
Citation: Terra, A.; Inam, R.;

Fersman, E. BEERL: Both Ends

Explanations for Reinforcement

Learning. Appl. Sci. 2022, 12, 10947.

https://doi.org/10.3390/

app122110947

Academic Editors: Jose Antonio

Iglesias Martinez, Plamen Angelov

and María Paz Sesmero Lorente

Received: 31 August 2022

Accepted: 19 October 2022

Published: 28 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

BEERL: Both Ends Explanations for Reinforcement Learning
Ahmad Terra 1,2,* , Rafia Inam 1,2 and Elena Fersman 2,3

1 Ericsson AB, Royal Institute of Technology, 164 83 Stockholm, Sweden
2 Machine Design, Industrial Engineering and Management , KTH Royal Institute of Technology,

114 28 Stockholm, Sweden
3 Ericsson Inc., Royal Institute of Technology, Santa Clara, CA 95054, USA
* Correspondence: ahmad.terra@ericsson.com or terra@kth.se

Abstract: Deep Reinforcement Learning (RL) is a black-box method and is hard to understand because
the agent employs a neural network (NN). To explain the behavior and decisions made by the agent,
different eXplainable RL (XRL) methods are developed; for example, feature importance methods are
applied to analyze the contribution of the input side of the model, and reward decomposition methods
are applied to explain the components of the output end of the RL model. In this study, we present a
novel method to connect explanations from both input and output ends of a black-box model, which
results in fine-grained explanations. Our method exposes the reward prioritization to the user, which
in turn generates two different levels of explanation and allows RL agent reconfigurations when
unwanted behaviors are observed. The method further summarizes the detailed explanations into
a focus value that takes into account all reward components and quantifies the fulfillment of the
explanation of desired properties. We evaluated our method by applying it to a remote electrical
telecom-antenna-tilt use case and two openAI gym environments: lunar lander and cartpole. The
results demonstrated fine-grained explanations by detailing input features’ contributions to certain
rewards and revealed biases of the reward components, which are then addressed by adjusting the
reward’s weights.

Keywords: explainability; deep reinforcement learning; explainable reinforcement learning; reward
decomposition; reward prioritization; bias

1. Introduction

Reinforcement learning (RL) is a method by which an autonomous agent learns from
its interaction with the environment. This agent gathers information about its environment
via state variables as input features and, based on it, calculates the quality of the current
state to select an action to be generated as the output. In each step, a reward is given
in return to measure how good the state is, especially in achieving the main goal of the
task. One of the RL methods is deep reinforcement learning (DRL), and it has been used
to solve various tasks with outstanding performance [1,2]. The main driving factor for
high-performance DRL is the use of a deep neural network (DNN). In general, DNN is
used in many complex tasks, such as identifying images, recognizing voices, generating
fake videos, etc. Each node in DNN is a mathematical operation constructed in a certain
way, and following all operations to generate the output is not intuitive. Since the process
of how DNN produces a specific output is hard to understand and explain, explainable
reinforcement learning (XRL) methods produce information about the AI model’s behavior.
Attributive explanation is the most common type of explanation [3], where the importance
of an input features indicates how it affects the output of the model without informing the
inner part of the model. Alternatively, a contrastive explanation shows why one action is
preferred over the other, which may require model decompositions for RL the system. When
the output of an RL model is decomposed into several components, a model may prefer one
component over the other; we refer to this as component bias. Please note that, the bias of

Appl. Sci. 2022, 12, 10947. https://doi.org/10.3390/app122110947 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app122110947
https://doi.org/10.3390/app122110947
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-6650-2789
https://orcid.org/0000-0001-7448-3381
https://orcid.org/0000-0002-0182-8390
https://doi.org/10.3390/app122110947
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app122110947?type=check_update&version=3

Appl. Sci. 2022, 12, 10947 2 of 32

the reward component is derived from the base value of [4] where it previously showed the
bias of each class/action. However, the correlation of the input features importance with
reward components has not been found in the literature. Additionally, the effect of reward
prioritization is also not explored with respect to generating explanations. We present
a novel “Both Ends Explanations for RL (BEERL)” method that produces correlations
between input features and output reward components. The goals of our work are to
generate more detailed explanations, to show the correlations among them, to summarize
extensive information for the user, and to identify and mitigate the bias of the RL model.

The main contribution of BEERL method is to generate fine-grained explanations (a
fine-grained explanation consists of input features and reward components pairs instead
of either only input features or only reward components) by performing the following:
(1) Exposing the effects of reward prioritization resulting in two different levels of the RL
agent (Q-function and RL level); (2) Identifying the bias of the reward components and
demonstrating a method to mitigate it; (3) Extending the contrastive explanation method
to highlight a certain input feature(s) or reward component(s); (4) Formulating a focus
value that provides a quantification of the explanation by measuring how much the desired
behavior is satisfied. We apply our method to a remote electrical antenna-tilt use case
and two openAI gym environments to evaluate the results. The result showed that the
generated explanations can be used to evaluate the performance of the components of
the RL agent. With these explanations, we also demonstrate several possible options to
reconfigure the RL agent, including a bias reduction in the reward components.

Paper outline: Section 2 presents the background and related works. Section 3 de-
scribes the details of our BEERL method. Section 4 presents the application of BEERL to the
use case and the experimental result. Section 5 summarizes the paper and points to possible
extensions of future work. Appendix A presents the improved MSX formulation that is
used to compress contrastive explanation. Appendixes B and C present the parameters of
the RL agent and antenna tilt configuration. Appendix D shows the implementation of
BEERL in two openAI gym environments.

2. Background and Related Works

This section elaborates the motivation of our work, the problem we are addressing in
the current XRL method, and the relationship with other explainable artificial intelligence
(XAI) methods.

2.1. Background

In XAI, generating an explanation can be performed intrinsically if the model is
transparent (such as decision tree and a rule-based system) or after the AI model has
produced its output (post hoc methods). Several post hoc methods such as SHAP [4]
and LIME [5] are model-agnostic, which means that they are applicable to any black-box
model such as neural networks (NN), ensemble models, etc. One type of XAI methods
focuses on feature importance where knowing the contribution of different input variables
is important to understand the characteristics of certain input variables. It may also indicate
which factors/variables are not important and can be changed without affecting the output
or which ones are important and must be retained to keep the same output. In the RL
problem, this information is closely related to the input data used, specifically the states
of the environment during the training phase. Deeplift [6], SHAP [4], and LIME [5] are
methods that can be used to explain the feature importance of the DRL agent with respect
to the actions. However, a method to measure the contribution of input features to the
components of the RL reward function is lacking in the literature.

In RL, the reward function is designed to quantify the desired situation as feedback to
update the agent’s parameters. Designing and obtaining feedback on the formulation of the
reward function is challenging. Its calculation generally considers several factors, but with-
out a reward decomposition method, such as Hybrid Reward Architecture (HRA) [7], only
a single value is given to the agent. HRA uses several reward values (respective of the

Appl. Sci. 2022, 12, 10947 3 of 32

components) to update the RL agent’s parameters. The HRA authors mentioned that the
reward component typically depends on a subset of features without explaining this depen-
dency further. Juozapaitis et al. [8] used HRA to explain the output layer of a DRL agent,
specifically the RL reward components. However, it only presents the values of reward
components without showing the bias and effect of different weights for each component.

A correlation of input and output explanations is lacking in the literature. With the
available methods, the contributions of the input features are not reflected in the explanation
of the reward component. Conversely, the feature importance does not inform us about
the reward component to which the state variable contributes. In this work, we present a
method for expanding these techniques not only to correlate input and output explanations
but also to expose the effect of the reward weight and to identify and mitigate the bias on
different reward components.

2.2. Related Works

This section presents related work on methods that focus on measuring the importance
of the input feature to the output of the model. Then, it discusses the reward decomposition
to complement the generated explanation in the output or the final layer.

2.2.1. Explainability for Input Features

Several XAI methods [6,9–12] have been developed for a specific type of AI model.
Methods that explain the DNN model’s [6,11,12] operation by tapping or backpropagating
the inference process, resulting in faster computations than methods with repetitive model
inferences. In order to understand a Deep Q-network (DQN), Zahavy et al. [13] introduced
a method that requires manual clustering to generate an explanation in the form of a
saliency map. On the other hand, Atrey et al. [14] manipulated the RL environment and
used the saliency map to verify the counterfactual explanation and showed that the saliency
explanation is subjective and insufficient. In that work, several attributive XAI methods
were analyzed, but SHAP [4] was not included. Wang et al. [15] highlighted the importance
of the baseline data that are required for the SHAP method in the RL problem but did
not provide a detailed data selection method nor its verification. For a machine learning
problem, SHAP [4] is a model-agnostic method in which it is observed to produce the
best results when applied to the telecommunications use case [16]. RL-SHAP [17] is an
example where SHAP [4] can be applied to the RL problem to explain the contribution of
the actor’s input features. A recent survey by Hickling et al. [18] also identified that SHAP
is highly adopted in RL, especially in the field of vehicle guidance, robotic manipulation,
and system control. In the aforementioned methods, they used the entire model to generate
the explanation, while our method splits the model into each reward component, and the
importance of the input feature is now generated per reward component, thus providing
fine-grained explanations.

2.2.2. Explainability for Output/Reward Components

When a reward function considers multiple factors, the reward value can be decom-
posed by exposing its calculation [7]. Lin et al. decomposed the reward while disentangling
the representation without domain knowledge [19]. These methods did not consider the
contribution of every input feature, while our work connects it to the reward components.
Juozapaitis et al. implemented reward decomposition and used the difference between
Q-values of the contrasted actions to explain the agent’s decision [8]. They introduced the
concept of minimal sufficient explanation (MSX) to compress the contrastive explanation.
Lin et al. in [20] used this concept to generate contrastive explanations by implementing an
embedded self-prediction model via general value functions (GVFs) [21] that are located be-
tween two NNs used by the agent. In the above methods, all components are treated as the
same (having equal weights, i.e., 1) and only final reward components values are obtained.
Our method decouples the reward weights and Q-functions approximators, allowing each
component to be treated equally and shows the weights explicitly. It uses the contributions

Appl. Sci. 2022, 12, 10947 4 of 32

of the input features to each reward component to explain why an action is preferred over
the other. Since our method generates a more granular explanation than earlier methods,
we also propose a method to compress it. Another work by Bica et al. proposed a method
to learn the reward weight using the counterfactual inverse RL algorithm [22] while our
method maintains a static weight that encourages transparency during training.

2.2.3. Quantification of the Explanations

In XAI, the quality of the explanation is measured on a case-by-case basis because
the explanations can be presented in various forms. Mohseni et al. in [23] summarized
the evaluation measures for XAI, comprising different aspects such as the mental model,
usefulness and satisfaction, user trust and reliance, human-AI task performance, and com-
putational measures. Schmidt and Biessmann [24] presented the quality and trust metrics
for AI explanation that are based on response time, mutual information, and agreement
between XAI and humans. Zhang et al. [25] used KL-divergence to measure suboptimal
attributes in an explanation to detect bias and failure. Anderson et al. [26] performed a
more similar evaluation to our work, where they evaluated the improvement of the human
mental model after being presented with a certain type of explanation. In that work, both
input and output explanations were presented without any correlation. Our proposed
work presents not only the correlation between input and output explanations but also a
focus value to quantify the desired properties set by the user.

