifically, we first used the given noisy image and preliminary image pi as the learning
targets of the DIP network. Using two targets in DIP learning can constrict the image search
space and improve the denoised result. Then, we repeat the two-target DIP optimization
process n times with different network inputs and different preliminary images to generate
n intermediate denoised images {d1, d2, . . . , dn−1, dn}. To generate the preliminary images,
the given corrupted image y is fed into a pre-trained denoising model, such as FFDNet,
to generate a cleaner image p. Then, we employ an up- and down-sampling strategy to
generate diverse sampled images {p1, p2, . . . , pn−1, pn} of p. In the second step, we develop
an unsupervised image fusion network to fuse intermediate denoised images with a single
denoised image xf. These intermediate denoised images, which have similar image quality
and different local details, complement each other. Fusing these into a denoised image can
further improve the denoising effect.

Figure 4. The overall flowchart of the proposed method.

3.1. Preliminary Images Generation

According to the analysis in Section 2, it is important to collect a set of cleaner images
such that the denoised instances obtained from the DIP can have diverse reconstruction
effects. To this end, we first adopt a pre-trained state-of-the-art image denoising method,
FFDNet, to reconstruct the given corrupted image y. FFDNet is one of the best DNN-
based denoising models and has obtained remarkable denoising results for real-time noisy
images. Clearly, reconstructed image p generated by FFDNet has a higher image quality
than y, and using p as the learning target of DIP can achieve a much better denoising
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effect. However, in the proposed method, we use only p to produce more diverse, cleaner
instances. We develop an up- and down-sampling strategy to obtain diverse instances
of p. Specifically, we first employ the up-sampling method proposed by [24] to obtain a
super-resolution version of p, denoted by ph. The up-sampler can reshape the input image
of size H ×W × C into 2H × 2W × C. Where H and W are the image height and width,
respectively, and C denotes the number of channels, that is, C = 3 for the color image and
C = 1 for the grayscale image. Then, we adopted a randomly selected down-sampler to
generate multiple down-sampled instances of ph. The details of using a randomly selected
down-sampler G = (ph, n) to generate a set of down-sampled images from image ph are as
follows. First, image ph is divided into b2H/kc × b2W/kc cells with size k× k. Here k = 2.
Subsequently, one location is randomly selected in the (i, j)-th cell n times. The points
corresponding to n locations are taken as the (i, j)-th point of the down-sampler G = (ph, n).
For all b2H/kc × b2W/kc cells, the random location selection is repeated, n down-sampled
images {p1, p2, . . . , pn−1, pn} of size b2H/kc × b2W/kc are derived. We provide a visual
example of generating instances with a randomly selected down-sampler in Figure 5.
In Figure 5, image ph contains 6× 6 pixels and is divided into 3× 3 cells. For each cell, one
point was randomly selected to generate a down-sampled image. For example, we select
point “26” in the (1,3)-th cell and point "66" in the (3,3)-th cell as the (1,3)-th pixel and the
(3,3)-th pixel of down-sampled image 1, respectively. The randomly selected down-sampled
process was repeated six times, and six down-sampled images were obtained.

Figure 5. Example of the down-sampling images with the randomly selected down-sampled generator.

3.2. Two-Target DIP Learning

In Section 3.1, we obtained multiple preliminary images {p1, p2, . . . , pn−1, pn} from
the given noisy image to generate recovered intermediate images. In this section, we
introduce our unsupervised training scheme that uses these preliminary images. Our
method uses different random noise image zi as the network input and uses both the given
noisy image and preliminary image pi as learning targets. As discussed in Section 2, using
a cleaner preliminary image as the DIP learning target can restrict the DIP searching space
and improve the denoising effect. However, much useful information is still contained in
the given noisy image. To further improve the denoising effect, we propose a two-target
DIP learning strategy that uses both the given noisy image and the preliminary image as
learning targets to generate intermediate denoising images. Figure 6 shows the framework
of two-target DIP learning.

The unsupervised two-target denoising model can be described as

θ∗ = argmin
θ

L( fθ(zi); y, pi) subject to Gout = fθ∗(zi) (5)
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where y denotes the given noisy image, pi is the preliminary image generated by the cleaner
intermediate image-generation approach, and i = 1, 2, . . . , n− 1, n. The loss function is
defined as follows:

Ltotal = Lpre + Lnoisy (6)

where the term Lnoisy measures the MSE between the generated image di and given noisy
image y

Lnosiy = ||di − y||2 (7)

and the term Lpre measures the MSE between the generated image di and intermediate
image pi

Lpre = ||di − pi||2 (8)

The loss function Lpre was used to constrain the range of DIP output. Using Lpre
can effectively prevent overfitting and improve the reconstruction results. We conduct
the ablation experiments to demonstrate the effectiveness of the two-target DIP learning
strategy and describe the experimental results in Section 4.2.

