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Abstract: Over the last several years, the impact of Artificial Intelligence on the world and on society
has been undeniable. More specifically, a subfield, known as Machine Learning (ML), is driving
innovation in a vast variety of fields as it denotes the ability of a machine to identify relationships
between data without explicit criteria, emulating a human-like type of learning. Over the last decade,
research efforts have also been focused on orthopedics in order to provide help and assistance
to surgeons and clinicians in their daily tasks. The purpose of this paper is to serve as a guide
by presenting the most recent research and achievements in orthopedics concerning these new
technologies, by exposing the main concepts and limitations of different applications, and tackling the
main problems concerning both the field and the technology itself. The main ML techniques will be
introduced and qualitatively explored, by considering the indexes that better identify the performance
of the models; then, the main two applications will be addressed: diagnosis and prediction. Finally, a
discussion about the limitations of the studies and technologies will be proposed.
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1. Introduction

Over the last several years, the impact of Artificial Intelligence (AI) on the world and
on society has been undeniable. More specifically, a subfield of AI, known as Machine
Learning (ML), has been driving innovation in a vast variety of fields. ML is the most
tangible manifestation of AI [1] and denotes the ability of a machine to identify relationships
between data without explicit criteria [2], emulating a human-like type of learning. Over the
last decade, research efforts have been focused on a large variety of topics, and orthopedics
represents no exception, since ML has the potential to revolutionize the field of orthopedic
surgery [3]. The purpose of this paper is to serve as a guide by presenting the most recent
studies and achievements in orthopedics concerning AI and ML, and by exposing the
main concepts and limitations of such type of technology by tackling the main problems
concerning both the field and the technology itself.

2. Machine Learning: Concepts and Techniques

All the techniques that will be addressed in this paper (XGBoost, CNN, DCNN and
Efficient-Net) are based on supervised learning [4], in which a model containing many
free parameters is trained using previously labeled data (training data set) to form associa-
tions [3].

There are two main problems tackled by supervised machine learning: classification
and regression. Classification is a type of problem where the goal is to identify which class
the input belongs to amongst a predefined list of possibilities [5,6]; as an example, a model
could be finalized to detect the presence of a bone fracture basing itself on a radiography
(binary classification). The output is therefore a discrete one, and can assume only one of a
limited amount of predefined values. The opposite is instead true for regression: this type
of task indeed has the goal of predicting a continuous number [5,7]; an example of such
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tasks could be a model that has to predict the length of stay of a surgery patient based on
their age, height and weight.

Once the type of problem is defined, training has to be performed by minimizing a
loss function. The loss function has as input the error between the actual output of the
model and the desired output, and thus measures how close the first is to the latter. The
learning process consists in adjusting the gains values (commonly called “weights”) on the
nodes [8] between layers by using methods related to loss function’s gradient, in order to
minimize the error and thus the loss function.

An important and frequently found concept in learning and training [8–11] is that of
hyper-parameters. These are attributes that can be related to network topology and regular-
ization issues, such as, for example, the previously mentioned model’s loss function [9], or
the number of feature maps in a convolution layer (see the relative paragraph for further
info). Usually, different combinations of these parameters are tested to find the best ones in
terms of performance, which can be quantified by different indexes (see next paragraph).

The Convolutional Neural Network (CNN) is a type of neural network where the
convolution operation is one of the fundamental building blocks [12]. The CNNs are
primarily used for pattern recognition with images [13] and they utilize their convolutional
filters to extract the information from images [12]. These filters are matrices with specific
values in their cells that are superimposed on the input image, which is itself a matrix
(table) of values, with different values saved for each pixel (cell), in order to perform a series
of calculations. These computations are useful for image manipulation (sharpening or
blurring for example) or feature extraction: this second operation consists in the recognition
of simple or aggregated geometrical features in the image (for example the human eye
would be an aggregated feature composed of simpler geometrical features like circles,
ellipses and edges).

In general, this kind of neural network works as follows: the first layer collects the
inputs, the intermediate (or inner/hidden) layers perform the elaboration, and the last
layer provides the output. CNNs are composed of three types of layers: the convolutional
layers, the pooling layers and the fully connected layers [13]. The general representation of a
CNN model can be seen in Figure 1. Close to the input, there are the convolutional layers:
they perform the convolution of matrices (the “convolutional filters”) against the image:
these convolutional filters are moved across the image and applied to different areas of
the image, and at each of these steps the convolutional operator (very similar to a “dot
product” operator) is performed between the elements of that area of the image matrix
and the values of the convolution filter (Figure 2). The values in the convolution matrix
are adjusted during the learning phase by the algorithm. The output of the convolution
operation is then defined as a feature map [14] (see Figure 3). Pooling layers will then
simply perform down-sampling along the spatial dimensionality of the given input, further
reducing the number of parameters [13] in order to guarantee computation in a feasible
amount of time. After the series of convolutional and pooling layers, the resulting features’
maps undergo flattening, and these matrices are converted into one column vector (in the
flatten layer). The last section of a CNN (the set of fully connected layers) usually performs
the classification task.
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Figure 3. The image on the right side is the result obtained by applying an edge detecting convolution
filter on the image on the left side. The structure of the filter is showed in Figure 2.