2.2.4. Other XRL Methods

In addition to the above methods, there are several other XRL methods which use
the causal model [27], and distill the trained agent into a transparent model [28,29]. Mad-
umal et al. [27] proposed a method that uses a causal model to explain the cause and
counterfactual explanation of the behavior of the RL agent. This method requires that the
causal model be prepared manually, which can inhibit implementation, especially when
an expert is not available to build or verify it. Verma et al. [28] proposed an RL method in
which they initially trained a DRL agent and derived transparent programmatic policies.
Liu et al. [29] approximated a DRL Q-function using linear model U-trees where the leaf
node of the tree is a linear model. Our method is different from the above because, instead
of distilling the RL policy into a transparent model, it exposes the reward components and
their proportion to make the second-last layer of the NN transparent, producing explana-
tions at a finer level of granularity. With the existing methods [4–6,8,11,12], the quantity
of the generated explanation will be the sum of the number of input features (NI) and the
number of reward components (NC), while our method can produce NI × NC explanations.

2.2.5. Explainability of Remote Electrical Antenna Tilt

We apply our method to the remote electrical antenna tilt use case, which has previ-
ously been explored from different angles using state-of-the-art methods. Vanella et al. [30]
applied a safe RL method to avoid the risk of performance degradation, especially in the
exploration phase. In [31], Vanella et al. also introduced the offline RL method to learn the
agent’s optimal policy from the real-world data. Furthermore, Vanella et al. [32] used a
contextual linear bandit method to find an optimal policy with fewer data than naive or
rule-based algorithms. Bouton et al. [33] introduced an RL method that uses a predefined
coordination graph to allow coordination among agents in controlling the antennas. Lastly,
Jin et al. [34] proposed graph-attention Q-learning where the graph-attention network [35]
is combined with DQN [1] to capture broader network information without having a large
state for the agent. All these previous works do not focus on the explainability of the agent.
Our work addresses this matter, including how to detect and mitigate bias. We implement
our method and analyze our results on this use case and it can be implemented in any other
environment, such as for OpenAI gyms (Cartpole and Lunar lander examples are shown in
Appendix D).

Appl. Sci. 2022, 12, 10947 5 of 32

3. Both End Explanations for Reinforcement Learning (BEERL) Method

The system designer determines the RL system to be used based on the task and the
environment of the use case. In case the task provided by the system designer is of a high
complexity, the produced machine learning model will be of a high complexity as well,
and its understanding will be challenging for a human being. One of the main goals of
explainability is to improve the human understanding of AI [36]. Therefore, we categorize
the three main aspects of XRL: the environment in which the RL agent operates, the human
user of the system, and the RL framework that performs its operation. The Both End
Explanations for Reinforcement Learning (BEERL) method and the interplay between the
XRL aspects are presented in Figure 1 and discussed in the following subsections.

DRL
Agent

Environment

BEERL

User

State (𝑆)

Action(𝐴)

Relevance Table (𝑀!")

Explanations
(𝑈!" ; 𝑉!" ; 𝐿);
Focus Value (𝐹)

Component
Aggregator

Ouput Layer

MeasurementReward
Prioritization (𝑍)

Q-level
Explanation (𝑈!")

Normalized
Q-values (𝑄")

Weighted
Q-values (𝑌")

N
or

m
al

ize
d

Re
w

ar
ds

Reward Prioritization (𝑍")

State (𝑆);
Normalized

Q-values (𝑄")

States (𝑆);
Actions (𝐴)

State (𝑆);
Perturbation/
Backpropagation

Replay Buffer

Reward per component (𝑅")

Explainer

Re
w

ar
ds

 p
er

Co
m

po
ne

nt

Q-function
(Approximator)

Normalized
Reward Value
per Component

Action (𝐴)

Component Aggregator

St
at

es
 (𝑆

);
 A

ct
io

ns
 (𝐴

)

Evaluator

Reward
Function

Figure 1. Main elements of BEERL and interactions among them. The gray boxes present the newly
proposed elements in this work. The blue line is executed for generating a global explanation while
the green text (state information) is passed when generating local explanation. The yellow lines are
only executed during training process i.e., updating Q-function parameters.

3.1. RL Environment

An RL agent is deployed in a certain environment where it observes the state and
performs its actions. In the proposed method, the environment should be constructed
using several components to decompose the total reward calculation into different reward
functions, as is performed in [7,8]. The state and action formulations do not need to be
modified and are similar to the RL without reward decomposition.

3.2. Reward Functions

In a non-decomposed RL, the reward is provided as a single numeric value, while
our method follows [7,8] to decompose the reward value into several components(rc). In
our method, each reward component must be defined in a normalized manner, that is,
within the same range (e.g., within the range [−1, 1]). The normalized rewards are fed to
the Q-function during the training process to update Q-function parameters. Additionally,
the output range of the Q-function is set at a normalized value to avoid the vanishing or
exploding gradient of DNN parameters. It can happen when the output range is too large

Appl. Sci. 2022, 12, 10947 6 of 32

or too small, as addressed in [37] and also exemplified in Lunar Lander in Appendix D.2.
However, the weighted reward values are stored in a replay buffer in order to be summa-
rized when a global explanation is generated. The summary of the reward component is
calculated by taking the absolute mean of all the recorded reward components:

Rc =
∑T

t=1 |rct|
NT

(1)

Throughout this paper, i ∈ I indicates input feature and c ∈ C indicates the reward compo-
nent. Additionally, N indicates the count of the referred annotation, e.g., NT annotates the
number of time steps, NI annotates the number of input features, NC annotates the number
of reward components, etc.

3.3. User Configuration

Reward prioritization is required to encode the magnitude of each component in
calculating the total reward because the reward functions generate values in a normalized
manner. Furthermore, our method also requires a relevance table, which encodes the
desired behavior of the RL agent. In return, after completing the entire process, the user
will receive three different types of explanation, which are (1) attributive explanations that
consists of Q-function explanation (Uic), RL explanation (Vic), and normalized explanation
(Lic); (2) contrastive explanation (∆Vic); and (3) focus values (Fc), which are explained in
Sections 3.5 and 3.6.

3.3.1. Reward Prioritization

We decouple reward prioritization (Zc(r)) from reward function (Rc(o)) to generate
two levels of explanation (Q-function and RL level). Thus, the normalized value is used
as the target value for the NN that approximates the Q-value that the respective reward
prioritization is then applied to configure the contribution of each reward component. Zc(r)
may implement a complex formula (e.g., quadratic or exponential), while a linear function
is preferred because it can be interpreted as a ratio among different reward components
(e.g., Zc1(r) : Zc2(r) : Zc3(r) = kc1 : kc2 : kc3). Reward priorities are maintained during
training and can be adjusted after completion for transfer learning purposes, as discussed
in Section 4.6.

3.3.2. Relevance Table

In designing an RL agent, the user commonly has expectations of how the agent will
behave in performing its task. Normally, this expectation is encoded in a reward function
where a fraction of the state variables contribute to a reward component, and another
fraction of the state variables contributes to another reward component. Our method
requires the user to define the relevance of each input feature (state variable) to each
reward component in the form of a relevance matrix Mic where i represents the input
feature and c represents the reward component. This matrix quantifies the desired behavior
and the value of each element should be within the range of [0, 1] where 1 quantifies the
complete relevance of an input feature to a reward component.

3.4. RL Agent

The RL is formulated as Markov decision processes (MDPs) with a tuple of (S, A, H, R, γ)
where S represents the state space, A represents the action space, H represents the transition
function (H(s, a)), R represents the reward function, and γ represents the discount factor.
The goal of the RL agent (as shown within the blue box in Figure 1) is to maximize the
expected return (Jt = ∑∞

t=1 rtγt) when performing its task. A Q-function Qπ(s, a) generates
Q-values that measure the quality of the policy given the current state (s), and the action (a)
executed on the policy π is formulated as Qπ(s, a) = Eπ [Jt|st = s, at = a]. The component
aggregator applies the reward priority, and the output layer combines all weighted Q-values
to select the action as described in the following subsections.

Appl. Sci. 2022, 12, 10947 7 of 32

3.4.1. Q-Function

When the reward is decomposed, the Q-function is defined per component Qc(s, a).
In DRL, a reward component can be implemented as an independent neural network struc-
ture that shares only input and output layers. This architecture allows every component to
be modular (i.e., a component can be transferred to or taken from another trained model)
at a cost of a higher number of parameters. Alternatively, a branched network can also be
implemented, where the shared initial layers can be randomly initialized network or taken
from a trained model as the feature extractor. In addition to allowing transfer learning,
the branching architecture also reduces the number of parameters for the NN model.

In the proposed solution, Q-functions are trainable and can be considered as hidden
layers of the NN when DRL is used. The input layer takes the state of the observed
environment when performing its task or the perturbation data from the explainer when
generating the explanation. The output of this element is the approximated Q-values
for each action per reward component. During training, the last hidden layer generates
the prediction of Q-values to be calculated with a normalized reward to update the NN
parameters. In this manner, the NN training operates at a normalized value and has the
benefit of avoiding vanishing/exploding gradients.

3.4.2. Component Aggregator

This element connects the output/last layer with the second-last layer. It is worth
noting that every node on every component’s last-layer is connected only to one node
on the output layer (instead of fully connected to all output nodes). The main function
of this component is translating normalized Q-values(qc) to weighted Q-values(yc) and
vice versa (for training). To calculate the weighted Q-values, it receives and stores the
reward prioritization (yc = Zc(qc)). This prioritization is another major difference of
this component from the summation of the reward component in [8], where they do not
explicitly weight/prioritize the components.

3.4.3. Output Layer

This element aggregates the weighted Q-values by taking a sum of all components.

Y =
C

∑
c=1

Yc (2)

When the action space is continuous, these values are then performed as the RL action. Oth-
erwise, if the action space is discrete, it selects the action that maximizes the reward in the
exploitation phase. The selected action from this part will be performed in the environment
to obtain the effect of it and also stored in the replay buffer for training purposes.

3.5. Generating Explanation

Our work generates two types of explanations, which are attributive and contrastive
explanations. The former calculates the contribution towards the predicted output while the
latter calculates the difference of two compared actions. Since the contrastive explanation
compares two different actions, it is only produced in a local scope, whereas the attributive
explanation is produced in both local and global scopes.

3.5.1. Attributive Explanation

Our presented approach is independent of the XAI method used to generate feature
importance, i.e., any method (e.g., SHAP [4], LIME [5], etc.) can be applied. When a deep
network is employed for the RL agent, the neural network explainer can also be applied
to fit the required characteristics, e.g., the complexity of the operation, consistency, the
accuracy of the explanation, etc. Without reward decomposition, the XAI methods generate
a feature importance for the entire Q-function (i.e., the entire DRL network), as depicted in

Appl. Sci. 2022, 12, 10947 8 of 32

Figure 4a. In the proposed solution, the explainer analyzes the Q-function by calculating
the contribution of every input feature to every reward component:

Uic = E(Qc(s, a), s, a) (3)

where E(h, x, y) is the explainer that takes h as the model to be explained (Q-function of
reward component c, Qc(s, a)) together with the input data x and the predicted output y
(state s and action a in DRL, respectively). The generated attribution values, Uic, explain
the contribution in a normalized domain, which are independent of reward prioritization,
and we refer to them as the Q-function explanations. Furthermore, we apply the reward
prioritization to these explanations to generate the RL-level explanations (Vic).

