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Abstract: An Informed RRT* (IRRT*) algorithm is one of the optimized versions of a Rapidly-
exploring Random Trees (RRT) algorithm which finds near-optimal solutions faster than RRT and
RRT* algorithms by restricting the search area to an ellipsoidal subset of the state space. However,
IRRT* algorithm has the disadvantage of randomness of sampling and a non-real time process, which
has a negative impact on the convergence rate and search efficiency in path planning applications. In
this paper, we report a hybrid algorithm by combining the Artificial Potential Field Method (APF)
with an IRRT* algorithm for mobile robot path planning. By introducing the virtual force field of APF
into the search tree expansion stage of the IRRT* algorithm, the guidance of the algorithm increases,
which greatly improves the convergence rate and search efficiency of the IRRT* algorithm. The
proposed algorithm was validated in simulations and proven to be superior to some other RRT-based
algorithms in search time and path length. It also was performed in a real robotic platform, which
shows that the proposed algorithm can be well executed in real scenarios.

Keywords: path planning; hybrid algorithm; APF-IRRT* algorithm; mobile robots

1. Introduction

The purpose of mobile robot path planning is to find a feasible and collision-free
optimal path from a start point to a target point in an obstacle working environment
according to certain evaluation criteria, such as the shortest path length, the minimum
energy consumption or the shortest walking time [1–3]. As one of the core technologies in
mobile robot navigation, path planning ensures that mobile robots can accomplish tasks
efficiently, safely and independently, and it has been widely used in motion planning
problems, such as in manipulation robots [4], mobile robots [5,6] and unmanned aerial
vehicles [7,8]. According to the robot’s knowledge about the environment, path planning
is divided into two types [9]: local path planning and global path planning. In local path
planning, the robots sense the current local environment (i.e., the location and geometry of
the obstacles) and construct an estimated map of the environment in real time during the
whole search process to find a feasible obstacle-free path from a start point to a target point.
However, this category of path planning can easily conclude with a local optimal solution
or even a non-reachable target due to a lack of prior information about the environment.
Common local path planning algorithms are the Artificial Immune algorithm [10], A-
star algorithm [11], Fuzzy algorithm [12] and APF algorithm [13], etc. In global path
planning, owing to knowledge of prior information about the search space, the robots can
acquire a global optimal path using optimization algorithms directly. Common global path
planning algorithms are the Bee Colony algorithm [14], Genetic algorithm [15] and RRT
algorithm [16], etc. Due to the disadvantage of their non-real time process, these algorithms
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are ineffective if the environment changes, such as an unknown obstacle appearing. Up
to now, how to overcome their respective shortcomings and how to realize advantage
complementation of different single algorithms remains a technical challenge.

The RRT algorithm, which is considered as one of the most popular global path
planning algorithms, is an efficient incremental sampling-based method to find the global
solution proposed by S. M. LaValle of Iowa State University in 1998 [16]. The main idea
of the RRT algorithm is to construct a search tree rooted at the starting point and to grow
the tree by random samples from the search space. The RRT algorithm is simple and can
find a solution in any complex environment, and has been widely used in path planning
for mobile robots. However, due to the random sampled process, the RRT algorithm
usually provides non-optimal solutions. To combat the disadvantages of RRT algorithm,
an optimized RRT inversion called RRT star (RRT*) was proposed [17] in 2010. Different
from RRT, the RRT* algorithm does not stop sampling after the first solution is found. It
continues iteration to optimize the current solution until a near-optimal solution is found.
The increased sampling and iteration process also leads to inefficiency of the algorithm.

In 2014, Gammell from the University of Toronto further optimized the RRT* algorithm,
which is called IRRT* algorithm, by restricting the search area to an ellipsoidal subset of
the state space [18,19]. This method expedited the optimization process and improved the
rate of convergence while retaining the same probabilistic completeness and asymptotic
optimality as the RRT* algorithm. However, it still has the disadvantage of the RRT-based
algorithm, in which it is difficult to avoid unnecessary extension and find the optimal
solution due to the randomness of sampling and non-real time process.