Often, to increase the overall efficiency [15], the number of hidden layers in the CNN
is increased by a large amount. The result is a more complex neural network called Deep
Convolution Neural Network (DCNN). Another variation of a CNN is the EfficientNet
model where the image resolution, width and color range (or depth) are uniformly increased
as you proceed in the layers from input to output. This differs from the classic CNNs where
these increases are arbitrary.
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The level of complexity of a CNN model is dependent upon the size and the character-
istics of its training dataset; it usually requires a large training data set because the more
the investigated pattern or study aim is complex, the more extensive the input data have
to be [10]. This large amount is of paramount importance in order to avoid overfit issues:
Overfitting happens when the model is too closely aligned to the limited set of training
datasets, and as a result the model becomes be useful in reference only to its initial data set
and not to any other data sets, not achieving the aim of recognizing the patterns beneath
the data [13].

Complex models tend to be more prone to overfitting when trained with small datasets,
since they operate with many different parameters [5]; simpler models, on the other hand,
are characterized by a smaller number of parameters and are thus limited in their ability to
see non-existent patterns and relationships.

The increase in the number of training examples is usually done by means of data
augmentation techniques, which consist in modifying the images’ properties (such as
saturation, contrast or brightness or geometric characteristics such as scale or orientation)
in order to obtain different “altered” versions of the same image. Unfortunately, CNNs are
generally bad at handling rotation and scaling, as they work with rectangular portions of
the image with given dimensions.

Performance of CNNs is evaluated using data not present in the initial dataset used
for training, which are therefore referred to as test set or internal validation. The core
characteristics of these data, however, have to be identical to the ones used for model
training and development (i.e., in terms of the same hospital and time period): indeed,
algorithms generally perform poorly when external validation is performed (namely with
datasets from different institutions [1]); therefore, the first validation is usually performed
as an internal one. It is thus of note that a model’s ability to generalize cannot be assessed
only from internal validation: for example, in the orthopedic field, it is to be considered that
different institutions could use a different labelling system for their radiographs, a different
radiation dosage or different machines, and even the same one institution could undergo
changes of these characteristics over time, making a previously internally validated ML
model (trained on a certain type of images characteristic) not reliable anymore.

The XGBoost algorithm (Extreme Gradient Boosting) is a modern implementation of
gradient boosting decision trees [10]. Boosting algorithms create weak learners (models),
i.e., learners slightly better than random, and combine them into a strong learner in an
iterative way [16,17]. These weak learners’ models are defined “decision trees”, which are
thus described as “a supervised machine learning algorithm used for predictive modeling
of a dependent variable (target) based on the input of several independent variables. They
have a tree-like structure with the root at the top” [17].

3. Machine Learning Performance Indexes

When addressing a simple two classes classification problem, usually one class is
defined as the “positive” one while the other as “negative”. Without any implications on
benefits or values, the positive class is usually the object of the study [5]. This distinction
starts from the training samples given to the model, which can be either positive or negative;
for example, in identifying a fracture, a positive sample could be a bone fracture vs. the
negative sample being that of a healthy bone. Hence, once positive and negative examples
are fed to the model, predictions made via the latter can be categorized and allocated
as one of the following: true positive (TP), that is, a prediction of a positive result for a
positive sample; true negative (TN), that is, a prediction of a positive result for a negative
sample; false positive (FP), that is, a prediction of a positive result that in reality is negative;
and false negative (FN), that is, a prediction of a negative result that is actually labeled
as positive.

The formulas of the main performance indicators rely on these concepts. To better
understand the performance of the models that will be discussed later, the main perfor-
mance metrics must thus be introduced since only one index might not be enough to
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describe the performance of a model. It is to be highlighted that the formulas reported
herein are valid for a binary classifier, but the concepts can be extended to multi-class
classification problems.

Accuracy: expresses how good a classifier is in its job of finding all the correct predic-
tions related to the total number of predictions, i.e., the proportion of the total number of
test samples in which the model identifies the positive labels [18].

Accuracy =
TP + TN

TP + FP + FN + TN
(1)

Sensitivity: indicates how well the model is performing in terms of classifying the
positive results related to the total number of predictions made regarding positive samples.
It is also known as true positive rate [5] since it measures the ability of the model to predict
positive results (all the actually pathologic subjects that were classified as pathologic by
the model).

