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Abstract: Drilling, one of the most used machining processes, has wide application in different
industrial fields. Monitoring the system health and operation status of the drilling process is essential
for maintaining production efficiency. In this study, a convolutional neural network (CNN), a deep-
learning method, is applied to the defect diagnosis of drill bits. Four drill bits with different health
conditions were used to drill holes in an aluminum block, and a vibration sensor collected the
signals. Vibration spectrograms generated using short-time Fourier transform were applied to a
2D CNN algorithm, and they were then reconstructed into a 1D data set and applied to a 1D CNN
algorithm. The input data size was reduced significantly compared to the raw vibration data after the
data-reconstruction process. As a result, the 2D CNN process shows a diagnostic accuracy of 97.33%.
On the other hand, the 1D CNN provides a diagnostic accuracy of 96.6%, but it only requires 2/3 of
the computational time required by the 2D CNN.

Keywords: defect diagnosis; convolutional neural network; condition monitoring

1. Introduction
1.1. Machine Fault Diagnosis

In today’s highly automated industry, keeping track of machine condition is crucial to
maintain productivity and product yield. During the operation process, any abnormal con-
ditions will not only reduce machining accuracy and quality but also increase production
costs due to tool replacement and rework. Therefore, machine condition monitoring has
gained significant enthusiasm [1].

Fault diagnosis is an important part of machine condition monitoring. It affects a
project’s efficiency and greatly concerns the protection of the machine itself. Therefore, a
great deal of effort has been expended to develop mechanical fault diagnostic methods.
As artificial intelligence (AI) develops, various AI methods have been applied to machine
fault diagnosis in recent years. Dai et al. developed a machine vision system combined
with an image processing algorithm to monitor the progressive wear of tools and to reduce
downtime [2]. The effectiveness of the prototype system and the developed algorithms
were verified. Bhuiyan et al. applied an acoustic emission sensor to measure the vibration
frequency in metal machining for tool condition monitoring [3].

To increase diagnostic accuracy, feature extraction is an essential process for most
machine learning algorithms. It affects the diagnostic accuracy directly. Therefore, various
feature extraction methods have been developed and verified. Asr et al. designed a feature
extraction method based on empirical mode decomposition (EMD) [4]. The extracted
features were input into a non-naive Bayesian classifier for fault diagnosis. Georgoulas
et al. proposed a symbolic aggregate approximation framework and extracted features
from bearing signals, and a nearest neighbor classifier was used for classification [5]. Xiong
et al. demonstrated the use of a multi-fractal detrend fluctuation analysis to extract features
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for bearing fault diagnosis [6]. Zhang et al. demonstrated the use of variational modal
decomposition (VMD) for feature extraction in mechanical fault diagnosis [7].

Many of the methods mentioned above have achieved decent classification and diag-
nostic accuracy, but the feature extraction process highly depends on the experimenters’
experience and the original data. The same feature extraction process and classification
method may not be able to provide an accurate result when using different workloads
and setups. To address this problem, Zhang et al. conducted comparative experiments
in their recent research [8]. In their results, it shows that convolutional neural network
(CNN) has higher adaptability than support vector machine (SVM), multi-layer perceptron
(MLP), and deep belief network (DBN). In recent years, among different deep-learning
algorithms, CNN has gained massive interest due to its wide range of practicality and
high accuracy [9,10].

1.2. Convolutional Neural Network

CNN is a multistage neural network with multiple filtering and classification stages.
The network’s performance is highly dependent on the total number of layers, the number
of convolution kernels, and the number of neurons in the network. The construction of
a CNN model can be performed by cross stacking the convolutional layer, the activation
layer, the pooling layer, and the fully connected layer [11].