Due to the disadvantages mentioned above, many algorithms were proposed to
improve the quality of RRT-based algorithms. Kuffner proposed the RRT-Connect algorithm
in which two search trees were constructed in the start state and target state, respectively,
and grew toward each other [20]. This method greatly reduced the search time and
improved the efficiency rate. However, due to the random sampling process, the RRT-
Connect method still did not optimize their search tree. Wu et al. proposed Fast-RRT which
can obtain a new near-optimal path 20 times faster than the RRT* algorithm [21]. To obtain
an optimal path, the authors proposed a scheme in which an Improved RRT algorithm is
used to quickly search a viable path and a Fast-Optimal algorithm is used to merge it with
current best paths.

Recently, another kind of important method, which combines two different single
algorithms, was proposed to improve the search efficiency. Brunner introduced A* algo-
rithm into RRT* algorithm to guide the sampling procedure, which greatly accelerates
the convergence rate [22]. However, it is inefficient for A* to find an initial solution in a
large-scale scenario. Wang et al. applies a reinforcement learning algorithm to an RRT
algorithm to direct the growth of search trees [23]. The algorithm developed the explo-
ration ability of each search tree and improved the search efficiency, but the learning-based
methods may not perform well in a new environment. In addition, some other hybrid
algorithms were proposed to improve the quality of RRT-based path planning algorithms.
Jeong et al. proposed the Q-RRT* algorithm which optimized the process of selecting the
parent node and connection by using the triangle inequality [24]. The Q-RRT* algorithm
obtained a better initial solution and convergence rate than RRT* algorithm. Wang et al.
combined a bio-inspired algorithm and RRT algorithm to improve the search speed of
finding the initial solution by modifying the sampling process [25]. Their algorithm greatly
promoted the convergence rate and saved on memory usage. However, this method led
to nonuniform sample distributions. Mashayekhi introduced a hybrid RRT method by
combining the RRT-Connect algorithm and IRRT* algorithm [26]. Their algorithm com-
bined the advantages of the two algorithms, which can find initial solutions as quickly as
the RRT-Connect algorithm and return the near-optimal solutions as fast as IRRT* method.
A. Qurishi et al. proposed P-RRT* algorithm by introducing the APF method into an
RRT* algorithm to guide the exploration direction, which accelerated the convergence
speed faster than the RRT* algorithm [27]. However, these algorithms only considered the
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presence of static obstacles and can be only used in global path planning. Up to now, there
are only a few reports on path planning algorithms that can be used in complex static and
dynamic environments. In 2015, Orozco-Rosas et al. proposed a pseudo-bacterial potential
field (PBPF) method [28] by introducing the pseudo-bacterial genetic (PBG) algorithm
into the traditional APF method to optimize the gain parameters based on evolutionary
computation. Compared with the traditional APF method, the PBPF algorithm provides
a simple and powerful way to automatically obtain an optimal value of attractive and
repulsive potential gains. Another advantage of the PBPF method is that it is suitable to
work in both static and dynamic environments, and it does not need to consider the global
map information. Recently, Orozco-Rosas et al. improved their method by combining
the APF method with membrane computing with the genetic algorithm [29]. These new
algorithms greatly improved the research efficiency by shortening the path length and
execution time.

In this paper, we propose a new hybrid APF-IRRT* algorithm by combining the APF
algorithm and the IRRT* algorithm. The idea of the virtual force field of APF is introduced
into the IRRT* algorithm to guide the random tree to grow towards the goal point, which
does not need to model the global environment and avoids random sampling all over the
state space. The contributions of the proposed algorithm are: (1) It greatly improves the
search efficiency, and reduces the search time by more than 35% and 24% compared with
the IRRT* and P-RRT* algorithms, respectively. (2) The APF method increases the guidance
for the algorithm, which greatly reduces extended nodes and further shortens the path
length and the search time. In addition, the modification of the growth direction of the
random tree ensures the optimality of the solution of the algorithm. (3) Compared with
most other RRT-based algorithms that can only be applied in static scenarios, the proposed
hybrid algorithm includes the advantage of the APF method and can be applied both in
static and dynamic environments. The combination of these complementary algorithms
also provides another idea in solving the path planning for mobile robots.

The paper is structured as follows: Section 2 presents a short background about the IRRT*
algorithm. The proposed algorithm, including the related APF algorithm, is described in
detail in Section 3. In Section 4, simulation results are presented to show the effectiveness of
the proposed algorithm. The conclusion of the work is presented in Section 5.

2. Background

In this section, we will review the background of the proposed algorithm for mobile robot
path planning, including the definitions of the work and the main idea of the IRRT* algorithm.