Sensitivity =
TP

TP + FN
(2)

Specificity: quantifies how well the model is performing in terms of classifying the
negative results related to the total number of predictions regarding truly negative results.
It is also called the true negative rate as it quantifies how many true negatives (for example
people that did not have a certain pathology that were actually recognized by the model as
not having that pathology) were obtained.

Speci f icity =
TN

TN + FP
(3)

Precision: computes what proportion of the positive predictions were actually true
and is used when the goal is to limit the number of false positives [5]:

Precision =
TP

TP + FP
(4)

F1-score: denotes the harmonic mean of precision and sensitivity [18]. It is used to
assess whether our model has a high precision, a high sensitivity or both. In fact, the
F1-score is high if both are high and thus optimized, it is medium if only one of the two
metrics is optimized, and if it is low both metrics are low.

F1 score = 2 × Precision × Sensitivity
Precision + Sensitivity

(5)

ROC curve: known as Receiver Operator Characteristic curve, it is plotted (as seen in
Figure 4) on a graph with the “True Positive Rate” or “Sensitivity” on the y-axis and “False
Positive Rate” or “1−Specificity” on the x-axis. The different values of the two rates are
measured for different threshold levels in order to see how different values would influence
the performance of the model. This curve also shows the trade-off between sensitivity
and specificity.

AUC: is the Area Under the Curve between the ROC curve and the bisector. It
measures the ability of a classifier to distinguish between the two or more classes, and it
summarizes the ROC curve. AUC can vary in a range between 0 and 1, where 0 means
that all positives have been evaluated as negatives and vice versa, while 1 means that all
inputs were perfectly classified. Hence, classifiers with a curve closer to the top-left corner
have better performance than those with a curve close to the 45◦ diagonal, since the model
produces a high sensitivity while keeping a low false positive rate [5].
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While accuracy is certainly the first reported performance index, it is not the only
metric one should rely on in the case of an imbalanced data set (which is often the case in
the orthopedic field). An imbalanced data set is one which presents much more examples
of one of the classes than the other. This is where sensitivity and specificity are important
since they specifically relate to the performance in classifying correctly one of the two
classes. Sensitivity is more important when the request is to optimize the number of
positive examples that are correctly classified, while the specificity is more relevant when
the objective is to minimize the number of incorrectly classified negative examples. One
thing to keep in mind is that sensitivity and specificity are often inversely related; thus, in
trying to increase one, the other will decrease [5].

4. Diagnosing with AI

Over the past decade, the development of AI applications in orthopedics has focused
primarily on diagnostics, mostly image interpretation [3]. A crucial function application for
such an operation is computer vision and for this task CNNs are usually employed. See
Table 1 for a list of the studies that were analyzed.

4.1. Hip Related Diagnosis

Cheng et al. [8] trained a diffusion convolution neural network (DCNN) to recognize
hip fractures on frontal pelvic radiographs. The model underwent a pre-training on
25,505 limb radiographs. This operation is done to quicken the recognition ability of the final
model since training on the required task does not start anymore with the model having
randomly chosen weights, but ones that were already tuned to perform a similar task. The
model then was trained on a set of 2804 frontal pelvic radiographs to detect hip fractures
and obtained as result an accuracy of 91%, a sensitivity of 98%, a specificity of 84% and
F1-score of 0.916. The model had only to confirm if there was a fracture on the radiograph
without giving further information and, since it was trained to discriminate between
healthy bones and fractures in the background of the bony architecture on radiographs,
it might be unable to identify other lesions relevant for routine diagnoses [8]. Moreover,
some bias is expected since differences in age, gender and injury severity score between
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fractured and non-fractured patients were observed [8]. The performances were slightly
lower than those obtained by radiologists and orthopedics, but this outcome nevertheless
represented a promising result.

On the other hand, the CNN trained by Park et al. [18] outperformed the specialized
doctors. Park and his team developed a neural network capable of recognizing bone tumors
in proximal femur. Data augmentation was performed together with data pre-processing,
so all text was removed from the radiographs and each radiograph was divided in left and
right side by the longitudinal axis; the right side was then inverted, thus obtaining a total
amount of 538 femoral images aligned with the same left side to help the machine by giving
it a more homogeneous femur shape. Out of the multiple trained models, three variations
of the EfficientNet model were chosen: EfficientNet-b1, b2 and b3. The EfficientNet-b2
model outperformed the other models and the human doctors with an accuracy that was
higher than the one achieved by each of the four doctors involved in the comparison (two
general orthopedic surgeons and two musculoskeletal tumor specialists [18]); moreover,
the model sensitivity, precision and F1 were also superior (except for only one doctor).
Image pre-processing was crucial for obtaining these results because of the standardized
hip radiographs, but also the model that outperformed the other ones did it because of
its smaller number of weights; this feature represents an advantage, when learning from
small data sets, because a simpler model is limited in its ability to see non-existent patterns
and relationships.