CNN algorithms have been developed and applied to various fault detection applica-
tions, especially in rotation systems such as bearings and gears. Hoang et al. demonstrated
a simple two-layer convolutional model for rolling bearing fault classification by converting
vibration signals into gray-scale images [12]. In this study, the vibration signals were nor-
malized into the range of [−1, 1]. Then, the normalized data were converted to gray-scale
intensity of each pixel in the corresponding image. Using the same approach, Wang et al.
converted multi-sensor vibration signals into a single image file [11]. Instead of using a
gray-scale image, Wang et al. transformed the signals from three channels into a color
image. Each channel corresponded to one of three colors: red, blue, and green (RBG). They
then combined the three colors to produce RBG-colored images. The features of the color
image enlarged the differences between the different fault signals and increased the fault
detection accuracy.

Instead of directly using vibration signals, applying a signal processing method also
increases the diagnostic accuracy. Janssens et al. demonstrated a 2D CNN process for
bearing condition classification by applying Fourier transform to acceleration signals [13].
Ding et al. presented a novel energy-fluctuated multiscale feature mining approach based
on a wavelet packet energy (WPE) image to perform a 2D CNN for spindle-bearing fault
diagnosis [14]. The WPE transfer separated the signals into a series of frequency subspaces
without losing the energy of the frequency components and greatly enlarged the vibration
frequency characteristics. Furthermore, Verstraete et al. compared the effectiveness of
several time–frequency analytical methods, including the short-time Fourier transform, the
wavelet transform, and the Hilbert–Huang transform [15].

Two-dimensional CNN, as a deep-learning algorithm, shows promising diagnostic
accuracy. However, 2D CNN was initially designed for image analysis; it shows some
limitations in processing vibration signals because vibration signals are usually presented
as time-domain 1D data. To overcome this problem, 1D CNN has been applied to machine
failure detection.

One-dimensional CNN was first demonstrated in 2015 to analyze electrocardiograms
and to detect human activity signals. Meanwhile, 1D CNN was also applied to bearing/gear
fault detection. Using vibration signals is the most common approach to performing 1D
CNN in bearing fault detection. Eren et al. used raw vibration signals as the input data to
train a 1D CNN for bearing fault detection [16]. Studies also showed that real-time and
rapid failure detection could be achieved by monitoring vibration signals and processes in
1D CNN [16,17].
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Besides monitoring vibration signals, researchers are also looking to use other me-
chanical signals for 1D CNN-based classification. For example, Ince et al. used the motor’s
current data to train a 1D CNN for real-time condition monitoring [18]. Similarly, Khan et al.
used the motor’s current data as the input and developed an analytical model for inter-turn
fault diagnosis by combining the 1D CNN and long short-term memory network [19]. Both
1D and 2D CNNs have shown high accuracy in classification and diagnosis. CNN retains
more attributes from the original data. Therefore, it can reduce error or information loss
during the feature extraction process.

In this study, a CNN-based drill bit defect diagnostic application is demonstrated.
Drilling is one of the most used machining processes. During the drilling process, the
abrasion of the drill bits is much greater than that of the bearings and gears. The health
condition of the drill directly affects the success or failure of drilling. Additionally, drilling
is one of the significant processes of rock mechanics and mining engineering. Mining
engineers are interested in identifying geological information by monitoring the vibration
signals from the drilling process.

In recent years, Yari et al. reported the logical relations between rock characterization
and acoustic frequencies by monitoring the acoustic signals generated during the drilling
operation [20]. Furthermore, by analyzing acoustic signals, various physical characteristics
of sedimentary rocks and carbonate rocks can be determined [20,21]. Khoshouei et al.
used the acoustic signal’s root mean square (RMS) to identify the uniaxial compressive
strength; the Brazilian tensile strength; the Schmidt rebound number; and the longitudinal
wave velocities of sedimentary, metamorphic, and igneous rocks [22]. These approaches
have significant potential for their future use in the industry for field identification and
classification of rock.

However, the premise of all of these applications is to use a non-damaging drill bit.
Therefore, establishing a highly effective condition monitoring and failure detection system
is essential and helps to reduce unnecessary material and time consumption and protects
the machine from damage. This study demonstrates a drill bit failure diagnostic system by
monitoring vibration patterns during the drilling process. Vibration signals were collected
using a SmartCheck system, and drill bits with different health conditions were used.
Short-time Fourier transform was performed on the raw data to create a spectrogram image
for each measurement data set. After processing the data, CNN algorithms were applied
for defect classification and diagnosis (Figure 1). Additionally, 1D CNN and 2D CNN were
used for data processing. Finally, the characteristics of the two algorithms were compared.