2.1. Problem Definition

We define the path planning algorithm similarly to [18]. Let C ⊆ Rn be the state space
of the system. Path planning is to search for an optimal continuous path from the starting
state xstart to the target state xtar in the given space C. To ensure accomplishment of task
safely, the mobile robot should avoid collision with any obstacles or threats in the region
Cobs ⊆ C, and should be in the set of the permissible state C f ree ⊆ C throughout navigation.
Here, C f ree and Cobs are complementary, and constitute the state space of the mobile robot.

We define the path function π∗[xstart, xtar] = (x[τ]) to be the optimal path between
xstart and xtar as:

π∗[xstart, xtar] = argmin{π | x[0] = x0, x[τ] = x}, (1)

where x is the robot position at time τ. It has nothing to do with the boundary and obstacles.
We define the cost function c∗[xstart, xtar] to be the energy loss of the search time and

path length between xstart and xtar as:

c∗[xstart, xtar] = min{π | x[0] = x0, x[τ] = x1}c[π], (2)

where c[π] is the cost of the path.
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For 0 < t < τ, π∗[x0, x1] can be expressed as:

π∗[x0, x1] = π∗[x0, x[t]] + π∗[x[t], x1] (3)

which indicates that the optimal collision-free trajectory between the starting point and
the target point of the robot π∗f ree can be connected with the best trajectory among a set of
discrete subset states (xstart, x1, x2, x3, . . . , xtar).

To search for the shortest path length in state space C, the IRRT* algorithm improves
the subset state X f̂ ⊇ X f with the current solution cbest. The X f̂ can be expressed as

X f̂ = {x ∈ X | ‖ xstart − x ‖2 + ‖ x− xtar ‖2≤ cbest} (4)

The subset space can also be described as a special hyperellipsoid whose cross section
is shown in Figure 1, in which the xstart and xtar are the focal points. The cbest is the

transverse diameter of the ellipse and the
√

c2
best − c2

min is the conjugate diameter.
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Figure 1. The heuristic sampling ellipse domain. The xstart and xtar are the focal points. cmin and
cbest are the theoretical minimum cost and the current solution cost between the start point and target
point, respectively.

2.2. Description of IRRT* Algorithm

Algorithm 1 provides the steps of the IRRT* algorithm. It firstly behaves as an RRT*
algorithm until a first solution cbest is found in line 13, and adds the solution to a list
of possible solutions (line 15). Then the IRRT* algorithm uses the minimum solution of
this list (line 6) to calculate and continue sampling X f̂ (line 7), and repeat the steps as
above. Thus, the minimum value of cbest of this list can be calculated and updated during
iterations. IRRT* algorithm first acts similarly to RRT* algorithm to find an initial solution
and calculate the path length. Then it structures an ellipse with the path length cbest as its
transverse diameter and the start point xstart and goal point xtar as the focuses. Finally, it
improves the sampling probability of the extended node in the ellipsoidal domain, and
decreases the ellipse area by constantly iterating until the optimal solution is found. The
iterative process can be shown in Figure 2.

The IRRT* algorithm restricts the search domain to a subset of the initial domain based
on the current optimal solution, which improves the rate of convergence. It helps the robot
find the near-optimal solution faster than the original RRT* algorithm does. However, due
to the disadvantages of the randomness of sampling and non-real time process, the IRRT*
algorithm still generates unnecessary extended nodes in invalid regions, which limits the
search efficiency and convergence rate.
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Algorithm 1: IRRT∗
(
xstart, xtarget

)
1: V ← {xstart} ;
2: E← ∅ ;
3: Xsoln ← ∅ ;
4: T = (V, E) ;
5: for iteration = 1 to n do
6: cbest ← minxsoln∈Xsoln{Cost(Xsoln)} ;
7: xrand ← Sample

(
xstart, xtarget, cbest

)
;

8: xnear ← Nearnest(T, xrand ) ;
9: xnew ← Steer(xrand, xnear, StepSize) ;

10: if CollisionFree(xnearest, xnew) then
11: Xnear ← Nearest(T, xnew, rRRT∗ ) ;
12: xparent ← Parent(xnear) ;
13: if InEllipseRegion(xnew) then

14:
Xsoln ← Xsoln ∪ {xnew}
Xsoln ∪ {xnew} ;

15: T.addNode(xnew) ;
16: Return T ;
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3. Proposed APF-IRRT* Algorithm

Aiming at improving low search efficiency and the convergence rate caused by unnec-
essary extended nodes in invalid regions of IRRT* algorithm, we propose a new hybrid
method named the APF-IRRT* algorithm. It combines a local APF algorithm and an IRRT*
algorithm by introducing the virtual force idea of APF into the IRRT* algorithm at the
stage of the search tree expansion. It increases the guidance of the IRRT* algorithm, and
improves the search efficiency, while retaining the same probabilistic completeness and
asymptotic optimality as IRRT*.