4.2. Knee Related Diagnosis

Liu et al. [19] constructed a CNN that had to recognize Tibial Plateau Fracture (TPF)
from X-ray images and compared its performances with respect to expert orthopedic
physicians, using as indicators accuracy and time spent on analysis. The algorithm was
trained on a set of 916 JPEG files (training data set) and then tested on a set of 84 JPEG
files (test data set) for algorithm validation. During the test, the algorithm had to label
with a rectangle suspected fracture areas. The results were promising: the difference in
accuracy of the machine with respect to the human radiologists (0.91 vs. 0.92 ± 0.03) was
not statistically significant, while the time spent on average on each sample by the machine
was 16 times faster than the one required by humans (0.55 s vs. 8.44 ± 3.26 s), and, more
importantly, it is to be noted that the physicians were tested in a stress-free environment,
which is rarely the case in a real life emergency department. This factor was indeed one
of the reasons leading the authors of such a study to believe that the performance of their
AI algorithm would be even better in the real clinical environment [19]. However, despite
the excellent results, the trained algorithm could only recognize the fracture line without
classifying it; this function, as the authors stated, will be added to the algorithm in the
future. The other limitations found in this study were related to the fact that no normal
knee radiographs were present in the data set, thus precluding the possibility of computing
sensitivity and specificity. Additionally, the usage of only anteroposterior films may not be
enough for a correct diagnosis of a TPF.

Another important injury related to the TPF that has become extremely common is the
one involving the menisci, which are extremely vulnerable to injury due to their position
and function in the knee joint [20]. The diagnosis of this type of injury is more complicated
due to the presence of both bone structure and soft tissue. One of the many methods used
for diagnosing is the magnetic resonance imaging (MRI), which has the advantage of being
noninvasive and having high resolution for the soft tissues; the problem is, however, that
the image resulting from the test would often appear blurred because of micro-movements
of the limbs due to the patient, the breathing and/or the heartbeat [20]. In order to avoid
these complications, Xie et al. [20] thought about using a machine learning approach for
MRI image improvement: by using, in the process of MRI image reconstruction, a CNN-
based algorithm, they removed “shadowy” parts and reduced blurriness in the under
sampled images, giving then as output fully sampled cleaner MRI images. These images
were then used for diagnosing and were later confirmed during the surgery itself. The
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results showed an accuracy of 95.3% and a sensitivity of 96.9%, meaning that this CNN-
based MRI optimizing algorithm could be considered effective for the diagnosis of tibial
plateau fracture with meniscus injury, but the sample size used has to be considered, as the
data set is not big enough to strengthen the results of the study.

A different application of AI was developed by Ghose et al. [21], who trained a
CNN to recognize different total knee implant models, information that can become vital
during preoperative planning before partial revision surgery (where only one or two
components of the implant have to be changed). In this case the task to perform is different,
and quite fitting for AI: while humans with good experience can generalize quite well
characteristics of different objects/situations/conditions from different fields of knowledge
and can recognize them with a high accuracy, they cannot process large amount of data
like machines do. That is the case of the data of the implant’s producer, model and
general characteristics. If the surgeon is not familiar with the manufacturer and model of
the implant, the routine procedure is to email the radiographs of the patient to medical
representatives of the manufacturing companies for identification [21]; therefore, this
identification can become an expensive and time-consuming operation. To tackle this
problem, 878 images of six different models coming from five different manufacturers
were used to train and validate a CNN that could perform the recognition task. Data
augmentation was used [21] to increase the number of samples and a Contrast Limited
Adaptive Histogram Equalization was used to increase the contrast of the images. The
model performed the task with an accuracy of 96.66% despite the lack of a large number of
example radiographs for each implant type. Additionally, the available data set samples
were taken from only two different institutions and from different textbooks, thus no real
external validation was done due to the difficulty of obtaining external clinical data.

4.3. Other Orthopaedic Related Diagnosis

Blüthgen et al. [11] developed a deep learning system aimed to diagnosticate distal
radial fracture (DRF) using anteroposterior and lateral view radiographs. To build a model,
an image analysis software (ViDi Suite Version 2.0) was used. After testing different
models with various hyper-parameter combinations, two models (referred to as M1 and
M2 from now on) were selected, as they gave the highest AUC values. Both the resulting
models had to assign a value ranging from 1 to 0 where the first extreme meant that a
defect area was found while 0 meant that nothing suspicious was noticed on the image by
the machine. This score was coupled with a heat map on the image indicating the ROI,
where the red zone was the one where the machine thought the probability of finding
the fracture would be the highest. The resulting area was, as usual, compared to the ROI
outlined by two expert radiologists and two test data sets were used, an internal data
set with radiographs coming from the institution and an external data set comprising
radiographs coming from different institutions. The deep learning models had a good
tolerance against non-pathologic alterations of the radius and were capable of detecting
fractures of DRF with near-human performance [11] with M1 performing with an AUC of
93% when using anteroposterior views, 94% when using the lateral views and an AUC
of 95% when a combined version of the two views was used to train the machine, while
M2 performed similarly with an AUC of 95%, 94% and 96% respectively. The AUC and
also sensitivity and specificity were slightly lower for an external test data set, meaning
that the model had more problems diagnosing DRF on radiographs coming from other
institutions. Radiologists performed slightly better on the external data set but that could
be also caused by a selection bias since external images were selected whether they were
high quality or not.