Vic = Zc(Uic) (4)

In this manner, the effect of reward prioritization is shown and each reward component can
be individually analyzed. Any scope of explanations can be produced using this method,
where the global explanation is an aggregation of local explanations using the absolute
mean formula, as shown in Equation (5) (Pic refers to either level of explanation, i.e., Uic
or Vic).

Pic =
∑T

t=1 |Pict|
NT

(5)

The above generated explanations show the importance of input feature towards
different reward components, but currently, there is no mechanism to compare the im-
portance of input features with reward components. With these detailed explanations
(Uic and Vic), the normalized input feature importance (Li) is calculated by summing its
importance to all reward components and dividing it by the number of reward components
(NC), as shown in Equation (6). Similarly, Equation (7) shows the calculation of normalized
reward component importance (Lc) where all input feature importance are summed and
then divided by the number of input features (NI). In this manner, both input feature (Li)
and the reward component’s (Lc) importances are measured on the same basis and can be
properly compared.

Li =
∑C

c=1 Pic

NC
(6)

Lc =
∑I

i=1 Pic

NI
(7)

3.5.2. Contrastive Explanations

The proposed method generates NC × NI of reasons because each explanation consists
of a tuple of input feature and reward component. When comparing two actions, the con-
trastive explanation can be compressed by following the MSX concept [8]. We propose two
possible compressions of the explanations. First, compression is performed by aggregating
the reward component (MSXC) resulting in explanations similar to the original MSX where
only a subset of reward components’ Q-values are highlighted, and second, we compress
the MSX by aggregating the input feature (MSX I). Details of the modified MSX calculations
are presented in Appendix A.

Automatic compression is also proposed to generate the simplest contrastive explana-
tions by implementing the Algorithm 1. We denote a set of compressed explanations by
implementing the MSX concept as MSXBEERL. The main task of this algorithm is to select
one of MSXBEERL, MSX I , or MSXC to be highlighted. We first collect these MSX sets in the
list of explanations(P). Second, the length of reasons (N) and the advantage values (A) of
each MSX set are also stored. The advantage value is the difference between the total MSX
contribution and the sum of all negative contributions, as formulated in Equation (A10).
The selection is started by comparing the number of reasons in each MSX set and choosing
the least if a single solution is obtained. When all MSX sets have the same number of

Appl. Sci. 2022, 12, 10947 9 of 32

reasons, it selects the set with the highest advantage. When two sets of MSX have the same
number of reasons, it removes a set of MSX with the most reasons and chooses the set with
the highest advantage value between the two sets.

Algorithm 1 Automatic MSX Compression

Require: MSXBEERL, MSX I , MSXC

P← [MSXBEERL, MSX I , MSXC]
N ← [NMSXBEERL , NMSX I , NMSXC]

A← [Adv(MSXBEERL), Adv(MSX I), Adv(MSXC)] . Adv is advantage function (A10)
Nmin ← min(N) . Check the fewest reason from the MSXs
if |Nmin ∈ N| == 1 then . only 1 MSX has the simplest explanation

d = arg min N . Select the fewest reason for the final explanations
else if |Nmin ∈ N| == 3 then

d = arg max A . Select the explanations with the highest advantage
else

d = arg max N . Select the explanations with most reasons to be removed
pop(Pd); pop(Pd); pop(Pd); . Remove the explanation from the lists
d = arg max A . Select the explanations with the highest advantage

end if
return Md

3.6. Evaluator

Humans evaluate the presented explanation mostly qualitatively. When an explanation
consists of many elements, humans may be overwhelmed by the amount of information.
On the other hand, no quantification of how the explanation satisfies the desired outcome
is available in the existing work. We propose a focus value that evaluates the generated
explanation by quantifying how much the explanation satisfies the desired behavior. The
focus value (Fc) is the result of element-wise multiplication between the relevance table
(Mic) and the explanation of the Q-function (Uic) then it is averaged per component.

Fc =
∑I

i=1 Mic �Uic

∑I
i=1 Uic

(8)

In addition, the unweighted and weighted mean values are also calculated. The unweighted
mean value (Funweighted) is merely the mean of all components:

Funweighted =
∑C

c=1 Fc

Nc
(9)

while the weighted mean (Fweighted) considers the reward prioritization:

Fweighted =
∑C

c=1 Zc(Fc)

∑C
c=1 Zc(1)

(10)

where Zc is the reward prioritization.

3.7. Data Flow

In generating local explanations, the explainer takes a state that is then modified to
calculate the feature importance. On the other hand, all recorded states are taken by the
explainer and are then fed to the Q-function to generate global explanations. The first
generated explanation is the feature importance at Q-function level (Uic or Q-FI in Figure 2).
The feature importance at the RL level (Vic or RL-FI in Figure 2) is generated by applying
reward prioritization to the Q-level explanation. The focus values are then generated after
applying focus value formulas (Equations (8)–(10)) to the explanations.

Appl. Sci. 2022, 12, 10947 10 of 32

BEERL Explanation

RL
Environment

Q-function
(Approximator)

PredComp1

PredComp2

PredComp3

Reward
Weight

Explanation
Metrics

W1

W2

W3

Reward
Weight

Explainer
(Deeplift/

SHAP/
LIME/
etc.)

Perturbation /
inspect gradient

Reward1

Reward2

Reward3

State

States

Q-FI1

Q-FI2

Q-FI3

RL-FI1

RL-FI2

RL-FI3

FocusVal1

FocusVal2

FocusVal3

Avg

WeightedAvg

PredCom
p1

PredCom
p2

PredCom
p3

W3 W2 W1Action

Replay
Buffer

(record
replay
data)

Generated Explanations
Batch sample

BEERL Agent

Figure 2. Illustration of BEERL dataflow in generating explanations in two different levels. The BEERL
explanations are shown by green color while reward decomposition elements as introduced in [7] are
shown by yellow; feature important components are shown by purple; common RL components are
shown by grey.

4. Experimental Evaluations and Results

We experiment with a realistic use case, where DRL agents are used in a remote
electrical antenna tilt environment, as shown in Figure 3. It is a multi-agent environment
where each antenna is controlled individually. In this experiment, we trained a shared
policy using DQN with reward decomposition (drDQN) where each agent obtains its
observation, but uses the same policy as the others.

Figure 3. The simulation map with seven base stations arranged in a hexagonal shape where each of
them has three antennas. The antennas are illustrated as inverted L-shape lines in black where their
directions are illustrated in various colors. The green dots illustrated the position of the UEs that are
spread across the field.

Appl. Sci. 2022, 12, 10947 11 of 32

4.1. Remote Electrical Antenna Tilt Environment

Remote Electrical Antenna Tilt is a joint-optimization problem in which the agent
controls the tilt of the antenna to optimize several key performance indicators (KPI). The an-
tenna performance is evaluated mainly in three different aspects, namely the quality,
capacity, and coverage of the traffic delivered by each antenna. The quality KPI is measured
by the Signal-to-Interference and Noise Ratio (SINR), where the user’s equipment (UE)
signal strength is compared to noise and interference, and capacity KPI measures the
throughput (Tput) delivered from the antenna to the UE, while the coverage is indicated
by the Reference Signals Received Power (RSRP) showing the received power level of a
reference signal. The challenge of this setup lies in the opposing KPIs that are used. When
an antenna is fully tilted down, the signal beam covers a narrow spot, delivering high
capacities due to fewer UEs being served, and high-quality signal due to less interference
from the opposing antenna. However, when the antenna is fully tilted up, it will cover a
wider area, but it will deliver low capacities to the UEs and low quality due to interference
from other antennas. Therefore, it is important to understand the factors of the performing
agent when controlling the tilt of the antenna.

In this work, the inputs (state variables) of the RL agent consist of the tilt position,
RSRP, SINR, and throughput of the antenna. DeepliftSHAP [4] is applied to analyze the
contribution of these input features to the prediction generated by the RL agent. The reward
for the agent is constructed with factors similar to the input feature, which are SINR (RSINR),
RSRP (RRSRP), and throughput (RThroughput) metrics of the network. The reward calculation
is shown in Equation (11) where the RSRP has twice the weight of other KPIs. This reward
component has higher priority because the other two components have opposing properties,
as mentioned above. We implement our drDQN model with three branches (one for each
reward component) without shared layer, and each of them has two hidden layers where
each layer has 32 nodes and rectified linear unit (ReLU) activation function.

Rtotal = RSINR + RThroughput + 2× RRSRP (11)

Once the RL training converged, we ran an evaluation where five episodes with 100
time steps in total, resulting in 2100 data points to collect the observations as the baseline
for the Deeplift-SHAP explainer. Each datum is then fed to the trained agent to calculate the
Q-values, select the optimal action, and generate a local explanation. The global explanation
is calculated by taking the absolute mean value of all local explanations.

4.2. Explanations Using Existing XAI Methods

By implementing existing methods, we obtain the results shown in Figure 4. The im-
portance of every input feature generated from DeepLiftSHAP [4] is shown in Figure 4a
without showing its contribution to different components. We can see that the RSRP feature
contributes significantly to the prediction of the agent, but there is no information on how
it is distributed to the reward components. Similarly, Figure 4b shows the explanation
of how each component constructs the total reward, as in [8] without showing the contri-
bution of every input feature. For example, when the RSRP reward component (RRSRP)
contributes the most to the final reward calculation, the contributions of the input features
are not shown.

4.3. Attributive Explanations with BEERL

Our method leverages the transparency of the last layers by implementing the reward
decomposition method and separating the reward weight so that the reward components
can be compared in a fair manner. This approach benefits in two aspects, which are as
follows: (1) each reward component is trained in the same range, which minimizes the
explosion or vanishing gradient; (2) the effect of reward prioritization is exposed so it helps
humans understand the identification of unwanted behavior.

Appl. Sci. 2022, 12, 10947 12 of 32

0 5 10 15
Attribution value

Tilt

Tput

SINR

RSRP

In
pu

t f
ea

tu
re

(a)

0.0 0.5 1.0 1.5 2.0
Reward mean-absolute value

Tput

SINR

RSRP

R
ew

ar
d

C
om

po
ne

nt

(b)
Figure 4. Explanations generated using the available XAI methods. (a) Feature importance generated
using [6], which produces similar explanation format as [4,5]. (b) Reward components summary
generated using [8].

Figure 5 shows the explanation on the Q-function level, i.e., how the Q-function (which
is implemented in a neural network model) performs regardless of the priority of the reward
component. From Figure 5a, we can see that the RSRP, SINR, and throughput input features
have dominant importance to their respective reward components in comparison to other
input features. Similarly, the respective input feature becomes the most important for each
reward component (other input features do not outweigh their importance in every reward
component), as shown in Figure 5b.