Figure 6. Framework of the intermediated denoising image generation.

3.3. Unsupervised Image Fusion

Given a set of intermediate denoising images {d1, d2, . . . , dn−1, dn}, the final denoised
image xf for the pixel positioned at (i, j) is computed as a weighted average of pixels in the
same position in denoised instances {d1, d2, . . . , dn−1, dn}

xf(i, j) =
n

∑
k=1

wk(i, j)× dk(i, j), (9)

where the weight map wk is generated from the proposed unsupervised fusion net-
work, and k is the index of the denoised instances, k = 1, 2, . . . , n − 1, n. The family
of weights {wk(i, j)}k satisfies conditions 0 ≤ wk(i, j) ≤ 1 and ∑k wk(i, j) = 1. Figure 7
shows the weighted fusion scheme of the intermediate denoising images. The fusion
network has a symmetric encoder–decoder architecture with skip connections. We denote
{d1, d2, . . . , dn−1, dn} ∈ RM×N×C as n feature maps from a single image. We first concate-
nate {d1, d2, . . . , dn−1, dn} along the channel axis as D ∈ RM×N×nC, and then D is taken as
the learning target of the fusion network. The output of the fusion network W ∈ RM×N×n

contains n channels, and the feature map of each channel wk ∈ RM×N×1 is used as the
weight map of dk ∈ RM×N×1.

The fusion network is learned in an unsupervised manner, and the loss function
measures the sum of the MSEs between the fusion image xf and each intermediate denoised
instance di

Lf
total =

n

∑
i=1
||xf − di||22 (10)
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In Equation (10), to minimize the loss Lf
total, the sum of the differences between pixels

in xf and the pixels of the corresponding position in the intermediate denoised images
should be the smallest. This means that the fusion image preserves the common details in
the intermediate denoised images so that it can achieve a better image quality.

Figure 7. Unsupervised intermediate denoising images fusion network.

4. Experiments
4.1. Experimental Setting

In this section, we demonstrate the denoising performance of our proposed method
by comparing it with state-of-the-art methods, such as BM3D [1], WNNM [3], DnCNN [4],
FFDNet [5], DAGL [25], DeamNet [26], DRUNet [27], IRCNN [28], DIP [23], N2V [16],
and SwinIR [11]. Three datasets were utilized for the performance comparison: Set5 [29],
Set12 [4], and BSD68 [30]. The Set12 dataset consists of 12 grayscale images that are widely
used for image denoising tests. The BSD68 dataset contains 68 grayscale images randomly
selected from the BSD500 dataset. The Set5 dataset comprises traditionally used color
images for comparing image denoising methods. The images in the three databases are
corrupted by AWGN with noise levels σ = 15, 25, 50. We used PSNR as an evaluation
metric. A better method is expected to yield a higher PSNR value.

4.2. Ablation Experiments

In the proposed method, we employed a two-target DIP learning strategy to generate
intermediate denoising images. To compare the performance of different images as learning
targets, we conducted ablation experiments on the Set12 dataset. Table 1 lists the average
PSNR results for Set12. In Table 1, the columns “Noisy” and “pi”, correspond to the results
of using the given noisy image and a single preliminary image as the learning target,
respectively. Column “Noisy+pi” indicates the use of the proposed two-target learning
strategy. It is clear that simply using a preliminary image pi as the DIP learning target can
improve the PSNR. Moreover, the use of a two-target learning strategy can further improve
denoising performance. Compared with the PSNR result of using noisy images as the DIP
learning target, the PSNR result of the two-target DIP learning method was significantly
improved (more than 1.6 dB). The reason behind this is because the preliminary image,
which has a higher image quality than that of the given corrupted image, is generated
from a supervised image denoising method. Some pixels in the preliminary image are
inevitably over-smoothed. Meanwhile, the corresponding pixels in the noisy image may
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be clean pixels that can be used as complementary information to the preliminary image.
Therefore, using both preliminary and noisy images can provide more useful information
for image denoising.