Figure 1. Schematical representation of the experimental process.

2. Experiment Setup

In this experiment, a SmartCheck system, which is a novel condition monitoring tool
produced by the Schaeffler Group, was used for vibration data collection. A piezoelec-
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tric accelerometer and a temperature sensor were integrated into the SmartCheck system.
Figure 2a shows the image of the SmartCheck system used in this experiment. The acceler-
ation sensor in the SmartCheck system has a ±50 g measurement range and a frequency
range of 0.8 Hz–10 kHz. This frequency range is suitable for measuring most of the ma-
chine vibrations. The sampling frequency of the SmartCheck system was set to 25.8 K for
high-resolution measurement.

Figure 2. (a) An image of the SmartCheck system, (b) an image of the aluminum block, and (c) an
image of the drill machine used in the experiment.

The sensor was attached to the top of the dill machine to measure vibrations (Figure 1).
The sensor position was selected because it was the closest position to the motor of the drill
machine and helped in the collection of vibration signals. Additionally, this position would
not be disturbed when changing drill bits or moving samples. It ensured that the sensor
was placed in the same location for all measurements and reduced measurement error.

During the measurement, the drilling speed was controlled by a control panel and
was set to 500 rpm. The feeding speed was approximately 3 mm/min. Each vibration
signal was continuously collected for 1.27 s, and the collecting interval of two signals was
20–25 s. Each data set contains 325,120 data points. Figure 2b presents the 6061 aluminum
block used in the experiment. The aluminum was fixed on the stage by a clamp for safety
purposes and to avoid displacement during the drilling process. Figure 2c shows the drill
machine used in this experiment.

Figure 3 presents three drill bits with three artificially created defects and a drill bit
without defects. Yellow circles show the defect positions. Figure 3a presents a notched
blade edge. There is evident damage on the edge of the blade. Figure 3b presents a blunt
edge in a drill bit, as shown in the yellow circle. The edge of the drill bit was polished by
file tools, which made the blade not as sharp as a healthy drill bit. Figure 3c presents a
defective drill bit with a blunt head. The top of the drill bit was flattened. A yellow circle
highlights this in the image. These are the most common defects in drill bits caused by
daily operations [23]. Lastly, Figure 3d presents a healthy drill bit without defects.
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Figure 3. (a) An image of a notched drill bit, (b) an image of a blunt-edged drill bit, (c) an image of a
blunt-headed drill bit, and (d) an image of a healthy dill bit without any defects.

3. Data Processing and Feature Extraction

Figure 4 presents the time-domain vibration signals of the four drill bits with different
health conditions. Defects #1, #2, and #3 represent the “notched” drill bit, the drill bit with
a “blunt edge”, and the drill bit with a “blunt head”, respectively. “Healthy” represents
the drill bit with no damage. The figure shows the accelerometer read-out. The amplitude
corresponds to the unit in g (1 g = 9.81 m/s2). A larger amplitude represents a larger
vibration amplitude. Each data set contains 32,770 data points. From the figure, it can be
observed that the vibration signals contain a large amount of noise. It is challenging to
distinguish the differences between each condition. In particular, the signal amplitude
and vibration features of defect #1 and the “healthy” sample are very similar. Therefore,
further data processing is needed for defect diagnosis. Although some researchers use
raw vibration data to perform 1D CNN for bearing fault detection [16], it requires a large
amount of computation. This study applied a short-time Fourier transform to reduce the
data size and the noise effect.
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Figure 4. Read-out of vibration signals collected by the SmartCheck system. Defects #1–#3 represent
the “notched” drill bit, the drill bit with a “blunt edge”, and the drill bit with a “blunt head”,
respectively. “Healthy” represents a drill bit without any defects.