0 2 4 6 8
Attribution value

Tilt

Tput

SINR

RSRP

In
pu

t f
ea

tu
re

Reward component
RSRP
SINR
Tput

(a)

0 2 4 6 8
Attribution value

Tput

SINR

RSRP

R
ew

ar
d

C
om

po
ne

nt

Input feature
RSRP
SINR
Tput
Tilt

(b)
Figure 5. Explanations generated using BEERL at the Q-functions level without applying rewards
prioritization. (a) Decomposed feature importance at the Q-function level. (b) Decomposed feature
importance presented per reward component at the Q-function level.

When NN is employed for the RL agent, it is desirable that the Q-functions work in a
normalized range to avoid the exploding or vanishing gradient phenomenon. Explanations
at this level show the behavior of NN in approximating Q-values and the fairness of it (i.e.,
when all components are treated/trained in equal numeric values). Ideally, each feature
has a significant contribution to at least one reward component. It is a waste of resources
when an input feature is used, but it does not have any impact on the output. Similarly,
each reward component should have at least an input feature that significantly affects it.

The explanation at the RL agent level shows the correlation between the input and
output explanations, where the priority/weights of the reward components are considered.
In this manner, we can clearly see which aspect affects the final action of the agent (e.g.,
whether the neural network as the Q-function, the reward prioritization, or the combi-
nation of them). When reward weights are applied and the RSRP reward component is
prioritized more than others (2.0 : 1.0 : 1.0 for kRSRP : kSINR : kThroughput), we can see that
each input feature still dominates its importance for the respective reward component
and vice versa, as shown in Figure 6. Unlike Q-function explanations, an expert may
accept RL explanations where a reward component does not contribute significantly to
the total reward. The contribution of the reward component can be adjusted using reward

Appl. Sci. 2022, 12, 10947 13 of 32

prioritization, and the proportion of reward prioritization can be justified by the domain
knowledge expert.

0 5 10 15
Attribution value

Tilt

Tput

SINR

RSRP

In
pu

t f
ea

tu
re

Reward component
RSRP(2.0)
SINR(1.0)
Tput(1.0)

(a)

0 5 10 15
Attribution value

Tput(1.0)

SINR(1.0)

RSRP(2.0)

R
ew

ar
d

C
om

po
ne

nt

Input feature
RSRP
SINR
Tput
Tilt

(b)
Figure 6. Explanations generated using BEERL at the RL level where the respective reward prioritiza-
tion (k; shown in parentheses) is applied to the every component. (a) Decomposed feature importance
at the RL level. (b) Decomposed feature importance presented per reward component at the RL level.

The detailed feature importance is shown in Figures 5 and 6 without comparing the
importance between the input features and the reward components. Figure 7 shows the
importance of them in the same plot so that they can be compared which is also known as
a normalized explanation (Lic). We can see from Figure 7a that the RSRP input feature and
the reward component become the top-two most important element in this agent. When
reward weights are applied, their importances are pushed further, as shown in Figure 7b.

0 1 2 3
Attribution value

Tput [R]

SINR [R]

RSRP [R]

Tilt [F]

Tput [F]

SINR [F]

RSRP [F]

R
ew

ar
d

co
m

po
ne

nt
/I

np
ut

 fe
at

ur
e

(a)

0 2 4 6
Attribution value

Tput [R]

SINR [R]

RSRP [R]

Tilt [F]

Tput [F]

SINR [F]

RSRP [F]

R
ew

ar
d

co
m

po
ne

nt
/I

np
ut

 fe
at

ur
e

(b)
Figure 7. The normalized explanations where the importance of the input features and the reward
components are compared in the same plot. (a) Normalized explanation at the Q-function level.
(b) Normalized explanation when the reward weight is applied (at RL-level).

In a local scope (i.e., explanation of a single action), the detailed information pro-
duced by our method exposes the contribution that has not been seen in existing methods.
For example, information about negative contribution of RSRP and SINR input features to
the throughput reward component cannot be inferred from feature importance or reward
decomposition methods alone. This information is important, especially when several
input features have opposing contributions. With an existing method, a feature may not
be described as important because the attribution value is small or zero. However, it may
actually contribute to different components in an opposing way (e.g., high positive con-
tribution to reward component 1 and high negative contribution to reward component 2),
as shown by SINR input feature importances on Figure 8 (top plots, second row). By using
our method, hidden information, as mentioned, can be revealed and the user may have a
better understanding of the performing agent.

Appl. Sci. 2022, 12, 10947 14 of 32

5 0 5
Attribution value

Tilt

Tput

SINR

RSRP

In
pu

t f
ea

tu
re

A. Whole Net Feature Importance

2.5 0.0 2.5
Attribution value

B. Q-level per Feature

2.5 0.0 2.5
Attribution value

C. RL-level per Feature

RSRP(2.0)
SINR(1.0)
Tput(1.0)

2 0 2
Reward value

Tput

SINR

RSRP

R
ew

ar
d

C
om

po
ne

nt

D. Reward Component

2.5 0.0 2.5
Attribution value

E. Q-level per Component

2.5 0.0 2.5
Attribution value

 × 1.0

 × 1.0

 × 2.0

F. RL-level per Component

RSRP
SINR
Tput
Tilt

Figure 8. The local explanations of one antenna when the agent chose no-tilt action.

4.4. Analysis of Shapley-Based Explainer

If we sum the attribution values of input features towards the RSRP reward component
on Figure 8 (bottom-right), we will obtain a negative value of the RSRP reward component.
However, the predicted Q-value of this component is positive, as shown as a black bar on
Figure 9b. When the explainer is built on the Shapley-concept (e.g., SHAP and its variants),
the sum of attribution (i.e., feature importance) values equals to the output (or prediction)
of the performing model. This value includes the baseline value, which is the average
model output of the given dataset, where we present it as the purple bar in Figure 9b.
In this manner, we have a complete explanation in which the predicted Q-value (black
bar) is equal to the sum of all input features contributions including the base value of the
reward component.

20 10 0 10 20
Attribution Value

Tput

SINR

RSRP

R
ew

ar
d

C
om

po
ne

nt

Qvalue
RSRP
SINR
Tput
Tilt
base val

(a)

20 10 0 10 20
Attribution Value

Tput

SINR

RSRP

R
ew

ar
d

C
om

po
ne

nt

Qvalue
RSRP
SINR
Tput
Tilt
base val

(b)
Figure 9. Complete explanation where the sum of feature attribution and base values equals the
predicted Q-values. (a) Attribution and Q-values at the Q-level. (b) Attribution and Q-values on
RL level.

In an implementation without decomposition, the baseline values are different for
possible actions (or classes in a supervised learning problem). Thus, we can consider this
baseline value as the bias towards a different action. In a model with reward decomposi-
tions, the difference in the base value appears not only for different actions but also for
reward components, as shown by Table 1. Although these values are constant for any
instance/state/observation, they play an important role in selecting the action. The differ-

Appl. Sci. 2022, 12, 10947 15 of 32

ences in the base value among different actions are not as large as the difference between
different reward components, as shown by the range on Table 1 (the range is the subtraction
of the maximum by the minimum value of each reward component). However, the mean
values show the average base value of each reward component, where the SINR has the
lowest average base value and the throughput component has the highest value.

Table 1. Base value for each action and reward component at the RL level.

Action RSRP SINR Throughput

Tilt-down 12.522070 8.453173 17.904276
No-tilt 12.652522 9.103990 18.448515
Tilt-up 12.470411 8.746243 18.138926

Mean 12.548335 8.767802 18.163904
Range 0.182111 0.650817 0.544239

When analyzing a local explanation, it is important that the explanation be accompa-
nied by the base value as a reference to show all contributions leading to the predicted
Q-value. In this manner, the explanation shows how each input feature impacts the model’s
output from the average situation. Although understanding why a specific base value is
obtained remains limited to the fact that it is the average output value of the model from
the given dataset, exposing it informs the complete analysis of the model. The dataset
becomes the scope or corridor for generating the explanation. In connection with the
normalized explanations, in Figure 7b, the information shows the importance of different
model elements in terms of the variation of input values regardless of the bias of the reward
component. In connection with the RL level explanation Figure 6b, the bias of the reward
component may be overcome by the contribution made by the input feature(s). Specifically,
for the experiment above, the mean bias (base value) for the throughput reward component
(18.164) is higher than the RSRP (12.548). However, the mean absolute contribution of the
RSRP input feature to the RSRP reward component is 15.501 where the sum of it and its
bias (28.049) can overcome the throughput bias. This explanation shows that the model has
bias towards different components, and the variation of the input values may overcome it.

4.5. Contrastive Explanations with BEERL

In the exploitation phase, an RL agent chooses an action that maximizes the cumu-
lative reward, and understanding why it is preferred over the other is important. When
contrasting the possible actions (e.g., why no tilt is preferred than tilting up), the generated
explanations from our method present detailed information as shown in Figure 10 where
they consist of input feature and reward component tuples. Figure 10a shows the explana-
tion of why no tilt is preferred than tilting down where the tilt input feature contributes
negatively to all reward components. On the other hand, the sum of positive contributions
is greater than the disadvantage of not tilting up. When the MSX+ concept is applied,
simpler explanations are produced, such as the following: the contribution of ‘RSRP[I]
to SINR[R]’ and ‘base value[I] to SINR[R]’ ([I] and [R] indicate input feature and reward
component, respectively) are enough to overcome the disadvantage of not selecting action
tilting down (shown as textured bar in Figure 10). Since both reasons contribute to the SINR
reward component, the Algorithm 1 further compresses it by aggregating the contribution
of each reward component(MSXC). Thus, the compressed explanation can be interpreted
as ‘The contribution of SINR reward component is enough to overcome the negative impact of not
choosing tilting down action’.

Figure 10b shows another constrastive explanation of why no tilt is preferred than
tilting up. The MSX+ of these explanations informs that the contribution of ‘Tilt[I] to
AvgSINR[R]’, ‘Tilt[I] to AvgRSRP[R]’, ‘base val[I] to AvgSINR[R]’, and ‘base val[I] to AvgTh-
roughput[R]’ are enought to overcome the negative contribution of not tilting up. Further-
more, they are compressed by aggregating the contribution of the input feature resulting

Appl. Sci. 2022, 12, 10947 16 of 32

in an explanation that can be interpreted as ‘The contribution of Tilt input feature and base
values are enough to overcome the negative impact of not choosing tilting up action’. It should
be noted that the base values in Figure 10 are the difference among the actions that the
reward weight adjustment does not address. Adjusting the reward weight cannot change
the proportion of it within each reward component (i.e., making it less dominant than the
input features).

0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8
 Attribution value

Tput

SINR

RSRP

R
ew

ar
d

co
m

po
ne

nt

Input feature
RSRP
SINR
Tput
Tilt
base val

(a)

0.6 0.4 0.2 0.0 0.2 0.4 0.6
 Attribution value

Tput

SINR

RSRP

R
ew

ar
d

co
m

po
ne

nt

Input feature
RSRP
SINR
Tput
Tilt
base val

(b)
Figure 10. Contrastive explanations generated using BEERL where the MSX is highlighted.
(a) Contrastive explanations about why no tilt action is chosen rather than tilting down.
(b) Contrastive explanations about why no tilt action is chosen rather than tilting up.