Another diagnosing model for distal radial fractures was developed by Gan et al. [22].
Firstly, a Region Based CNN was trained to identify the distal radiuses on anteroposterior
wrist radiographs as the region of interest (ROI) and then validated by two expert radi-
ologists. Then the cropped and augmented images were sent to the Inception-V4 model
that trained on a data set of 2040 images and tested on a set of 300 images equally divided
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between radiographs with presence of DRFs and absence of DRFs. The results were an AUC
of 0.96, an accuracy of 93% and a sensitivity of 90% a similar diagnostic capability to that of
the tested orthopedists and superior performance to that of the tested radiologists. Many of
the mistakes were committed on anteroposterior radiographs that displayed an absence of
apparent fracture traits, features that were instead clearly visible from lateral radiographs
corresponding to the anteroposterior images [22]. That is why the authors claim that the
sensitivity will increase when the model will be given both types of radiographs.

5. Prediction with AI

The other important aspect of AI, and one of the most common types of tasks for a ML
model, consists in its prediction functionalities. In orthopedics for example, regarding value
metrics, ML methods have been used to predict the length of hospital stay, hospitalization
charges and discharge disposition [23]: all aspects that may translate into improved patient
care, reduced surgeon burnout and controlled resource costs if properly addressed [24]. It
is then relevant to mention that this approach can also be used to address musculoskeletal
surgeries, such as the identification of surgical candidates for a knee arthroplasty and their
direction of referrals to the appropriate orthopedic surgeon [25].

5.1. Surgery Prediction

This problem has indeed been addressed by Houserman et al. [25] with the use of an
EfficientNet-b4 that was used to identify if a patient was a candidate for surgery and if the
type of surgery was either a total knee arthroplasty (TKA) or a medial unicompartmental
knee arthroplasty (UKA).

The total data set consisted, for each of the 2767 patients, in three radiographs (before
data augmentation): the weight-bearing antero-posterior, the lateral and the patellar views.
Relying only on these three views, commonly ordered by primary care providers, the
machine performed the task with an 87.8% accuracy. Anteromedial osteoarthritis is the
main primary indication for UKA [25], and thus an even more significant outcome is that
the result was obtained without the need of first identifying if the patient suffered from
this pathology (hence without relying on a valgus stress view, which would have required
a well-versed staff in order to be obtained). One limitation of the study, however, is that
the information on which the model was trained was deeply based on the decision of the
surgeons who performed the operations in the data-set, which are therefore taken as the
“ideal choice”; it is, however, important to highlight that the follow-up data of the patients
used to populate the training set indicated extremely few post-operative complications,
therefore the choices made were considered as acceptable to represent the ideal result.

Another TKA related problem is the access disparity, caused by the fact that knee
surgeons caring for patients who would benefit from TKA are incentivized to “cherry
pick” healthier patients and “lemon drop” those with increased comorbidities and case
complexity that would result in higher costs. That is why Ramkumar et al. [26] trained
an artificial neural network to analyze 15 major attributes related to the patient in order
to predict the length of stay, charges and costs, and patient disposition. The 15 attributes
were age, gender, ethnicity, race, type of admission, whether the admission was from the
emergency department, All Patient Refined (ARP) risk of mortality, APR severity of illness,
number of associated chronic conditions and diagnoses, comorbidity status, whether the
admission was on a weekend, hospital type, income quartile of the patient and whether the
patient was transferred from an outside hospital. The outputs, instead, were divided as
usual in only two per type. For the length of stay and charges and costs, the model had
to specify if the predicted value was higher or lower than the 50th percentile (to enhance
generalizability) and, for the patient disposition, if the patient would have been treated at
home after the operation or not. After that, a risk-based patient-specific payment model was
developed assessing the financial probability of over-cost related to APR risk of mortality.
The APR score is part of the All Patient Refined-Diagnosis Related Group (APR-DRG)
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methodology that was developed by 3M to allow analysis of outcomes across large cohorts
for a given diagnostic group [27].