Short-time Fourier transform (STFT) was selected as the feature extraction method in
this experiment. STFT applies Fourier transform for localization in both the frequency and
time domains of time-varying signals [24]. Because of the advantages of frequency-domain
analysis of nonstationary signals, STFT is considered a promising approach for analyzing
vibration signals under complex conditions or with background noises [15].

A spectrogram takes several FFTs and overlaps them to show how the frequency
domain changes with time. It could be a powerful method to describe how a vibration
spectrum changes when vibration analysis is performed in a noisy environment.

The STFT process can be represented as follows:
Signal frames are extracted at regular time intervals by a finite window function w[m],

xl [m] = x[m + lH]w[m] (1)

where m ∈ {1, 2, . . . , M} is the local time, M is the analysis window length, l is the total
number of frames, and H is the hop size. Furthermore, discrete Fourier transform (DFT) was
performed on every frame to localize a two-sided spectrum using the following equation:

X[k, l] =
1
M ∑K

m−1 xl [m]e−j2π mk
K (2)

where k ∈ {1, 2, . . . , N} is the frequency band index and K is the DFT size. The term
x[k,l] represents the STFT of x[n] and corresponds to the local time–frequency behavior
of the signal around the time index l and the frequency range k [25]. Figure 5 presents
the spectrograms for the different drill bits. In a spectrogram, the color reflects the signal
response. In this case, a brighter color reflects a stronger signal response. This feature
facilitates the use of 2D CNN algorithms to analyze and learn the various patterns in each
health condition. As shown in the figure, most vibration features concentrate in a frequency
range lower than 1000 Hz. Therefore, all of the data in the frequency range above 2000 Hz
were removed in this experiment. The generated spectrograms were applied directly to the
2D CNN for classification and training.
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Figure 5. Spectrogram images of the vibration data as the input into the 2D CNN.

Although 2D CNN is a promising method for fault diagnosis applications, it needs
a massive amount of calculation to provide a high diagnostic accuracy. Furthermore, 2D
CNN requires images as the input to perform the algorithm. It becomes a challenge to
apply 2D CNN to real-time vibration analysis. One-dimensional CNN uses 1D data arrays
as inputs. It is more suitable for vibration signal analysis. Therefore, 1D CNN was also
performed for comparison purposes.

In order to perform the 1D CNN, the collected data were reconstructed to a 1D data
structure. Based on Equation (2), the corresponding energy spectral density for the selected
frequency band can be presented as follows:

X[F1, Tn], X[F2, Tn], X[F2, Tn] . . . X[Fn, Tn] (3)

and the spectrogram can be considered as a F × T matrix. In this experiment, the size of F
is 51 and F∈ {0, 256, 512, 768, 1024, 1280 . . . 12800}. In addition, T = 163, meaning there are
163 energy spectral density data points for each frequency band. The construction process
can be shown as follows:

DataArray = [X(F1) + X(F2) + X(F3) . . . X(Fn)]) (4)

After analyzing the vibration signals, it was found that most of the vibration signals
were observed in a frequency range lower than 1300 Hz. Therefore, only a frequency range
lower than 1300 Hz was kept during the data reconstruction process. A 1 × 1536 matrix
was created to represent each measurement. The data size was reduced significantly. It
led to a reduction in calculation complexity and increased the processing speed. Figure 6
shows the reconstructed data set for different health conditions. The y-axis shows the
corresponding signal response to each data point in the data set. The figure presents an
obvious difference in the signal response of the different drill bits. For example, in defect #1,
there are obvious peaks in the range of the data points from 800 to 1000. On the other hand,
the figure shows that most of the peaks are constructed in the first 200 data points for the
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healthy drill bit. Defects #2 and #3 show high similarities to each other. The reconstructed
data sets were used as the input data in the 1D CNN process for further analysis.

Figure 6. Plot of the reconstructed data sets for the drill bits with different health conditions.