3.1. APF Algorithm

The APF algorithm is a kind of virtual force field method. Its basic idea is to build
virtual potential fields in state space C so that the point, which represents the mobile robot,
is attracted by the target point xtar , and is repelled by the obstacle xobs in C.

Let xt = (xx
t , xy

t ) and xgoal = (xx
tar, xy

tar) be the current position and target point,
respectively. The attractive field, which guides the robot to the target point, is defined as

Uatt(x) =
1
2

kattd2(xt, xtar), (5)

where katt and d(xt, xtar) are the attractive coefficient and Euclidean distance between xt
and xtar, respectively. It is a special attractive field which will be stronger when it is further
away from the target point. Especially, Uatt(x)→ 0 , if d(xt, xtar) = 0.
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The attractive force Fatt(x) can be expressed as the negative gradient of Uatt(x),

Fatt(x) = −∇ Uatt(x) = kattd(xt, xtar) (6)

The direction of Fatt(x) passes through xt and xtar to the target point.
Similarly, the repulsive field and repulsive force, which keep the robot away from

obstacles, can be expressed as

Urep(x) =

{
1
2 krep

(
1

d(xt ,xobs)
− 1

d0

)2
i f d(xt, xobs) ≤ d0

0, i f d(xt, xobs) > d0

(7)

and

Frep(x) =

{
krep

1
d(xt , xobs)

2

(
1

d(xt , xobs)
− 1

d0

)
i f d(xt, xobs) ≤ d0

0, i f d(xt, xobs) > d0
, (8)

where krep is the repulsive coefficient, d(xt, xobs) is the Euclidean distance between xt and
xobs, d0 is the range of influence of obstacle and Urep(x)→ ∞ when d(xt, xobs) = 0. The
direction of Frep(x) passes through xt and xobs from the target point.

The total potential U(x) is the sum of an attractive Uatt(x) and a repulsive potential
Urep(x) as

Utotal(x) = Uatt(x) + Urep(x), (9)

whose negative gradient −∇ Utotal(x) indicates the most promising local direction of motion.
Having the APF method has the advantages of less calculation, low complexity and

good real-time performance; the APF method has been widely used in path planning for
mobile robots. However, it easily falls into the target non-reachable and local minima
problems due to the lack of prior information about the environment. To this end, the
APF method usually combines with other algorithms to overcome these disadvantages.
In this article, we propose a hybrid algorithm by combining IRRT* and the APF method
by introducing the APF method into the search tree expansion stage of IRRT* algorithm.
The APF method greatly improves the guidance for the algorithm, which further shortens
the path length and the search time. Furthermore, due to the real-time process of the APF
method, the proposed algorithm can be used not only in static environments, but also in
dynamic environments.

3.2. Procedure of Hybrid Algorithm

The basic process of the hybrid APF-IRRT* algorithm is described as follows:
Step 1: Establish a grid map based on the workspace of the mobile robot, including

the position of obstacles, starting point xstart and target point xtar.
Step 2: Set the number and neighborhood radius of iteration. Set step size of I-RRT*

algorithm.
Step 3: Using the RRT algorithm to plan the initial path, calculate the path length cbest

and the Euclidean distance cmin between the starting point and the target point.
Step 4: Randomly generate node xrand, find the neighbor node xnear, and calculate the

vector α from xnear to xrand.
Step 5: Initialize the APF parameters, including the attractive coefficient, maximum attrac-

tive force, repulsive coefficient and repulsion distance. Calculate the sum vector β of APF.
Step 6: Calculate sum vector θ of α and β, generate a new node xnew, and rewrite the

parent node for xnew.
Step 7: Perform collision detection and elliptical domain detection for the path.
Step 8: Search for a path from the start point to the target point. If found, calculate the

path length. If not found, expand the search tree.
Step 9: Determine whether the convergence goal is achieved or not. If it is not achieved,

expand the node of the IRRT* until achieved. If it is achieved, end the algorithm.
The chart of the hybrid APF-IRRT* algorithm is shown as Figure 3.
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3.3. Description of Hybrid Algorithm