4.6. Usages with BEERL

By presenting the explanations as above, we can gain more insight about the trained
agent than the available methods by noting some findings, such as the following:

• The RSRP input feature is the most contributing feature and significantly affects the
RSRP reward component. This explanation shows in detail the contribution of each
input feature to every output component and how they are correlated, as shown in
Figures 5a and 6a.

• SINR and throughput reward components are correctly focused on SINR and through-
put input features, respectively. It shows that the Q-function performs well in focusing
on the respective feature.

• The SINR and throughput reward components have less contribution than RSRP
reward component even on the Q-function level. Applying the reward weights pushes
the contribution further, where RSRP has a significantly larger contribution than
other components.

• The base values show the bias of different actions and reward components. Even
though the RSRP reward component is weighted twice that of others, the throughput
reward component remains as the highest. This means that a higher contribution from
the input feature(s) is required if other component(s) need to be overruled in selecting
the action.

• If there is a situation where the priority of the reward components needs to be adjusted,
one can reuse the trained model and then only adjust the reward weight and continue
the training without retraining it from scratch with a random policy. With the given
explanations, we are confident that the model is performing well because each reward
component focuses on the correct features. This information presents the correctness
of the proposed method, which not only increases human trust in the AI used but also
allows for the transfer of knowledge with stronger reason.

From the above points, the explanations improve human knowledge to understand
the behavior of the model in different elements of the RL model. The effect of the reward
weight, the bias of actions and the reward component, and the contribution of the input
feature and the reward components are produced to inform the detailed properties of
the model’s behavior. An indication of a better understanding is that the agent can be
adjusted or reconfigured to fit the necessary goal. In the following, we show the adjustment

Appl. Sci. 2022, 12, 10947 17 of 32

of the reward weights to reduce the bias (difference of the base value) among different
reward components.

As the mean base values at the Q-function level are 6.274168, 8.767802, and 18.163904
for the RSRP, SINR, and throughput reward component, respectively, we adjusted the
reward weight to achieve similar values. We choose an arbitrary value (in this case, it is 10)
that we divide by the mean values of the base values of the reward components. Therefore,
to keep two decimal values, we set the new reward weight at 1.60, 1.14, and 0.55 for RSRP,
SINR, and throughput, respectively. Subsequently, we conducted an evaluation process
and obtained the explanations, including bias, as shown in Figure 11 and Table 2.

0.0 2.5 5.0 7.5 10.0 12.5
Attribution value

Tilt

Tput

SINR

RSRP

In
pu

t f
ea

tu
re

Reward component
RSRP(1.6)
SINR(1.14)
Tput(0.55)

(a)

0 5 10
Attribution value

Tput(0.55)

SINR(1.14)

RSRP(1.6)

R
ew

ar
d

C
om

po
ne

nt

Input feature
RSRP
SINR
Tput
Tilt

(b)
Figure 11. Explanations generated using BEERL at the RL level after the weights of the reward
components (shown in parentheses) are adjusted. (a) Decomposed feature importance at the RL level.
(b) Decomposed feature importance presented per reward component at the RL level.

Table 2. Base value for each action and reward component at the RL level after the reward weights
are adjusted to reduce the bias of the reward components.

Action RSRP SINR Throughput

Tilt-down 9.273874 9.247864 9.758694
No-tilt 9.375855 9.965568 10.043088
Tilt-up 9.231198 9.528765 9.867805

Mean 9.293643 9.580732 9.889862
Range 0.144657 0.717704 0.284394

As the reward adjustment is made relative to the trained agent, the explanations on
the Q-function level are similar to Figure 5. From Figure 11, we can see that the throughput
input feature has a relatively similar contribution to the SINR and throughput reward
components. The importance of the characteristics in each reward component is also
changed following the updated reward weights, as shown in Figure 11b. Table 2 shows
the base values after the reward weights were adjusted, resulting in a reduction in the
bias of the reward components. This weight adjustment exemplifies the possibility of
reconfiguring the RL agent after training to achieve the desired properties.

Furthermore, we evaluated antenna telecommunication metrics (RSRP, SINR, and
throughput) before and after adjusting the agent reward weights as shown in Figure 12.
We can see that the agent with the adjusted reward weights has a better RSRP KPI than the
original agent, while SINR and throughput KPIs are slightly compromised. Since the range
of the base values of the adjusted agent is low, the action selection can depend more on the
contribution of input features to the reward components and less on the base values of the
reward components.

Appl. Sci. 2022, 12, 10947 18 of 32

0 5 10 15 20
timestep

104

103

102

101

100

RS
RP

 (d
Bm

)

scale [RSRP,SINR,Tput]
[2.0, 1.0, 1.0]
[1.6, 1.14, 0.55]

(a)

0 5 10 15 20
timestep

15

16

17

18

SI
NR

 (d
B)

scale [RSRP,SINR,Tput]
[2.0, 1.0, 1.0]
[1.6, 1.14, 0.55]

(b)

0 5 10 15 20
timestep

5

6

7

8

Th
ro

ug
hp

ut
 (b

ps
)

×107

scale [RSRP,SINR,Tput]
[2.0, 1.0, 1.0]
[1.6, 1.14, 0.55]

(c)

0 5 10 15
timestep

1

2

3

4

To
ta

l r
ew

ar
d

scale [RSRP,SINR,Tput]
[2.0, 1.0, 1.0]
[1.6, 1.14, 0.55]

(d)
Figure 12. The average network metrics from fifty episodes showing the performance of the agent
with original (blue) and adjusted reward weights (orange). (a) The RSRP signal on the evaluation
phase. (b) The SINR signal on the evaluation phase. (c) The throughput signal on the evaluation
phase. (d) The total reward on the evaluation phase.

4.7. Focus Value: Quantifying the Desired Propreties

To measure the fulfilment of the generated explanation with the desired properties as
calculated by the focus value formula Equation (8), the user must set a relevance table (Mic).
In this experiment, the configured relevance table is presented in Table 3 with the rationale
explained in the following sentences. The RSRP, SINR, and throughput reward component
are highly correlated with the RSRP, SINR, and throughput input features, respectively.
The tilt input feature also has a high correlation because it directly affects the antenna
performance in all aspects. However, RSRP, SINR, and throughput are also correlated with
each other in a moderate manner. Therefore, we set the correlation value at 0.5 since we
want each reward component to focus on its most correlated input feature. The relevance
table can be set by the user as she/he formulates the desired properties, and the rationale
of the given example (Table 3) is explained above.

Table 3. Relevance table configured by the user quantifying the desired properties.

Input Reward Component

Feature RSRP SINR Throughput

Tilt 1.0 1.0 1.0
RSRP 1.0 0.5 0.5
SINR 0.5 1.0 0.5

Throughput 0.5 0.5 1.0

The generated explanations (Figures 5 and 11) are evaluated with the relevance table
(Table 3) to generate the focus values shown in Table 4. The focus values for both experi-
ments are relatively similar because adjusting the weight does not affect the proportion of
the input features contribution to each reward component. The RSRP reward component
has the highest focus value because the RSRP input feature has a significant contribution
compared to other features. On the other hand, the SINR reward component has the

Appl. Sci. 2022, 12, 10947 19 of 32

lowest focus value because it has significant contributions from the tilt and throughput
input features.

Table 4. Focus values of the agent with original and adjusted reward weight, which quantifies how
much the desired properties are fulfilled.

Focus Reward Component Weighted Unweighted

Value RSRP SINR Throughput Mean Mean

Original
weight 0.942084 0.824311 0.884382 0.898215 0.883592

Adjusted
weight 0.929772 0.823575 0.878465 0.884397 0.877271

The weighted mean has a higher value than the unweighted mean focus value, which
means that reward prioritization mitigates unwanted behavior because components with
high focus values have a higher priority. On the other hand, the unweighted focus value is
lower, indicating that it has less desired behavior if we treat all components equally (i.e.,
do not apply prioritization).

5. Conclusions

This paper presents a novel “Both Ends Explanations for RL (BEERL)” method that
generates fine-grained explanations, which connects and compares the input and output
explanations of a black-box model. In this manner, the contribution of every feature to every
reward component is revealed explicitly, allowing each element to be evaluated individually.
The explanations are generated at two different levels as a result of exposing reward priority.
The first is at the Q-level, where all components generate values in the same range to
minimize the risk of vanishing or exploding gradients, as exemplified in Appendix D.2.
The second is at the RL-level where the reward priority is applied to explain the rationale
behind choosing an action. Our method also produces a detailed contrastive explanation
that explains why one action is chosen instead of another. Additionally, the contrastive
explanation can be compressed to highlight the important element(s) that make it more
comprehensible to humans. To identify the most important factor of the agent, the input
feature and the reward component are compared by aggregating their contributions. The
implemented agent can be modified by adjusting the reward priority to fulfill the desired
properties, such as reducing the bias of the reward components. A further adjustment of the
RL agent can also be performed, such as retraining the Q-function partially per component,
removing non-contributing input feature(s), removing misbehaving or suboptimal reward
component(s), and tuning reward prioritization without restarting the training process, etc.

We implemented our method with respect to the remote electrical antenna tilt use
case (as described in Section 4) and to two openAI gym environments (see Appendix D) to
demonstrate the benefits of resultant explanations. A fine-grained explanation implies that
the amount of information received by the user increases. Using the relevance table set by
the user, the focus value summarizes the fulfillment of the desired properties. In the future,
we intend to investigate a method to improve the focus value of the RL agent. This can be
performed by incorporating the explanation during the training process. More experiments
can be conducted on top of this work to mitigate bias between different actions.

6. Patents

A patent with the title “Explaining Operation of a Neural Network” has been filed as
a US provisional application on 11 January 2022.

Author Contributions: Conceptualization, A.T., R.I. and E.F.; methodology, A.T.; writing—original
draft preparation, A.T.; writing—review and editing, A.T., R.I. and E.F.; visualization, A.T.; supervi-
sion, R.I. and E.F. All authors have read and agreed to the published version of the manuscript.

Appl. Sci. 2022, 12, 10947 20 of 32

Funding: This work was partially supported by the Wallenberg AI, Autonomous Systems and
Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation. (Grant number:
EAB-22:009816).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

AI Artificial intelligence;
BEERL Both ends explanations for reinforcement learning;
DNN Deep neural network;
DQN Deep Q-network;
DRL Deep reinforcement learning;
HRA Hybrid reward architecture;
KPI Key performance indicator;
MDP Markov decision process;
MSX Minimal sufficient explanation;
NN Neural network;
ReLU Rectified linear unit;
RL Reinforcement learning;
RSRP Reference Signals Received Power;
SINR Signal to Interference and Noise Ratio;
Tput Throughput;
UE Users equipment;
XAI Explainable artificial intelligence;
XRL Explainable reinforcement learning.

Appendix A. MSX Formulation

As our method generates more detailed explanations, the calculation of MSX elements
is adjusted to incorporate the input feature’s attribution. The first calculation that is required
is the RDX calculation (∆(s, a1, a2)), which is adjusted the following.