This study actually included external validation, since training data were taken from
the National Inpatient Sample database with information coming from multiple hospitals
while the test data came from the Orthopedic Minimal Data Set Episode of Care (OME),
which contained information from 11 different hospitals. Due to the lack of inpatient
charges in the second database, external validation was possible only for the first two
outputs. After the training, length of stay prediction had an internal accuracy of 75.3% and
AUC of 74.8%; after external validation, instead, these values improved with an accuracy
of 80% and AUC 83.2%. Similar results were obtained for the inpatient discharges while
discharge disposition achieved the lowest results, meaning that other patient-level variables
needed to be included. Even though all performance indexes are inferior to 90%, the model
was not only generalizable but also more reliable and responsive giving higher accuracy
and AUC after being applied to the external OME data set [26]. At the same time the
risk-based patient-specific payment model predicted an approximately 83% increase in the
surgery cost for patients with extreme APR risk of mortality and a 22% increase for major
risk patients. The authors proposed different future studies that could improve the model
to produce more accurate predictions of duration of time and costs, since knowledge of
these variables facilitates preoperative alignment between patient, surgeon, hospital and
payer to allow for fair arbitration before knee surgery [26].

5.2. Prediction of Post-Operative Complications

Among others, the problem of complications following a TKA (like many other types of
arthroplasties) also has a high impact on costs, since revision TKA is much more demanding
and associated with higher costs and inferior outcomes. Thus, an early identification of
patients at risk for revision is a factor becoming increasingly relevant [10]. The problem
of predicting post-operative complications and of irregular durations of the surgery has
been tackled by Hinterwimmer et al. [10]. An XGBoost algorithm was chosen to be trained
on a data set of 864 patients with only 54 cases of complications and 99 cases of irregular
duration of surgery. To tackle this class imbalance problem, a loss weighting was applied
by imposing a higher loss weight to the class with fewer samples. The problem was then
transformed into a binary classification problem, trying to identify whether a patient had
at least one complication or none. The results for complication prediction were an accuracy
of 92%, sensitivity of 34.8% and a specificity of 95.8%; the prediction of irregular surgery
duration, instead, returned an accuracy of 93.4%, a sensitivity of 74% and a specificity
of 96.3%. It is evident how having a slightly less imbalanced data set for this second
problem (11.5% of the cases vs. 6.3% of the cases) beneficially impacted sensitivity. In
this application, a “feature importance” was also computed, giving a ranking of the main
features that were used by the model to classify the inputs, based on how useful they were
at predicting a target [10], i.e., providing an indication on the extent to which a variable had
been weighted in the ML model. However, it does not implicate causality nor unbiased
associations [10]. The two major takeaways of the paper were that collaboration between
data scientists and surgeons is paramount for the clinical interpretation of results and that
the inclusion of post-operative data might be useful in predicting more complex outcomes
such as early revisions.

Problems like the one presented previously can obviously also be encountered after
the total hip arthroplasty (THA), where dislocation is the most common early complication
and one of the main indications for revision surgery [9]. To assess the hip dislocation risk,
Rouzrokh et al. [9] trained and tested a CNN on a data set of 97,934 antero-posterior pelvis
radiographs taken at least 1 day after the surgery and at least 1 day before the possible
dislocation. The performance was assessed using a 10-fold cross-validation, which means
that the total data set was split into 10 groups and for each iteration one group was used as
a test data set while all the others were used as training data sets. The model performance
then was summarized using the scores each model received. The result with YOLO-V3
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(which is a CNN) was an overall mean average precision of 99.2% between the right and left
pelvis: this means that approximately 99% of the patients that had a dislocation in the future
were identified by the model. One factor to keep in mind is how the model possibly relied
on different imaging features when applied to different genders; this element, together with
the different number of male and female dislocations in the data set, led to the different
performances found between the two genders. All the choices were motivated by a saliency
map and the future usage of other relevant factors and other X-ray views was suggested.

Table 1 summarizes the studies that were analyzed and their field of application.

Table 1. Research studies analyzed.

Reference Title Application

Cheng et al., 2019 [8] Deep learning for Detection of Complete Anterior
Cruciate Ligament Tear Diagnosis

Park et al., 2022 [18]
Artificial intelligence-based classification of bone tumors
in the proximal femur on plain radiographs: System
development and validation

Diagnosis

Liu et al., 2021 [19] Artificial Intelligence to Diagnose Tibial Plateau Fractures:
An Intelligent Assistant for Orthopedic Physicians Diagnosis

Xie et al., 2021 [20] Deep Learning-Based MRI in Diagnosis of Fracture of
Tibial Plateau Combined with Meniscus Injury Diagnosis

Ghose et al., 2020 [21] Artificial Intelligence based identification of Total Knee
Arthroplasty Implants Diagnosis

Blüthgen et al., 2020 [11] Detection and localization of distal radius fractures: Deep
Learning system versus radiologists Diagnosis