Table 1. The PSNR (dB) performance of the Set12 dataset while taking different images as the learning
target of the DIP optimization process.

Target Image Noisy pi Noisy+pi

PSNR 28.92± 1.45 29.02± 1.81 30.56± 1.43

During the intermediate image fusion process, the number of instances used for
image fusion is an important factor. To explore the impact of the instance numbers on the
denoising results, ablation experiments were performed on Set12 with noise level σ = 25.
Table 2 shows the average PSNR using two to eight intermediate instances for image
fusion on Set12. As presented in Table 2, using eight instances achieves the highest PSNR
value, whereas using four instances can reach a PSNR value above 31 dB. Considering
that generating four instances is much more efficient, and the PSNR result of using four
instances is only 0.09 dB lower than that of using eight instances, we finally used four
instances to generate a denoised image.

Table 2. Averaged PSNR (dB) of the Set12 dataset while using different numbers of intermediate
instances for image fusion.

Instance
Numbers 2 3 4 5 6 7 8

PSNR 30.86 30.95 31.02 31.06 31.09 31.1 31.11

4.3. Gray Image Denoising

The averaged PSNR results of the different metrics on the Set12 and BSD68 datasets
are reported in Table 3, and the best three performances are highlighted in boldface. Table 4
also reports the PSNR values of the different methods for 12 Gy images in the Set12 dataset,
and the best two performances are highlighted in bold font. Evidently, the proposed
method shows a good performance on two datasets with three noise levels. Specifically,
the proposed method has an average PSNR gain of approximately 1 dB over BM3D on both
Set12 and BSD68 datasets. It also surpasses the DnCNN and the FFDNet by an average
PSNR of 0.5 dB on the Set12 dataset and 0.25 dB on the BSD68 dataset. Compared with
unsupervised methods DIP and N2V, the PSNR performance of the proposed method is
about 2 dB higher than that of DIP and N2V. This is because DIP and N2V utilize only the
internal prior, whereas the proposed method can learn both the internal and external priors.
Moreover, the proposed method can utilize the uncertainty of the DIP to obtain multiple
denoised instances that are complementary to each other so that the fused image can have
a better denoising effect.

As presented in Table 3, compared with the newly proposed supervised method
SwinIR, our method outperforms SwinIR with noise levels of 15 and 25 on both the Set12
and BSD68 datasets. These results indicate that our method can handle more complex
corrupted images and achieve better performance than the existing models. It can be seen
from Tables 3 and 4 that the proposed method achieves relatively low performance on
“Barbara”, which makes the average PSNR with noise level 50 of the proposed method
lower than that of DAGL, DeamNet, DRUNet, and SwinIR. A possible reason is that DIP-
based methods are not good at learning non-local self-similarity prior when images at high
noise levels contain rich textures and repetitive structures. One possible solution to this
problem is to improve the quality of the preliminary image. As discussed in Section 2,
the image quality of the DIP learning target can constrict the search space. Using a learning
target with better quality can avoid overfitting and help achieve a better denoising result.
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In the proposed method, FFDNet is first employed to preprocess the given noisy image,
after which the two-target DIP and unsupervised fusion network are employed to generate
the final denoised image. If other supervised denoisers with better denoising performance,
such as DRUNet and SwinIR, are utilized to preprocess the given noisy image, the final
denoising performance can be further improved.

In Table 3, we also compare the performance of two methods proposed in our previ-
ous works [31,32]. In [31], we first employed a set of state-of-the-art image denoisers to
preprocess the given noisy image and obtain multiple intermediate denoised images. These
intermediate denoised images were then concatenated and fed into an unsupervised deep
fusion network to generate the final denoised image. In [32], we utilized two state-of-the-art
denoisers to generate the preliminary denoised images and proposed an unsupervised
fusion network to fuse the two preliminary denoised images into the final denoised image.
As shown in Table 3, the performance of the proposed method is slightly lower than that
of our previous methods. The main reason for this is that the proposed method employs
only FFDNet to generate multiple intermediate denoised images. The diversity of the
intermediate denoised images is not as high as that of the intermediate denoised images
generated in our previous studies. The two methods we previously proposed achieved
very good performance on synthetic noisy image denoising. However, it should be noted
that the denoiser proposed in [32] did not improve the performance of real-world noisy
images, and the method proposed in [31] cannot be used for real-world image denoising.

Table 3. Comparison of the averaged PSNR (dB) of different methods on the Set12 and BSD68
datasets. The best three performances are highlighted in boldface.