∆(s, a1, a2) = Z(E(Q(s, a1), s, a1))− Z(E(Q(s, a2), s, a2)) (A1)

The disadvantage value (sum of the negative elements of RDX, d) is then also adjusted to
the following.

d = Σci I[∆ci(s, a1, a2) < 0] · |[∆ci(s, a1, a2) < 0]| (A2)

Thus, due to the incorporation of feature attribution, in this work, MSX+ becomes
the following.

MSX+ = arg min
M∈2CI

|M|s.t. ∑
c,i∈M

∆ci(s, a1, a2) > d (A3)

We further compress the MSX+ by the reward component (MSX+C), which results the
same equation as the original MSX+.

MSX+C = arg min
M∈2C

|M|s.t. ∑
c∈M

∆c(s, a1, a2) > d (A4)

Alternatively , it is also possible to compress the MSX+ by the input feature (MSX+I),
which formulated as follows.

MSX+I = arg min
M∈2I

|M|s.t. ∑
i∈M

∆i(s, a1, a2) > d (A5)

Appl. Sci. 2022, 12, 10947 21 of 32

To adjust MSX− with our implementation, the just-insufficient value (v) is modified
to following.

v = ∑
c,i∈MSX+

∆ci(s, a1, a2)− min
c,i∈MSX+

∆ci(s, a1, a2) (A6)

Then, the MSX− is also adjusted:

MSX− = arg min
M∈2CI

|M| s.t. ∑
c,i∈M

−∆ci(s, a1, a2) > v (A7)

where it can also be compressed by the reward component (MSX−C) or by the input
feature (MSX−I).

MSX−C = arg min
M∈2C

|M| s.t. ∑
c∈M
−∆c(s, a1, a2) > v (A8)

MSX−I = arg min
M∈2I

|M| s.t. ∑
i∈M
−∆i(s, a1, a2) > v (A9)

Additionally, we propose that the advantage value (net contribution) is then also needed.

a = Σci I[∆ci(s, a1, a2) > 0] · |[∆ci(s, a1, a2) > 0]| − d : c, i ∈ MSX∗ (A10)

Appendix B. RL Parameters

The RL agent’s parameters for the antenna tilt use case are shown in Table A1.

Table A1. The parameters of the RL agent for antenna tilt use case.

Parameter Value

Branch 3

Hidden layer 2

Shared layer 0

Node in hidden layer (32, 32)

Activation function ReLU

Max steps per episode 20

Training timesteps 10,000

Learning rate 10−3

Training batch 64

Initial epsilon 1.0

Final epsilon 0.01

Epsilon timesteps 3000

Appendix C. Antenna Tilt Configuration

The configuration of the antenna tilt experiment is presented in Table A2.

Table A2. The configuration of the antenna tilt environment.

Parameter Value

Number of base stations 7

Number of antennas 21

Number of user equipments 1000

Intersite-distance 500 m

Frequency 2.1 GHz

Appl. Sci. 2022, 12, 10947 22 of 32

Appendix D. BEERL on Other Environments

In this section, we present the implementation of our method in the openAI environ-
ment that is publicly available for experimentation with RL problems [38]. The intention is
to demonstrate that our method is applicable to other domains, and different insights can
also be obtained from the following subsection.

Appendix D.1. Cartpole from OpenAI Gym

In this environment, a simple control problem is simulated where a pole on a cart
needs to be balanced so it can stand vertically by adjusting the cart in a horizontal direc-
tion. The state of this environment consists of the following: cart position(pos_c), cart
velocity(vel_c), pole angle(ω_p), and pole angular velocity(θ_p). Since the cart is moving
horizontally, there are two possible actions that push the cart to the left or right.

Figure A1. The illustration of the Cartpole environment from openAI gym.

The original reward was calculated by giving the +1 reward in each time step when
the pole is upright. Otherwise, zero rewards will be given if the pole falls. However,
to accommodate the decomposition of the reward, we modify the reward calculation
as follows:

• Cart position reward: Rc_pos(s) = 1.0− | pos_c
workspacecart

|;
• Pole angle reward: Rp_θ(s) = 1.0− | θ_p

workspacepole
|;

• Total reward: Rtotal(s) = kc_pos × Rc_pos(s) + kp_θ × Rp_θ(s).

We set the reward weight as 0.2 and 0.8 for the cart position reward (kc_pos) and pole
angle reward (kp_θ), respectively. The higher weight for the pole angle reward is given
because it is the main task of this environment. In this manner, the agent is trained not only
to keep the pole upright but also to position the cart at the center of the work area.

The global explanations of the agent in this environment are shown in Figure A2.
At the Q-function level, all input features other than the position of the cart (pos_c) have
higher contributions to the position of the cart (c_pos) than the pole angle’s (p_θ) reward
component. However, after applying the reward prioritization, the pole angle reward
component dominates the contribution at the RL level. We can also see that the cart
and pole angular velocity’s (vel_c and ω_p) input features are the two most important
features. Both have significant contributions to both the cart position (c_pos) and pole
angle (p_θ) reward components. When we compare the contribution of all input features
and the reward components, as shown in Figure A3b, both the velocity input features
(vel_c and ω_p) and the p_θ reward component are the most contributing elements in the
trained agent.

Appl. Sci. 2022, 12, 10947 23 of 32

0.0 0.2 0.4
Attribution value

_p

_p

vel_c

pos_c

In
pu

t f
ea

tu
re

A. Whole Net Feature Importance

0.0 0.2 0.4
Attribution value

B. Q-level per Feature

0.0 0.1 0.2 0.3
Attribution value

C. RL-level per Feature
c_pos(0.2)
p_ (0.8)

0.00 0.25 0.50 0.75
Reward mean-absolute value

p_

c_pos

Re
wa

rd
 C

om
po

ne
nt

D. Reward Composition Summary

0.0 0.2 0.4
Attribution value

E. Q-level per Component

0.0 0.1 0.2 0.3
Attribution value

 × 0.8

 × 0.2

F. RL-level per Component
pos_c
vel_c
_p
_p

Figure A2. The global explanations of the cartpole agent.

0.0 0.1 0.2 0.3 0.4
Attribution value

p_ [R]

c_pos [R]

_p [F]

pos_p [F]

vel_c [F]

pos_c [F]

Re
wa

rd
 c

om
po

ne
nt

/In
pu

t f
ea

tu
re

(a)

0.00 0.05 0.10 0.15 0.20
Attribution value

p_ [R]

c_pos [R]

_p [F]

pos_p [F]

vel_c [F]

pos_c [F]

Re
wa

rd
 c

om
po

ne
nt

/In
pu

t f
ea

tu
re

(b)
Figure A3. The normalized explanations of the cartpole agent where the importance of the input
features and the reward components are compared in the same plot. (a) Normalized explanation at
the Q-function level. (b) Normalized explanation when the reward weight is applied (at RL-level).

For local explanations, we can see from Figure A4 that, in that particular situation,
opposing contributions are made by the cart position (pos_c) and velocity (vel_c) input
features to both reward components. This information may not be obtained if we use the
existing method (feature importance and reward decomposition) exclusively. Figure A5
presents the contrastive explanation in which the agent chooses the push-right action
instead of push-left. The sum contribution of ‘ω_p[I] to c_pos[R]’ and ‘ω_p[I] to p_θ’ is
enough to outweigh the disadvantage of not choosing the push-left action. This explanation
is further compressed by Algorithm 1 to present that only the contribution of ω_p input
feature is enough to outweigh the disadvantage of the same situation.

Appl. Sci. 2022, 12, 10947 24 of 32

2 0 2
Attribution value

_p

_p

vel_c

pos_c

In
pu

t f
ea

tu
re

A. Whole Net Feature Importance

2 0 2
Attribution value

B. Q-level per Feature

1 0 1
Attribution value

C. RL-level per Feature
c_pos(0.2)
p_ (0.8)

0.5 0.0 0.5
Reward value

p_

c_pos

Re
wa

rd
 C

om
po

ne
nt

D. Reward Component

2 0 2
Attribution value

E. Q-level per Component

1 0 1
Attribution value

 × 0.8

 × 0.2

F. RL-level per Component
pos_c
vel_c
_p
_p

Figure A4. The local explanations of the cartpole when the agent chooses the push-right action.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
 Attribution value

p_

c_pos

Re
wa

rd
 c

om
po

ne
nt

Input feature
pos_c
vel_c
_p
_p

base val

Figure A5. The contrastive explanation showing why the agent chooses push-right instead of push-
left action.

Table A3 presents the base values of each action and reward component for both in
normalized and weighted values. In contrast to the antenna tilt use case, we want this agent
to prioritize the angle of the pole more than the position of the cart. Thus, after applying the
reward weight, we can see that the pole angle has higher base values than the cart position
reward component. We want the cart position and velocity input feature to contribute
more to the cart position reward component. Additionally, all input features other than
cart position should have a significant impact on the pole angle reward component. These
desired properties are set in Table A4 which will be used to generate the focus values as
presented in Table A5. We can see that the focus value of the cart position is lower than the

Appl. Sci. 2022, 12, 10947 25 of 32

pole angle because there is a significant contribution from the pole velocity input feature to
this reward component. The unweighted mean shows the mean of focus values without
applying the reward prioritization, while the weighted mean quantifies the fulfillment of
the desired properties of the global explanation.

Table A3. Base values of the cartpole agent.

Unweighted Weighted

Action Cart_position Pole_angle Cart_position Pole_angle

push_Left 91.209076 85.066811 18.241844 68.053467
push_right 90.984283 85.097321 18.196852 68.077972

mean 91.096680 85.082062 18.219349 68.065720
range 0.124793 0.030510 0.044992 0.024505

Table A4. Relevance table for the cartpole agent.

Reward Input Feature

Component Cart_position Cart_velocity Pole_angle Pole_velocity

cart_position 1.0 1.0 0.5 0.5
pole_angle 0.5 1.0 1.0 1.0

Table A5. Focus value of the cartpole agent.

Cart_position Pole_angle Weighted_mean Unweighted_mean

focus value 0.758693 0.944922 0.907676 0.851807

Appendix D.2. LunarLander from OpenAI Gym

In this environment, the agent controls the engine to land the lunar lander at the origin
(0, 0), which is illustrated as a point in the middle of the two flags in Figure A6. Despite
being a simple simulator, it formulates a complex problem where more input features are
involved and affect differently to different reward components. There are four discrete
actions available, which are no operation, fire left, fire up, or fire right. The inputs (state
variables) of the RL agent consist of the horizontal coordinate (pos_x), vertical coordinate
(pos_y), horizontal velocity (vel_x), vertical velocity (vel_y), angle (θ), angular speed (ω),
and its legs (left, c_leg1 and right, c_leg2) contact status, i.e., touching the moon or not.

Figure A6. The illustration of the Lunarlander environment from openAI gym where the lunar
lander (purple) has to land in the middle of yellow flag. A, B, and C are the three states showing the
initial,middle, and final phase of the landing process, respectively.