An algorithm example using the proposed hybrid algorithm is presented in Algorithm
2. It is similar to an IRRT* algorithm, which adds the virtual force of APF into an IRRT*
algorithm to generate new nodes (line 9). This results in increasing the guidance of the
IRRT* algorithm, which will avoid random sampling all over the state space and reduce
unnecessary extended nodes in invalid regions. It greatly reduces computation while
improving the IRRT* algorithm in real time.
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Algorithm 2: APF− IRRT*(xstart, xtar)

1: V ← {xstart} ;
2: E← ∅ ;
3: Xsoln ← ∅ ;
4: T = (V, E) ;
5: for iteration = 1 to n do
6: cbest ← minxsoln∈Xsoln{Cost(Xsoln)} ;
7: xrand ← Sample(xstart, xtar, cbest) ;
8: xnear ← Nearnest(T, xrand );
9: xnew ← Steer(xrand, xnear, xtar, map, stepsize) ;

10: if CollisionFree(xnearest, xnew) then
11: Xnear ← Nearest(T, xnew, rRRT∗ ) ;
12: xparent ← Parent(xnear) ;
13: if InEllipseRegion(xnew) then

14:
Xsoln ← Xsoln ∪ {xnew}
Xsoln ∪ {xnew} ;

15: T.addNode(xnew) ;
16: Return T ;

The key steer function algorithm (line 9) can be realized with three steps, as shown in
Figure 4. Step one is to calculate the sum vector α of xnew and xrand (Figure 4a). Step two
uses APF to calculate Fatt and Frep, and then calculates the sum vector β (Figure 4b). The
last step is to calculate the sum vector θ of α and β (Figure 4c).
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Figure 4. Realization of the steer algorithm in three steps.

The steer function Algorithm 3 is described as:

Algorithm 3: Steer(xrand, xnear, xtar, map, stepsize)

1 if xrand ∈ C f ree then;
2 α← atan2(xnear, xrand) ;
3 angle← angle(xnear, xtar, map, length(map)) ;
4 Calculation β();
5 Fa ← APF_attact(xnear, xtar, angle, AFP_a, AFP_amax) ;
6 Fr ← APF_repulsion(xnear, map, angle, AFP_r, AFP_po);
7 β← atan2(Fa, Fr) ;
8 xnew ← Steer(α, β, stepsize) ;
9 else

10 xrand ∼ U(X) ;
11 Return T;
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4. Simulation Results and Discussion

In this section, we first perform simulation experiments in six different environments
using Matlab to verify the effectiveness of the APF-IRRT* algorithm. Then, a comparison
of the proposed algorithm against RRT*, P-RRT* and IRRT* algorithms on a variety of
planning problems is presented. Lastly, we perform the proposed APF-IRRT* algorithm in
a real laboratory environment to test the path planning on a real mobile robot.

4.1. Comparison with APF Algorithm

To verify the superiority of the algorithm, we first compare the APF-IRRT* with APF
algorithm alone. We first construct a grid map as 50 m × 50 m, and set (1, 1) and (49, 49) as
start point and target point, respectively. Three obstacles, which are represented by black
squares, are set at (15, 20), (32, 16) and (36, 40), respectively. The parameters of APF are
set as: attractive coefficient APF_a = 20, the maximum attractive force APF_amax = 1,
repulsive coefficient APF_r = 15, and repulsion distance APF_po = 20m. The maximum
number of iterations is set to 1000, and the step size is set to 0.4.

Figure 5 shows the simulation results of APF algorithm and proposed algorithm. From
20 independent experiments, we obtained the average path lengths of the APF algorithm
as 82.34 m and search time as 10.27 s, and the APF-IRRT* algorithm obtained an average of
70.76 m and 2.36 s. Obviously, compared to the APF algorithm, the APF-IRRT* algorithm
has significant advantages in terms of path length and search time.
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Figure 5. A comparison of the APF algorithm and APF-IRRT* algorithm in a simulated example.
(a) shows the simulation result of APF algorithm. (b) shows the simulation result of APF-IRRT* algorithm.

4.2. Path Planning in Static Scenarios

In this section, the grid map used to model the environmental information is set to
150 m × 250 m. The parameters of APF are set as: attractive coefficient APF_a = 200,
the maximum attractive force APF_amax = 1, repulsive coefficient APF_r = 150, and
repulsion distance APF_po = 50m. The maximum number of iterations is set to 3000, and
the step size of xrand and xnear are both set to 5.