Gan et al., 2019 [22]
Artificial intelligence detection of distal radius fractures: a
comparison between the convolutional neural network
and professional assessments

Diagnosis

Houserman et al., 2022 [25]
The Viability of an Artificial Intelligence/Machine
Learning Prediction Model to Determine Candidates for
Knee Arthroplasty

Prediction

Hinterwimmer et al., 2022 [10]
Prediction of complications and surgery duration in
primary TKA with high accuracy using machine learning
with arthroplasty-specific data

Prediction

Ramkumar et al., 2019 [26]
Deep Learning Preoperatively Predicts Value Metrics for
Primary Total Knee Arthroplasty: Development and
Validation of an Artificial Neural Network

Prediction

Rouzrokh et al., 2020 [9]
Deep Learning Artificial Intelligence Model for
Assessment of Hip Dislocation Risk Following Primary
Total Hip Arthroplasty From Postoperative Radiographs

Prediction

6. Limitations of AI and Implications for the Future

Even if the results accomplished seem promising, showing their potential to make the
work of the clinicians much easier, the limitations of such technology have always to be
kept in consideration (together with its legal and ethical consequences) in order to correctly
evaluate the possibilities and to properly integrate them in the health system. What follows
is thus a deeper look into these limitations and their relative consequences.

6.1. External Validation and the Change in the Clinician’s Working Routine

Machine learning is nowadays in its early stages, and standardized approaches are not
yet established. This is particularly true for the external validation of the model [1,10]. The
results obtained with the various models seem to be positive, but most of them relied only
on data coming from one or maximum two institutions, while external validation or the
measure of the model’s ability to generalize is a crucial point for its broader implementation.
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The model also requires proper supervision and data capturing during the treatment [28].
For the general validation, a close collaboration between a surgeon and a data scientist
must therefore occur, in order to not only correctly evaluate the validity of the output, but
also to keep the ML model tuned and well maintained in time [3,10]. Unfortunately, all
these operations are still expensive, posing a big obstacle to a faster implementation of AI
in the medical field.

6.2. Data Limitations and How to Collect Data

The first problem resides thus in the fact that an ML model strictly depends upon
its data set. This means that a biased data set will certainly affect the performance of the
model in a negative way [23]. Moreover, a machine learning model cannot generalize
a concept or a structure, hence it finds it more difficult to detect an anomaly that is too
rare in the set of examples of an imbalanced data set [11]. A possible solution could be to
include a much bigger and balanced data set, with information structured in a way that
is most suitable for the ML model in order to also avoid overfitting (as already discussed
previously). This also means that the training data should be representative of the general
population independently from gender, race, and cultural and economic backgrounds. The
most practical and efficient way to obtain such results (and maybe the only one) is the
concept of data sharing, i.e., a collaboration between institutions to create pooled data sets
with information coming from different realities [9]. Data labeling also has to be monitored
and standardized since it is an operation performed by a human that inevitably introduces
subjectivity and bias. Finally, data privacy and protection are of utmost importance going
forward [29]; therefore, all these data-managing operations have to be done in an ethical
manner by assuring that all privacy norms are respected in the process and patients’ consent
is given. Unfortunately, this process takes extensive periods of time and limits the volume
of data that can be gathered by the various registries [29].

6.3. Black-Box and Responsibility Issues

The second problem is related to the model being a “Black-Box”, meaning that no real
explanation and motivation of the result can be directly given by the algorithm. Moreover,
if any miscalculation occurs, the medical responsibility cannot be identified since relevant
laws are missing [19]; furthermore, if the medical figure cannot explain to the patient the
reasons behind the results given by the model, the patient’s trust in the medical figure
would erode, making it also difficult to have informed consent [30]. The responsibility issue
is also very important because technologists are not obligated by law to be accountable for
their actions [31]. That is why there is still a debate on whether the technicians should be
held responsible for the results given by the machine or not. What some suggest is that it is
the underlying data given to the algorithm that should be held responsible [31]. Therefore,
there is the need for clear and trustworthy outputs that can be seen in the effort to create
explainable artificial intelligence (XAI), that could justify its decisions to a human collaborator.
Explainability must not, however, be confused with interpretability: the former is the ability of
the machine to describe the processes that brought the results, while the latter is the ability
to provide understandable reasons behind individual decisions that clinicians can use to
make judgements [32]. Some techniques used to increase interpretability were adopted
in the cited papers [9,19–21,33], including features such as importance, region of interest,
saliency map, and heat map: the first one assigns a score to input parameters, based on
how useful they are at predicting a target; the second underlines the variables that are
considered the most relevant for the task by the machine, and the third and fourth ones
instead underline, in different ways, the key features of an image for the classification task.
In this way, it is then possible to obtain a motivation for the result without actually knowing
the processes that brought it about.
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6.4. Automation and the Patient–Physician Relationship

Automating diagnoses, recommending appropriate treatment approaches and pre-
dicting the outcome following a treatment all fall within the scope of AI [34]; in many of
the studies it is assured that the final goal is not to replace the clinicians, but the relative
concern is real and understandable.