Appl. Sci. 2022, 12, 10947 26 of 32

By default, the reward of the lunar lander environment is given as a single value con-
sidering the total improvement of all combined factors which are position, velocity, angle,
legs contact status, main and side engine activity. To apply our solution, we expose the
reward calculation by assigning each factor to the respective reward component (Rcomponent)
function and the reward prioritization. The reward component functions are configured to
generate a normalized value, as implemented in the following formulas:

• Position reward: Rpos(s) = −
√

pos_x2 + pos_y2

• Velocity reward: Rvel(s) = −
√

vel_x2 + vel_y2

• Angle reward: Rangle(s) = −|θ|

• Leg1 reward: Rleg1(s) = −0.1× pos_y2 +

{
1, if c_leg1 touch the moon
0, otherwise

• Leg2 reward: Rleg2(s) = −0.1× pos_y2 +

{
1, if c_leg2 touch the moon
0, otherwise

• Main engine reward: Re_side(s) =

{
−1, if fire up is executed
0, otherwise

• Side engine reward: Re_side(s) =

{
−1, if fire left or right is executed
0, otherwise

For the first five components, we follow the same mechanism as the original imple-
mentation to calculate the improvement of each reward component, i.e.,
Rcomponent(s) = Rcomponent(st)− Rc(st−1) where t denotes the time step. Rleg1(s) and
Rleg2(s) are modified by adding the pos_y2 calculation (−0.1 × pos_y2) while the oth-
ers remain the same as the original implementation. This is performed to guide the leg
component to approach the moon surface, which is also performed in [8].

Reward prioritization is implemented as a linear function
(Zcomponent = Rcomponent(s)× kcomponent) where kcomponent is the weight or multiplication
factor of the respective component. In this way, the exact reward weight/prioritization
can be presented in a ratio format, i.e., 100 : 100 : 100 : 10 : 10 : 0.30 : 0.03 for
kpos : kvel : kangle : kleg1 : kleg2 : ke_main : ke_side, respectively. Figure A7 shows two different
levels of explanation where we observe that each reward component has input features
that contribute to it at the Q-level. However, due to the high difference in reward priority
(100 and 0.03), the contributions of input features to the main and side engine reward
components are barely visible at the RL-level. Without decoupling the reward priority
from the reward function, the NN of the Q-function can generate a high value (up to 2000),
which is susceptible to gradient explosion. In contrast, when the NN output is too low, it is
susceptible to a vanishing gradient problem.

Figure A7B shows the detailed explanations on how each input feature contributes
to every reward component. Input feature pos_y contributes significantly to the position
and the main engine reward components, which is desirable. We can also see that both
the leg-contact input features (c_leg1 and c_leg2) contribute significantly to the respective
leg reward components. Figure A8 shows the comparison of the input feature and the
reward component at two different levels. We can see that when reward prioritization is
not applied (Figure A8a), several elements have significant contributions in generating the
Q-values prediction. On the other hand, when reward prioritization is applied (Figure A8b),
the input feature pos_y and the position reward component contribute the highest compared
to others.

Appl. Sci. 2022, 12, 10947 27 of 32

0 1000 2000
Attribution value

c_leg2

c_leg1

vel_y

vel_x

pos_y

pos_x

In
pu

t f
ea

tu
re

A. Whole Net Feature Importance

0 10 20
Attribution value

B. Q-level per Feature

0 500 1000 1500 2000
Attribution value

C. RL-level per Feature

Reward component
pos(100)
vel(100)
(100)

leg1(10)
leg2(10)
e_main(0.3)
e_side(0.03)

0 25 50 75 100
Reward mean-absolute value

e_side

e_main

leg2

leg1

vel

pos

Re
wa

rd
 C

om
po

ne
nt

D. Reward Composition Summary

0 10 20
Attribution value

E. Q-level per Component

0 500 1000 1500 2000
Attribution value

 × 0.03

 × 0.3

 × 10

 × 10

 × 100

 × 100

 × 100

F. RL-level per Component

Input feature
pos_x
pos_y
vel_x
vel_y

c_leg1
c_leg2

Figure A7. The global explanations of the Lunarlander agent.

0 2 4 6
Attribution value

e_side [R]
e_main [R]

leg2 [R]
leg1 [R]

 [R]
vel [R]
pos [R]

c_leg2 [F]
c_leg1 [F]

 [F]
 [F]

vel_y [F]
vel_x [F]
pos_y [F]
pos_x [F]

Re
wa

rd
 c

om
po

ne
nt

/In
pu

t f
ea

tu
re

(a)

0 100 200 300 400 500
Attribution value

e_side [R]
e_main [R]

leg2 [R]
leg1 [R]

 [R]
vel [R]
pos [R]

c_leg2 [F]
c_leg1 [F]

 [F]
 [F]

vel_y [F]
vel_x [F]
pos_y [F]
pos_x [F]

Re
wa

rd
 c

om
po

ne
nt

/In
pu

t f
ea

tu
re

(b)
Figure A8. The normalized explanations of the Lunarlander agent where the importance of the input
features and the reward components are compared in the same plot. (a) Normalized explanation at
the Q-function level. (b) Normalized explanation when the reward weight is applied (at RL-level).

In a local scope, Figure A9 shows the explanations of two different states of the lunar
lander. Figure A9a show the explanations for choosing the fire_right action in the initial
phase of the landing process. We can see that pos_y input feature contributes negatively to
several reward components and at the RL level it significantly contributes to the position
and velocity reward component. This explanation makes sense because the lander is still
far from the moon’s surface. Furthermore, we can also see that the angle (θ) input feature
contributes negatively to the angle (θ) reward component because the lander is rotated.
The explanation of when the lander has landed on the moon (Figure A6 position C) is

Appl. Sci. 2022, 12, 10947 28 of 32

shown in Figure A9b. At the Q-level explanation, we can see that the contributions of
the leg contact input features that contribute to the respective leg reward components are
significant compared to others. However, at the RL-level, the contribution of pos_y input
feature to the position reward component is the highest due to reward prioritization, while
the contributions of the respective legs elements become the second and third.

2500 0 2500
Attribution value

c_leg2

c_leg1

vel_y

vel_x

pos_y

pos_x
In

pu
t f

ea
tu

re
A. Whole Net Feature Importance

20 0 20
Attribution value

B. Q-level per Feature

2000 0 2000
Attribution value

C. RL-level per Feature
pos(100)
vel(100)
(100)

leg1(10)
leg2(10)
e_main(0.3)
e_side(0.03)

20 0 20
Reward value

e_side

e_main

leg2

leg1

vel

pos

Re
wa

rd
 C

om
po

ne
nt

D. Reward Component

20 0 20
Attribution value

E. Q-level per Component

2000 0 2000
Attribution value

 × 0.03

 × 0.3

 × 10

 × 10

 × 100

 × 100

 × 100

F. RL-level per Component
pos_x
pos_y
vel_x
vel_y

c_leg1
c_leg2

(a)

2000 0 2000
Attribution value

c_leg2

c_leg1

vel_y

vel_x

pos_y

pos_x

In
pu

t f
ea

tu
re

A. Whole Net Feature Importance

50 0 50
Attribution value

B. Q-level per Feature

2000 0 2000
Attribution value

C. RL-level per Feature
pos(100)
vel(100)
(100)

leg1(10)
leg2(10)
e_main(0.3)
e_side(0.03)

100 0 100
Reward value

e_side

e_main

leg2

leg1

vel

pos

Re
wa

rd
 C

om
po

ne
nt

D. Reward Component

50 0 50
Attribution value

E. Q-level per Component

2000 0 2000
Attribution value

 × 0.03

 × 0.3

 × 10

 × 10

 × 100

 × 100

 × 100

F. RL-level per Component
pos_x
pos_y
vel_x
vel_y

c_leg1
c_leg2

(b)
Figure A9. The local explanations of the Lunarlander of three different states as shown in Figure A6.
(a) The local explanations of the Lunarlander when the agent chooses fire_right action on position A
in Figure A6. (b) The local explanations of the Lunarlander when the agent chooses fire_left action on
position C in Figure A6.

Appl. Sci. 2022, 12, 10947 29 of 32

When comparing two actions, the contrastive explanation shows the benefit of choos-
ing an action over the other, as shown in Figure A10. By applying the MSX concept, the con-
tributions of “pos_x[I] to pos[R]”, “pos_x[I] to vel[R]”, “vel_y[I] to vel[R]”, and “c_leg1[I] to
vel[R]” are enough to choose fire_right action and outweigh the disadvantage of not choos-
ing no_fire action. Furthermore, our automatic MSX compression (Algorithm 1) reduces
the length of the explanation to only present the contributions of position and velocity
reward components to be presented to the user.

30 20 10 0 10 20 30
 Attribution value

e_side

e_main

leg2

leg1

vel

pos

Re
wa

rd
 c

om
po

ne
nt

Input feature
pos_x
pos_y
vel_x
vel_y

c_leg1
c_leg2
base val

Figure A10. The contrastive explanation showing why the agent chooses fire_right instead of no_fire
action on position B in Figure A6.

The base value of each pair of action and reward components is shown in
Tables A6 and A7, where the former is calculated at the Q-level while the latter is at
the RL-level. We can see that the range at the RL-level is significantly larger than the Q-
level because of the reward prioritization. The base value of the position reward component
has the highest value, which is relevant to this environment where the main goal is to
position the lander to the origin.

Table A6. Base values of the Lunarlander agent without reward prioritization.

Reward Action

Component No_fire Fire_right Fire_up Fire_left

position 99.954918 99.971298 99.855209 100.127533
velocity 24.920115 24.936441 25.133207 24.831766

angle −3.527749 −3.562116 −3.443951 −3.553954
leg1 23.622988 23.793665 23.522532 23.526903
leg2 22.642960 22.748714 22.536240 22.465919

main_engine −36.977737 −36.853558 −37.329254 −36.843079
side_engine −50.239410 −51.475277 −50.376621 −51.710163

All above explanations are detailed and the focus value can be used to summarize
whether the explanations fulfill the desired properties. For this environment, the relevance
table is set as shown in Table A8 which generates the focus value shown in Table A9. The po-
sition component (Rpos) is highly correlated with the position input features (pos_x, pos_y).
Similarly, other pairs are also highly correlated where we set the relevance value as 1

Appl. Sci. 2022, 12, 10947 30 of 32

such as: velocity component (Rvel) with speed (speedh, speedv, speeda); angle component
(Rangle) with angular speed (speeda) and angle input feature; and leg components (Rleg1 and
Rleg2) with leg input feature (leg1 and leg2, respectively), etc. On the other hand, the main
engine (Rmain−eng) should not consider the angular speed (speeda) because changes in the
angular speed cannot be corrected by the action of the main engine; therefore, it has zero
relevance value.

Table A7. Base values of the Lunarlander agent when reward prioritization is applied.

Reward Action

Component No_fire Fire_right Fire_up Fire_left

position 9995.485352 9997.129883 9985.517578 10012.757812
velocity 2492.011719 2493.641357 2513.325684 2483.169189

angle −352.775330 −356.211731 −344.395172 −355.395264
leg1 236.229767 237.936707 235.225174 235.268982
leg2 226.429245 227.487045 225.362274 224.659210

main_engine −11.093332 −11.056075 −11.198791 −11.052940
side_engine −1.507182 −1.544255 −1.511300 −1.551306

Table A8. Relevance table for the Lunarlander agent.