Table 1 shows the test environments which contain start position, target position and
the obstacles information. Our aim is to find a feasible and collision-free optimal path from
a start point to a target point in each obstacles test environment.
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Table 1. Test environment of the simulations.

Test Environment Start Position Target Position Obstacles Position

M1 (10, 75) (240, 75) (125, 75)
M2 (10, 75) (240, 75) (125, 52), (125, 75), (125, 98)
M3 (10, 75) (240, 75) (100, 52), (160, 75), (100, 98)
M4 (10, 10) (240, 140) (100, 98), (100, 75), (120, 45)

M5 (10, 10) (240, 140) (60, 60), (60, 35), (100, 98),
(100, 75), (120, 45)

M6 (80, 85) (80, 200)
(55, 104), (55, 92), (55, 80), (55, 68),
(72, 68), (89, 68) (89, 104), (72, 104),

(123, 68), (123, 80), (123, 92), (123, 104)

Figure 6 presents the best path which has the shortest collision-free path length based
on the proposed algorithm in each test environment described in Table 1. To understand
the advantage of the proposed hybrid algorithm directly, the path lengths of the RRT*,
IRRT*, A*-RRT*, P-RRT* and APF-IRRT* algorithms for the above six test environments are
shown in Figure 7. The simulation results in Figure 7 shows that the proposed APF-IRRT*
algorithm provides better solutions than those obtained using RRT* and IRRT*, A*-RRT*,
and P-RRT* algorithms, especially in more complex environments. For example, in the
test environment M5, the RRT* algorithm obtained an average path length of 305.47 m,
the IRRT* algorithm obtained 295.47 m, the A*-RRT* algorithm obtained 289.74 m and the
P-RRT* algorithm obtained 283.24 m from 20 independent experiments, the APF-IRRT*
algorithm obtained an average of 268.01 m. This gives a difference of 37.47 m, 27.46 m,
21.50 m and 15.23 m between the average path length that was obtained by the RRT*, IRRT*,
A*-RRT* and P-RRT* algorithms, respectively.
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Figure 7 also shows that the standard deviation for the 20 independent experiments
of the APF-IRRT* algorithm, compared with other four algorithms, is superior in each test
environment. Similarly, taking the test environment M5 as an example, the RRT*, IRRT*,
A*-RRT* and P-RRT* algorithms obtained a standard deviation of 9.21, 7.46, 6.45, and 4.60 m,
respectively, while the standard deviation of APF-IRRT* algorithm was 3.35 m. This reveals
that the path length value of the APF-IRRT* algorithm is closer to the mean value in each
experiment, which indicates that the proposed algorithm has lower deviation than the other
three algorithms. We can also see from Figure 7 that the more complex the environment
is, the more apparent the superiority of the standard deviation of APF-IRRT* algorithm
over the other algorithms is. For example, in test environment M1, the RRT*, IRRT*, A*-
RRT* and P-RRT* algorithms obtained a standard deviation of 6.54 m, 5.00 m, 4.05 m, and
4.16 m, respectively; the standard deviation of APF-IRRT* algorithm was 3.18 m. This
gives a difference of 3.36, 1.82, 0.87, and 0.98 m between the RRT*, IRRT*, A*-RRT*, P-RRT*
algorithms and the APF-IRRT* algorithm. While in test environment M5, the differences are
5.86, 4.11, 1.41, and 1.25 m, respectively. It is indicated that compared with the other three
algorithms, the APF-IRRT* algorithm has an advantage in complex environments.
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Another important evaluation parameter is search time. Table 2 gives the mean value
of search time for the four algorithms mentioned above in six different test environments
described in Table 1. All simulations were performed 20 times. As can be seen in Table 2,
the APF-IRRT* algorithm could find the optimal solution faster than other algorithms.
Again, taking the environment M5 as an example, it gives a difference of 1.14 s between the
APF-IRRT* and IRRT* algorithms. According to the search time of the algorithm, the search
efficiency of APF-IRRT* algorithm increases by about 35%, 30.5%, and 24% more than that
of IRRT*, A*-RRT*, and P-RRT* algorithm, respectively. The simulation results indicate that
the APF-IRRT* algorithm, by introducing the virtual force of APF into the expansion stage
of the search tree, increases the guidance for the algorithm, greatly improves the search
efficiency, and further shortens the path length of the algorithm.