Method Set12 BSD68
15 25 50 Avg. 15 25 50 Avg.

BM3D 32.36 29.96 26.70 29.67 31.15 28.57 25.58 28.43
WNNM 32.71 30.26 26.88 31.45 31.35 28.80 25.81 28.65
DnCNN 32.67 30.35 27.18 30.07 31.62 29.14 26.18 28.98
FFDNet 32.75 30.43 27.32 30.17 31.65 29.17 26.24 29.02
DAGL 33.19 30.86 27.75 30.60 31.81 29.33 26.37 29.17

DeamNet 33.13 30.78 27.72 30.55 31.83 29.35 26.42 29.20
DRUNet 33.25 30.94 27.90 30.69 31.86 29.39 26.49 29.25
IRCNN 32.76 30.37 27.12 30.08 31.65 29.13 26.14 28.97
SwinIR 33.36 31.01 27.91 30.76 31.91 29.41 26.47 29.26

DIP 31.31 28.92 25.57 28.60 30.05 27.47 24.25 27.26
N2V 30.86 29.46 25.83 28.71 29.38 27.81 25.37 27.52

Yu2022 34.05 31.58 28.11 31.24 32.92 30.17 26.92 30.00
Xu2022 33.27 31.13 28.10 30.83 32.24 30.00 26.48 29.57

Ours 33.36 31.02 27.71 30.70 32.36 29.66 26.30 29.44

Table 4. PSNR (dB) values of different methods on 12 gray images in the Set12 dataset with noise
level σ at 15, 25, and 50. The best two performances are highlighted in boldface.

σ Image BM3D WNNM DnCNN FFDNet DAGL DeamNet DRUNet IRCNN SwinIR DIP N2V Ours

15 C.man 31.90 32.19 32.14 32.42 32.69 32.76 32.91 32.53 33.04 30.90 29.09 32.75
House 34.92 35.14 34.96 35.01 35.76 35.68 35.83 34.88 35.91 34.04 34.22 35.55

Peppers 32.71 32.98 33.09 33.10 33.41 33.42 33.56 33.21 33.63 31.85 31.39 33.89
Starfish 31.12 31.82 31.92 32.02 32.61 32.50 32.44 31.96 32.57 30.98 30.62 33.04

Monarch 31.95 32.71 33.08 32.77 33.48 33.51 33.61 32.98 33.68 31.52 30.84 33.51
Airplane 31.10 31.41 31.54 31.58 31.95 31.90 31.99 31.66 32.08 30.41 27.99 32.57

Parrot 31.31 31.64 31.64 31.77 31.96 32.01 32.13 31.88 32.16 30.51 28.35 32.29
Lena 34.23 34.37 34.52 34.63 34.84 34.86 34.93 34.50 34.97 33.37 33.69 35.28

Barbara 33.04 33.59 32.03 32.50 33.73 33.16 33.44 32.41 33.98 29.62 31.15 32.25
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Table 4. Cont.

σ Image BM3D WNNM DnCNN FFDNet DAGL DeamNet DRUNet IRCNN SwinIR DIP N2V Ours

Boat 32.09 32.29 32.36 32.35 32.64 32.62 32.71 32.36 32.81 31.05 31.34 33.09
Man 31.90 32.14 32.37 32.40 32.52 32.52 32.61 32.36 32.67 30.76 31.01 33.02

Couple 32.04 32.19 32.38 32.45 32.67 32.68 32.78 32.37 32.83 30.75 30.58 33.10

25 C.man 29.38 29.66 30.03 30.06 30.32 30.38 30.61 30.12 30.69 28.46 28.04 30.25
House 32.86 33.20 33.04 33.27 33.80 33.73 33.93 33.02 33.91 31.98 32.43 34.00

Peppers 30.20 30.42 30.73 30.79 31.04 31.09 31.22 30.81 31.28 29.22 29.19 31.57
Starfish 28.52 29.04 29.24 29.33 30.09 29.89 29.88 29.21 29.96 28.41 29.19 30.52

Monarch 29.30 29.85 30.37 30.14 30.72 30.72 30.89 30.20 30.95 28.82 29.03 31.04
Airplane 28.42 28.71 29.06 29.05 29.41 29.30 29.35 29.05 29.44 27.71 27.03 29.98