4. Results and Discussion
4.1. CNN Classification Result

In this experiment, two CNN structures were established for defect detection and
classification. The structures of both CNN processes are presented in Figure 7. For the 2D
CNN, the input data were a set of labeled spectrogram images. The size of the input image
was 100 × 100 pixels. The first convolution layer contained 11 filters with a size of 3 × 3.
The second convolution layer contained 10 filters with a size of 3 × 3. After the convolution
layers, a fully connected layer was added. For the 2D CNN, 70% of the labeled data were
used to train the network, and 30% of the data were used as the testing samples.

Figure 7. Structures of the 2D CNN and 1D CNN defect diagnosis processes.



Appl. Sci. 2022, 12, 10799 9 of 13

For the 1D CNN structure, the first convolution layer contained 20 filters with a kernel
size of 51 and was followed by four sub-sampling layers. The second convolution layer
contained 10 filters with a kernel size of 21 and two sub-sampling layers. A fully connected
layer was added with four classification outputs.

The accuracy of the classification results was calculated based on the equation below:

Accuracy =
TP + TN

TP + TN + FN + FP
× 100% (5)

where TP, TN, FP, and FN represent true positive, true negative, false positive, and false
negative, respectively. TP indicates that the positive training data are evaluated as positive;
TN indicates that the negative training data are evaluated as negative; FP indicates that the
negative training data are evaluated as positive; and FN indicates that the positive training
data are evaluated as negative.

Figure 8 presents the training and validation results of the dill bit defect diagnosis
using the CNNs. Figure 8a shows the confusion matrix of the final learning results. As
the confusion matrix shows, the trained model accurately distinguishes defect #1 and the
healthy drill bit from the other drill bits. The overall test accuracy is 97.6%. Such high
accuracy is considered to be due to the unique vibration patterns caused by the notched
edge in the drill bit.

Figure 8. (a) The confusion matrix of the 2D CNN and (b) the confusion matrix of the 1D CNN.

Drilling is one of the typical rotating processes; an inherent vibration can be observed
during the operation. When drilling with a notched drill bit, the notch will create special
vibration patterns along the turning blade. Such vibration patterns should be able to be
distinguished relatively easily [26]. Therefore, it can be observed that defect #1 has a high
diagnostic accuracy. For the blunt edge (defect #2) and the blunt head (defect #3), both
types of defects increase the drilling resistance during the operation. These defects can be
considered as adding loadings to the motor. Several studies have reported how vibration
patterns are affected by adding loadings to a motor [27,28]. However, compared to adding
loadings to a motor directly, the loadings added to a drill bit with a blunt blade should be
relatively small. Therefore, it causes a diagnostic error as reflected in the confusion matrix.

In the 1D CNN, the overall accuracy is about 96.4%. The confusion matrix is shown in
Figure 8b. The 1D CNN also shows a high classification accuracy. The classification results
of the 1D CNN are similar to those of the 2D CNN. Similar to the 2D CNN results, there
is a misjudgment in defect #2 and defect #3. This indicates that the vibration patterns are
similar between the blunt edge and blunt head defects. The classification accuracy of each
class is 100% for defect #1 and the healthy drill bit, and 93% for defects #2 and #3.
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4.2. t-SNE Analysis for 1D CNN

For further analysis, a t-SNE analysis was performed. t-SNE is a kind of visual-
ization algorithm which transforms the high-dimensional Euclidean distance between
data points into a conditional probability representing similarity [29]. This analysis maps
high-dimensional data into low-dimensional data while keeping the features of the dis-
tance between data points. It visualizes if a data set has good divisibility by mapping
high-dimensional data to a 2D data set. t-SNE technology is also employed to visual-
ize the learned features of a classification accuracy analysis. The obtained results are
presented in Figure 9.

Figure 9. The t-SNE visualization of features for (a) 1D CNN non-processed data, (b) 1D CNN
processed test data, (c) 2D CNN non-processed data, and (d) 2D CNN processed test data.