Table 2. The mean value of search time for 20 independent simulations of RRT*, IRRT*, A*-RRT*,
P-RRT* and APF-IRRT* algorithms.

Environment RRT* IRRT* A*-RRT* P-RRT* APF-IRRT*

M1 3.56 2.31 2.33 2.01 1.53
M2 4.08 2.53 2.52 2.25 1.67
M3 4.01 2.51 2.45 2.15 1.60
M4 4.21 3.01 2.78 2.55 1.93
M5 4.50 3.24 3.02 2.76 2.10
M6 2.02 1.64 2.84 1.58 1.22

To verify the effectiveness of the APF-IRRT* algorithm in more complex environments,
we construct a grid map based on a real environment of our laboratory, as shown in Figure 8.
We can see from Figure 8 that the proposed algorithm can find a best path which has the
shortest collision-free path length from the start point to the target point. It also indicates
that the proposed APF-RRT* algorithm is effective in a more complex environment.
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4.3. Path Planning in a Dynamic

In real working scenarios, the mobile robots are usually faced with environmental
changes—one or more unknown obstacles appear. To ensure the mobile robot works well,
the state-of-the-art path planning methods present solutions to respond to the unknown
information and adjust the original path by considering the unknown information. In this
sub-section, we employ the proposed APF-IRRT* algorithm to perform the on-line path
planning in the test environment M5 where some unknown random static obstacles appear
on the known path.

To complete the experiment, we perform the path planning as the following steps:
First, we perform the off-line path planning in the known test environment M5 in which
information is described in Table 1. An average path length of 268.01 m from the start
point to the target point is obtained. Next, when the mobile robot travels along the original
path at position (120, 60), the mobile robot senses a new obstacle. It calculates the obstacle
position and re-plans a new feasible path to avoid collision with the obstacle, as shown in
Figure 9b. Then, when the mobile robot travels along the new path at position (190, 85),
the mobile robot senses another obstacle. Again, the mobile robot calculates the second
obstacle position and re-plans another feasible path to avoid collision with the second
obstacle, as shown in Figure 9c. Finally, the mobile robot travels along the latest path to the
target point, as shown in Figure 9d. The total path length from the start point to the target
point is 285.54 m.
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4.4. Effect of Complexity and Size of Grid Map in Search Time of the Algorithms

To test the effect of different complexities and sizes of grid maps in the search time
of the proposed hybrid algorithm, two different complexity maps and two different area
maps are selected for the simulation using the four algorithms mentioned above.

Figure 10a shows a comparison of search times for the four algorithms in the test
environments M2 and M5. The results were obtained by repeating the simulations 20 times
independently. We can see from the figure that the complexity does not change the trend
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of the curves, nor change the superiority of APF-IRRT* algorithm over the other three
algorithms. It indicates that the proposed APF-RRT* algorithm has a good ability to adapt
to the complexity of the map.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 15 of 18 
 

 

 

Figure 10. The effect of complexity and size of grid map in search time of four algorithms. (a) shows 

the effect of two different complexity grid maps in search time of four algorithms. The red and blue 

curves are test environment M5 and M2, respectively. (b) shows the effect of two different area grid 

maps in the search time of four algorithms. The red and blue curves are relatively larger area map 

and smaller area map, respectively. 

4.5. Experiment in a Real Environment 

To test the proposed APF-IRRT* algorithm for mobile robot path planning, we per-

formed it on an open robotic platform: the Mecanum wheel omni-directional mobile robot 

U-car, as shown in Figure 11. The main parameters of the U-car are the maximum linear 

velocity (4.5 m/s) and the maximum angular velocity (3.5 rad/s). 

 

Figure 11. The Mecanum wheel omni-directional mobile robot U-car which was used in the experi-

ment. 

The experiments were performed in a real laboratory environment considering the 

test environment M3 with three static obstacles. The size of the experiment area was set 

as 5 m × 5 m. The start point and the target point were set to (0, 2.5) and (5, 2.5), and the 

obstacles were set to (1.5, 3), (1.5, 2), (3, 2.5), respectively. For testing purposes, the linear 

velocity and the angular velocity of the omni-directional mobile robot were set to 1.0 m/s 

and 1.5 rad/s, respectively. The proposed APF-IRRT* algorithm planned a path to provide 

a sequence of motion commands to the mobile robot from the start point to the target 

point. The test results are shown in Figure 12, with a set of images of the mobile robot 

which show that the mobile robot drove at different positions. From Figure 12, we can see 

that the Mecanum wheel omni-directional mobile robot executes the path planning satis-

factorily in a real test environment. 