Parrot 28.94 29.16 29.35 29.43 29.54 29.60 29.72 29.47 29.75 28.33 27.78 29.81
Lena 32.07 32.24 32.40 32.59 32.84 32.85 32.97 32.40 32.98 31.34 31.80 33.29

Barbara 30.66 31.24 29.67 29.98 31.49 30.74 31.23 29.93 31.69 26.63 29.03 29.36
Boat 29.87 30.04 30.19 30.23 30.49 30.48 30.58 30.17 30.64 28.91 29.49 30.97
Man 29.59 29.79 30.06 30.10 30.20 30.17 30.30 30.02 30.32 28.71 29.49 30.65

Couple 29.70 29.83 30.05 30.18 30.38 30.44 30.56 30.05 30.57 28.48 29.28 30.78

50 C.man 26.19 26.24 27.26 27.03 27.29 27.42 27.80 27.16 27.79 24.67 24.66 27.06
House 29.57 30.16 29.91 30.43 31.04 31.16 31.26 29.91 31.11 28.20 29.00 30.78

Peppers 26.72 26.79 27.35 27.43 27.60 27.76 27.87 27.33 27.91 25.85 25.82 27.93
Starfish 24.90 25.29 25.60 25.77 26.46 26.47 26.49 25.48 26.55 24.61 25.23 26.77

Monarch 25.71 26.05 26.84 26.88 27.30 27.18 27.31 26.66 27.31 25.61 25.81 27.65
Airplane 25.17 25.26 25.82 25.90 26.21 26.07 26.08 25.78 26.14 24.65 24.78 26.57

Parrot 25.87 25.98 26.48 26.58 26.66 26.71 26.92 26.48 26.91 24.74 22.69 26.85
Lena 29.02 29.16 29.34 29.68 29.92 29.93 30.15 29.36 30.11 28.11 28.39 30.27

Barbara 27.21 27.46 26.32 26.48 28.26 27.60 28.16 26.17 28.41 23.41 23.97 25.45
Boat 26.73 26.85 27.18 27.32 27.56 27.59 27.66 27.17 27.70 25.65 26.57 27.86
Man 26.79 26.83 27.17 27.30 27.39 27.36 27.46 27.14 27.45 26.10 26.79 27.75

Couple 26.47 26.53 26.87 27.07 27.33 27.43 27.59 26.86 27.53 25.22 26.21 27.51

4.4. Color Image Denoising

To test our proposed method on color image denoising, we conducted experiments
on the Set5 dataset and compared its denoising results with those of the DIP, FFDNet,
VDNet [33], SwinIR, CBM3D, DRUNet, DnCNN, and N2V methods. Table 5 reports the
color image denoising performance of different methods with noise levels σ = 15, 25, 50
on the Set5 dataset. The three best methods are highlighted in bold font. One can observe
that the proposed method significantly outperforms the unsupervised methods DIP and
N2V and achieves a higher PSNR than most of the supervised methods.

Table 5. Comparison of the averaged PSNR (dB) of different methods on the Set5 dataset. The best
three performances are highlighted in boldface.

Method
PSNR

15 25 50 Avg.

DnCNN 34.29 32.12 29.25 31.89
FFDNet 34.31 32.12 29.27 31.90
CBM3D 34.03 31.62 28.66 31.44
VDNet 29.94 29.03 27.74 28.90

DRUNet 34.89 32.71 29.84 32.48
SwinIR 35.06 32.81 29.89 32.59

DIP 32.84 30.24 25.84 29.64
N2V 31.90 30.73 27.45 30.03
Ours 34.78 32.53 29.01 32.10
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4.5. Visual Comparison

To provide a direct visual comparison of the denoised images, Figure 8 shows the
ground truth of a grey image, its noisy image (σ = 25), and denoised images generated
using different methods: BM3D [1], WNNM [3], DnCNN [4], DRUNet [27], DIP [23],
FFDNet [5], SwinIR [11], N2V [16], and the proposed method. As shown in Figure 8, our
proposed method achieves the best PSNR value on the "Couple" image. By observing the
enlarged areas of the recovered images generated by different competing methods, we can
see that the denoised images generated by FFDNet, DRUNet, and SwinIR lost some edge
information and over-smoothed the image, whereas our proposed method preserved more
image details. Visual images of denoising results can be found at https://github.com/
chenxiaojun0101/Learning-from-multiple-instances-for-Image-denoising (accessed on 10
September 2022).