As seen, the results are promising but they regard relatively simple tasks and anything
different from that specific duty cannot be achieved by that AI model. Additionally, AI lacks
the creative thinking required in all of the medical subfields [28] where making good clinical
judgements cannot take the form of an algorithm, since statistical methods cannot grasp the
complexities of human cognition and behavior [35]. That is why many impartial observers
consider AI applications only as a way to assist clinical decision-making, not yet being
in position to replace it [36]. Many others, instead, have a different type of concern more
relevant to the present day, regarding the fact that AI could erode the relationship between
patient and physician. Since AI cannot understand emotions and human thought [28],
there is the risk of dehumanizing medicine [35]. The more diagnosis and decision-making
processes rely on such a technology, the more this fear of dehumanization becomes true
as this approach reduces the human interaction between physician and patient. This
could thus bring not only to a deterioration of skills and lack of pleasure in the job on the
physician’s side, but also a reduced questioning of the results given by the model (from
both patient and physician’s side) due to the high accuracy of the machine [31]. Medicine
cannot be reduced to mere scientific knowledge and implementation of technology, but
must also include the humanistic considerations that are intrinsic to good care [35].

7. Discussion

This paper aimed to analyze the latest achievements of Artificial Intelligence in the
field of orthopedics, providing the reader with an overview of all the possibilities of this
technology. As shown, machine learning models can indeed provide meaningful assistance
to surgeons in their decisions or even help in diagnosing a certain pathology.

For the purpose of diagnosing, different studies were analyzed in which models were
trained to recognize fractures in various parts of the body such as the hip and the knee.
Other models, instead, were trained to improve time-consuming tasks such as MRI image
improvement or implant model and characteristics recognition. The models were able
to perform the tasks similarly if not superiorly to their human counterpart, according
to performance indexes as accuracy, sensitivity, specificity, precision, F1-score and AUC.
Admirable results were thus achieved, but it must be kept in mind that most of the time
the models had to deal only with a simple binary recognition (as an example, “fracture is
present” versus “no fracture found”) and therefore they were not able to perform specific
and exhaustive diagnosis.

Regarding prediction, instead, in the cited studies various ML models were trained to
predict different aspects related to surgery such as the following: length of stay after TKA
surgery, evaluation of suitability of a candidate for TKA or UKA based on three different
views of the knee joint, surgery cost increase for patients with comorbidities with respect to
patients with only the primary condition, and post-operative complications after total knee
or hip arthroplasties. These tasks were performed satisfyingly as well, and some models
were even externally validated (thus assessing the generalizability of their algorithm).

It is to keep in consideration that all the models addressed are strictly dependent on
the data fed to them, which should therefore be of the right quantity and also of the right
quality. The data fed to the algorithm should be unbiased, hence gathered and selected by
competent figures able to ensure a proper representativeness of the general population. No
discrimination should be permitted. Since the machine can amplify the intrinsic biases of
the data, moreover, the data selected to train the model should be considered responsible
for the results given by the machine. This theme of responsibility in medical decision-
making is crucial and for this reason is the main topic of current scientifical discussions:
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who would be responsible for the mistake in the decision-making process once man and
machine cooperate is indeed still not clear, and inherent laws are missing.

All of the models were tested and evaluated on their performance, but their integration
in the medical environment was not assessed: this means also that the interaction between
clinician and machine was not analyzed, together with the impact of such a technology on
day-to-day work. What was instead considered in some of the addressed studies is that
a strict collaboration between the clinician and a data scientist is fundamental, since the
medical figure alone would need knowledge and skills in a field different from their own
in order to maintain the machine and validate the results given by the model.

It is still finally to be kept in consideration the fear that, while these models are still far
from substituting the human clinician, they could already interfere in the patient–clinician
interaction, which is crucial for the correct evaluation of the patient’s situation and for the
decision-making process. Moreover, the clinicians could over time rely less and less on
their competence and skills as they become more complacent about the results given by the
machine, instead of analyzing them with a critical approach.

8. Conclusions

To conclude, this article analyzed multiple studies related to applications of artificial
intelligence in the field of orthopedics, underlining the peculiarities, the pros and the cons
of each study and, more broadly, of the technology itself.

Even if the approach and the methods used nowadays have yet to be standardized
and further optimized, the possibilities offered by this powerful tool are almost endless
as they range from the assistance of clinicians to the prediction of outcomes of surgery:
for this reason, the potentialities of the use of AI in orthopedics have to be kept in great
consideration for the years to come, without, however, losing sight of their drawbacks in
order to prevent unhappy consequences.
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