Figure 10. The effect of complexity and size of grid map in search time of four algorithms. (a) shows
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maps in the search time of four algorithms. The red and blue curves are relatively larger area map
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To test the effect of different sizes of grid maps for the proposed algorithm, the test
environment M5 was enlarged to 300 m × 500 m. The start point and the target point
were reset to (10, 290) and (490, 10), and the coordinates of the obstacles were changed
proportionally as (205, 135), (205, 170), (235, 215), (140, 185), and (140, 240), respectively. The
comparison of the mean search time for 20 independent simulations of the four algorithms
is shown in Figure 10b. We can see from the figure that the two curves, except for numerical
differences, keep a similar trend. It indicates that the proposed algorithm has a good ability
to adapt to the change of the size of the map.

4.5. Experiment in a Real Environment

To test the proposed APF-IRRT* algorithm for mobile robot path planning, we per-
formed it on an open robotic platform: the Mecanum wheel omni-directional mobile robot
U-car, as shown in Figure 11. The main parameters of the U-car are the maximum linear
velocity (4.5 m/s) and the maximum angular velocity (3.5 rad/s).
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The experiments were performed in a real laboratory environment considering the
test environment M3 with three static obstacles. The size of the experiment area was set
as 5 m × 5 m. The start point and the target point were set to (0, 2.5) and (5, 2.5), and the
obstacles were set to (1.5, 3), (1.5, 2), (3, 2.5), respectively. For testing purposes, the linear
velocity and the angular velocity of the omni-directional mobile robot were set to 1.0 m/s
and 1.5 rad/s, respectively. The proposed APF-IRRT* algorithm planned a path to provide
a sequence of motion commands to the mobile robot from the start point to the target point.
The test results are shown in Figure 12, with a set of images of the mobile robot which
show that the mobile robot drove at different positions. From Figure 12, we can see that the
Mecanum wheel omni-directional mobile robot executes the path planning satisfactorily in
a real test environment.
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To test the ability of avoiding dynamic obstacles for APF-IRRT* algorithm in a real
environment, we performed the experiment with two Mecanum wheel omni-directional
mobile robot U-cars, robot 1 was used as a main robot, robot 2 was used as a dynamic
obstacle. To distinguish the two robots, the robot 1 was set to move backward, and its linear
velocity and angular velocity were set to 0.4 m/s and 1 rad/s, respectively. Robot 2 was set
to move forward, and its linear velocity and the angular velocity were set to 0.2 m/s. A
set of images of the test results, which show how the robot moves at different positions,
is shown in Figure 13. As shown in Figure 13, we can see that the main robot can avoid
dynamic obstacles well.
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5. Conclusions

A hybrid algorithm based on the APF method and IRRT* algorithms was proposed
to solve the path planning of mobile robots. By introducing the virtual force field of
APF into the search tree expansion stage of the IRRT* algorithm, the guidance of the
proposed algorithm was greatly improved, which greatly reduces extended nodes and
further shortens the path length and search time. In addition, since the APF method is a
local path planning algorithm which can construct an estimated map of the environment in
real time, the proposed algorithm can be used both in known static scenarios and partially
dynamic scenarios.

The simulations were performed in different static scenarios and a dynamic scenario.
For the static scenarios, the results show that the hybrid APF-IRRT* algorithm, compared
with RRT*, IRRT* and P-RRT* algorithms, has the smallest values in search time and path
length. For the dynamic scenario, the APF-IRRT* also finds a feasible path to avoid collision
with unknown obstacles. Therefore, the proposed APF-IRRT* algorithm exhibits great
potential in real path planning applications.

As for future work, we will focus on the following aspects: (1) we are going to find
a solution to obtain the optimal parameters automatically. In our experiment, the gain
parameters of the APF were set heuristically, which leads to non-optimal parameters. (2) We
will extend the proposed algorithm for the mobile robot path planning to a 3D environment
since this work only considered a 2D environment. (3) We are considering improving the
proposed algorithm in a maze-like environment since the success rate is not high comparing
with that in other environments
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