Figure 8. Visual comparison of our proposed method against the competing methods with the
quantitative PSNR results listed behind the noisy and denoised images.

Figure 9 shows the color image denoising results of different methods with a noise
level σ = 25. Compared with grayscale images, color images contain more complex texture
details, which is conducive to testing the robustness of denoising methods. As shown
in Figure 9, the structural information and texture details in the ground truth are well
preserved in the denoised image generated by the proposed method. The PSNR result of
our proposed method is significantly higher than that of DIP and N2V and is very close to
that of the newly proposed supervised SwinIR method. This indicates that our proposed
method can effectively recover the noisy image while preserving the image details to the
extent possible.

Figure 9. Visual comparison of the denoised results on the color image dataset. The quantitative
PSNR results are listed behind the noisy and denoised images.

https://github.com/chenxiaojun0101/Learning-from-multiple-instances-for-Image-denoising
https://github.com/chenxiaojun0101/Learning-from-multiple-instances-for-Image-denoising
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4.6. Real-Image Denoising

In real-world applications, the distribution of real noise is often unknown. Therefore,
the performance of state-of-the-art denoising methods degrades sharply when denoising
noisy real-world images. To further demonstrate the effectiveness of our proposed method,
we tested it on real-world noisy images and compared its denoised results with those
of CBM3D [1], LIME [34], FFDNet, Restormer [12], VDNet [33], Yu2022 [32], and DIP.
Figure 10 shows one low-light image from the SCIE [35] dataset and its denoised versions
generated using different methods. As shown in Figure 10, most denoising methods
enhance low-light images with a large amount of noise remaining at the edge of the text.
However, the proposed method can preserve the texture details of the edge while removing
noise. In Figure 11, we compare the denoised results of a RAW camera image from the
Nam [36] dataset. Clearly, the PSNR of the proposed method is 3.41 dB higher than that of
the DIP method. Compared with VDNet, which was developed for real-world noisy image
denoising, our proposed method achieves a 2.83 gain over VDNet. Moreover, the PSNR
of the supervised Restormer method is significantly lower than that of our proposed
method. This indicates that our proposed method integrates the advantages of both
internal and external priors and demonstrates the robustness and generalization capability
of our proposed method. Digital X-ray imaging is widely used in clinical diagnoses [37].
To ensure the safety of patients, the radiation dose in computed tomography (CT) clinical
practice is essentially reduced, which often introduces noise and artifacts to the image.
As the distribution of noise and artifacts in low-dose CT images is extremely irregular and
closely related to the position of human tissues, employing an unsupervised denoising
method for low-dose CT-image denoising is a better choice. As shown in Figure 12, we
additionally tested our proposed method for low-dose CT-image denoising. A full-dose CT
image was used as a clean image to compare the denoising results. Evidently, the denoised
image generated by the DIP method loses detailed information, and denoised images
generated by the supervised methods VDNet and Restormer still contain noise and artifacts.
The proposed method can effectively reconstruct the structure and texture information and
achieve the best denoising effect.

Figure 10. Visual comparison of the denoised images generated from different methods on the
low-light image.
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Figure 11. Visual comparison of the denoised images for the camera RAW image. The quantitative
PSNR results are listed behind the noisy and denoised images.

Figure 12. Visual comparison of the denoised images for the low-dose X-ray image. The quantitative
PSNR results are listed behind the noisy and denoised images.

5. Conclusions

This paper proposed a two-stage unsupervised DIP-based denoising method. Unlike
the DIP method that uses a given noisy image as the learning target, the proposed method
developed a two-target DIP learning strategy to generate intermediate denoised images.
The cleaner preliminary image used in two-target DIP learning can help reduce the search
space, thereby improving the denoising result. Furthermore, to utilize the uncertainty of
the DIP learning, an up- and down-sampling strategy was adopted to generate multiple
cleaner preliminary images, which were used to produce multiple intermediate denoised
images that were complementary to the image details. Finally, this paper proposed an
unsupervised fusion network to fuse the intermediate denoised images into one denoised
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image to further improve the denoising effect. Extensive experiments on public datasets
indicate that the proposed method can considerably improve the denoising effect and
perform significantly better than state-of-the-art denoising methods, particularly in real-
world image denoising. The proposed method used both external and internal priors.
The external prior can recover the general contents of the given noisy image, and the
internal prior can effectively restore specific details. Therefore, the proposed method can
significantly improve the denoised effect and provide a flexible solution for various noisy
images of real scenes.
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