Figure 9 shows the t-SNE results for the test data set before and after applying the 1D
convolution and 2D convolution process receptivity. Figure 9a,c present the original data
set. Figure 9b,d show the features obtained after the convolutional layers. Compared to the
original data set, it clearly shows that all the data points have been gradually separated. In
Figure 9b,d, the “healthy” samples are separated from the others clearly. Some overlapping
or mixed data points can be observed between defect #1 and defect #2. The results match
the classification results shown on the confusion matrix, where the “healthy” sample has
100% accuracy, and there are some classification errors in defect #2 and defect #3.

4.3. Computational Time

In this experiment, MATLAB, R2021b version was used. The PC used for all calcula-
tions was equipped with the 11th Gen Intel(R) Core (TM) i5-1135G7 @ 2.4 GHz, with 8GB
RAM. For the 2D CNN, 206 s was used for 200 epochs, and approximately 300 s was used
for 300 epochs. On the other hand, for the 1D CNN, the overall computational time was
around 147 s for 300 epochs. As a result, the processing time for the 1D CNN process was
shorter than the 2D CNN process due to the smaller data size.

Table 1 shows the diagnostic accuracy under different epoch numbers for the 2D CNN
and the 1D CNN classification processes. For the 1D CNN, classification accuracy increased
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rapidly for the initial 100 epochs. After the accuracy reached 80%, the increase in accuracy
slowed and gradually reached 96% at 300 epochs. For the 2D CNN, the accuracy stabilized
at 97.33% after 200 epochs. As mentioned above, it took approximately 147s for the 1D
CNN to run 300 epochs and 206 s for the 2D CNN to run 200 epochs. These results indicate
that the 2D CNN has a better classification ability. Although it takes more iterations for
the 1D CNN to reach a high classification accuracy, the computational complexity for each
iteration is lower than the 2D CNN. In the 2D CNN, the input image size is 100× 100 pixels
with three layers. It means that there are 10,000 × 3 data points for a single measurement.
However, for the 1D CNN, the input data array only contains 1536 data points for each
measurement. As a result, the overall time cost for the 1D CNN is less than that for the 2D
CNN. Additionally, the hardware requirements for computation are much less than the 2D
CNN. This property will be beneficial when performing real-time data analysis, and it also
provides the possibility for system integration.

Table 1. Diagnostic accuracy with different epoch numbers for the 1D CNN and the 2D CNN.

1D CNN 2D CNN

Epoch Number Accuracy (%) Time (s) Accuracy (%) Time (s)

1 27.7 0.42 29.33 1
50 60 22.1 28.0 52

100 81.8 30.3 57.33 96
150 81.8 57.7 94.67 156
200 87.2 93.8 97.33 206
250 90.9 121.3 97.33 252
300 96.6 147.5 97.33 310

5. Conclusions

This study applied two CNN processes to drill bit defect diagnosis. In the results, both
the 2D CNN and the 1D CNN provide high diagnostic accuracy of over 96%. Short-time
Fourier transform was performed to convert the time-domain vibration signals into a 2D
image to perform the 2D CNN process. The generated spectrum images were directly
used as inputs to perform the 2D CNN. In order to perform the 1D CNN, the vibration
signals were reconstructed based on the STFT spectrogram to obtain a 1D data set. The
reconstructed data set contains 1536 data points. Compared to the raw data set, which
contains 32,770 data points, the reconstruction process significantly reduces the data size
while keeping the necessary features.

By comparing the two CNN algorithms, we found that the 2D CNN process achieves
a higher diagnosis accuracy with a longer computational time. For the 1D CNN, the
classification accuracy can be achieved at a similar level to that of the 2D CNN; however, the
computational time of the 1D CNN is shorter than the 2D CNN due to its low computational
complexity. This process reduces the hardware requirements for computation and can
be beneficial to system integration and real-time analysis. It is worth mentioning that
both CNN processes provide high accuracy in distinguishing “healthy” conditions from
damaged conditions. In other words, the processes can detect whether the drill bits are
damaged. For fault diagnosis purposes, the overall diagnostic accuracy of the 1D CNN
is lower than that of the 2D CNN, but it does provide a high calculation speed and an
accurate diagnosis.
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