Reward Input Feature

Comp. Pos_x Pos_y Vel_x Vel_y θ ω c_leg1 c_leg2

position 1.0 1.0 0.5 0.5 0.5 0.5 0.5 0.5
velocity 0.5 0.5 1.0 1.0 0.5 1.0 0.5 0.5
angle(θ) 0.5 0.5 0.5 0.5 1.0 1.0 0.5 0.5

leg1 0.5 0.5 0.5 0.5 0.5 0.5 1.0 0.5
leg2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1.0

main_eng 0.5 1.0 0.5 1.0 0.5 0.0 0.5 0.5
side_eng 1.0 0.5 1.0 0.5 1.0 1.0 1.0 1.0

Table A9. Focus value of the Lunarlander agent.

Reward Component Focus Value

position 0.847708
velocity 0.690510

angle 0.698298
leg1 0.826667
leg2 0.787410

main_engine 0.804658
side_engine 0.784765

weighted_mean 0.749406
unweighted_mean 0.777145

We can see that the position reward component has the highest focus value, and pos_y
contributes significantly higher than the others. The velocity (Rvel) reward component has a
low value because pos_y has a higher contribution than vel_x, vel_y or the angular velocity
(ω), which ideally is the focus of this component. Similarly, the angle reward component
has a low value because vel_x and pos_y are the second and third most contributing feature
instead of the angular velocity (ω). Overall, the weighted mean has a lower value than the
unweighted mean focus value, which means that high priority components (i.e., velocity
and angle) do not focus on the desired input features.

Appl. Sci. 2022, 12, 10947 31 of 32

References
1. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M.A. Playing Atari with Deep Rein-

forcement Learning. CoRR 2013, arXiv:1312.5602 . Available online: https://arxiv.org/abs/1312.5602 (accessed on 21 June 2022).
2. Silver, D.; Huang, A.; Maddison, C.; Guez, A.; Sifre, L.; Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Panneershelvam, V.;

Lanctot, M.; et al. Mastering the game of Go with deep neural networks and tree search. Nature 2016, 529, 484–489. [CrossRef]
[PubMed]

3. Holzinger, A.; Saranti, A.; Molnar, C.; Biecek, P.; Samek, W., Explainable AI Methods—A Brief Overview. In xxAI—Beyond
Explainable AI: International Workshop, Held in Conjunction with ICML 2020, July 18, 2020, Vienna, Austria, Revised and Extended
Papers ; Holzinger, A., Goebel, R., Fong, R., Moon, T., Müller, K.R., Samek, W., Eds.; Springer International Publishing: Cham,
Switzerland, 2022; pp. 13–38. [CrossRef]

4. Lundberg, S.M.; Lee, S.I. A Unified Approach to Interpreting Model Predictions. In Advances in Neural Information Processing
Systems 30; Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R., Eds.; Curran Associates,
Inc.: Red Hook, NY, USA, 2017; pp. 4765–4774.

5. Ribeiro, M.T.; Singh, S.; Guestrin, C. ’Why Should I Trust You?’: Explaining the Predictions of Any Classifier. In Proceedings
of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Demonstrations, San
Diego, CA, USA, 12–17 June 2016; Association for Computational Linguistics: San Diego, CA, USA, 2016; pp. 97–101. [CrossRef]

6. Shrikumar, A.; Greenside, P.; Kundaje, A. Learning Important Features through Propagating Activation Differences. In
Proceedings of the 34th International Conference on Machine Learning, ICML’17 , Sydney, Australia, 6–11 August 2017; Volume 70,
pp. 3145–3153. Available online: JMLR.org (accessed on 15 June 2022).

7. Van Seijen, H.; Fatemi, M.; Romoff, J.; Laroche, R.; Barnes, T.; Tsang, J. Hybrid Reward Architecture for Reinforcement Learning.
In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Guyon, I.,
Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY,
USA, 2017; Volume 30.

8. Juozapaitis, Z.; Koul, A.; Fern, A.; Erwig, M.; Doshi-Velez, F. Explainable Reinforcement Learning via Reward Decomposition. In
Proceedings of the International Joint Conference on Artificial Intelligence, A Workshop on Explainable Artificial Intelligence,
Macao, China, 10–16 August 2019.

9. Gaonkar, B.; Shinohara, R.; Davatzikos, C. Interpreting support vector machine models for multivariate group wise analysis in
neuroimaging. Med. Image Anal. 2015, 24, 190–204. [CrossRef] [PubMed]

10. Palczewska, A.; Palczewski, J.; Marchese Robinson, R.; Neagu, D., Interpreting Random Forest Classification Models Using a
Feature Contribution Method. In Integration of Reusable Systems; Bouabana-Tebibel, T., Rubin, S.H., Eds.; Springer International
Publishing: Cham, Switzerland, 2014; pp. 193–218. [CrossRef]

11. Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual Explanations from Deep Networks
via Gradient-Based Localization. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice,
Italy, 22–29 October 2017; pp. 618–626. [CrossRef]

12. Springenberg, J.; Dosovitskiy, A.; Brox, T.; Riedmiller, M. Striving for Simplicity: The All Convolutional Net. In Proceedings of
the ICLR (Workshop Track), San Diego, CA, USA, 7–9 May 2015.

13. Zahavy, T.; Ben-Zrihem, N.; Mannor, S. Graying the black box: Understanding DQNs. In Proceedings of the 33rd International
Conference on Machine Learning, New York, NY, USA, 19–24 June 2016; Balcan, M.F., Weinberger, K.Q., Eds.; JMLR: New York,
NY, USA, 2016; Volume 48 , pp. 1899–1908.

14. Atrey, A.; Clary, K.; Jensen, D. Exploratory Not Explanatory: Counterfactual Analysis of Saliency Maps for Deep Reinforcement
Learning. In Proceedings of the International Conference on Learning Representations, Online, 26–30 April 2020.

15. Wang, Y.; Mase, M.; Egi, M. Attribution-based Salience Method towards Interpretable Reinforcement Learning. In Pro-
ceedings of the AAAI Spring Symposium: Combining Machine Learning with Knowledge Engineering, Palo Alto, CA, USA,
23–25 March 2020.

16. Terra, A.; Inam, R.; Baskaran, S.; Batista, P.; Burdick, I.; Fersman, E. Explainability Methods for Identifying Root-Cause of SLA
Violation Prediction in 5G Network. In Proceedings of the GLOBECOM 2020—2020 IEEE Global Communications Conference,
Online, 7–11 December 2020; pp. 1–7. [CrossRef]

17. Liessner., R.; Dohmen., J.; Wiering., M. Explainable Reinforcement Learning for Longitudinal Control. In Proceedings of the 13th
International Conference on Agents and Artificial Intelligence—Volume 2: ICAART, Online, 4–6 February 2021; pp. 874–881.
[CrossRef]

18. Hickling, T.; Zenati, A.; Aouf, N.; Spencer, P. Explainability in Deep Reinforcement Learning, a Review into Current Methods
and Applications. arXiv 2022, arXiv:2207.01911. Available online: https://doi.org/10.48550/ARXIV.2207.01911 (accessed on
17 August 2022).

19. Lin, Z.; Yang, D.; Zhao, L.; Qin, T.; Yang, G.; Liu, T.Y. RD2: Reward Decomposition with Representation Decomposition. In
Proceedings of the Advances in Neural Information Processing Systems, Online, 6–12 December 2020; Larochelle, H., Ranzato, M.,
Hadsell, R., Balcan, M.F., Lin, H., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2020; Volume 33, pp. 11298–11308.

20. Lin, Z.; Lam, K.H.; Fern, A. Contrastive Explanations for Reinforcement Learning via Embedded Self Predictions. arXiv 2020,
arXiv:2010.05180 . Available online: https://arxiv.org/abs/2010.05180 (accessed on 8 March 2022).

https://arxiv.org/abs/1312.5602
http://doi.org/10.1038/nature16961
http://www.ncbi.nlm.nih.gov/pubmed/26819042
http://dx.doi.org/10.1007/978-3-031-04083-2_2
http://dx.doi.org/10.18653/v1/N16-3020
JMLR.org
http://dx.doi.org/10.1016/j.media.2015.06.008
http://www.ncbi.nlm.nih.gov/pubmed/26210913
http://dx.doi.org/10.1007/978-3-319-04717-1_9
http://dx.doi.org/10.1109/ICCV.2017.74
http://dx.doi.org/10.1109/GLOBECOM42002.2020.9322496
http://dx.doi.org/10.5220/0010256208740881
https://doi.org/10.48550/ARXIV.2207.01911
https://arxiv.org/abs/2010.05180

Appl. Sci. 2022, 12, 10947 32 of 32

21. Sutton, R.; Modayil, J.; Delp, M.; Degris, T.; Pilarski, P.; White, A.; Precup, D. Horde : A Scalable Real-time Architecture for
Learning Knowledge from Unsupervised Sensorimotor Interaction Categories and Subject Descriptors. In Proceedings of the
AAMAS’11: The Tenth International Conference on Autonomous Agents and Multiagent Systems, Taipei, Taiwan, 2–6 May 2011 ;
Volume 2.

22. Bica, I.; Jarrett, D.; Hüyük, A.; van der Schaar, M. Learning ”What-if” Explanations for Sequential Decision-Making. In
Proceedings of the International Conference on Learning Representations, Online, 3–7 May 2021.

23. Mohseni, S.; Zarei, N.; Ragan, E.D. A Multidisciplinary Survey and Framework for Design and Evaluation of Explainable AI
Systems. ACM Trans. Interact. Intell. Syst. 2021, 11, 24 . [CrossRef]

24. Schmidt, P.; Bießmann, F. Quantifying Interpretability and Trust in Machine Learning Systems. CoRR 2019, arXiv:1901.08558.
Available online: https://arxiv.org/abs/1901.08558 (accessed on 16 June 2022).

25. Zhang, Q.; Wang, W.; Zhu, S.C. Examining CNN Representations with Respect to Dataset Bias. In Proceedings of the AAAI
Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; Volume 32.

26. Anderson, A.; Dodge, J.; Sadarangani, A.; Juozapaitis, Z.; Newman, E.; Irvine, J.; Chattopadhyay, S.; Fern, A.; Burnett, M.
Explaining Reinforcement Learning to Mere Mortals: An Empirical Study. In Proceedings of the 28th International Joint
Conference on Artificial Intelligence, IJCAI’19, Macao, China, 10–16 August 2019; AAAI Press: Palo Alto, CA, USA, 2019;
pp. 1328–1334.

27. Madumal, P.; Miller, T.; Sonenberg, L.; Vetere, F. Explainable Reinforcement Learning through a Causal Lens. Proc. AAAI Conf.
Artif. Intell. 2020, 34, 2493–2500. [CrossRef]

28. Verma, A.; Murali, V.; Singh, R.; Kohli, P.; Chaudhuri, S. Programmatically Interpretable Reinforcement Learning. In Proceedings
of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, 10–15 July 2018;
Dy, J.G., Krause, A., Eds.; Proceedings of Machine Learning Research ; PMLR : 2018, Volume 80, pp. 5052–5061.

29. Liu, G.; Schulte, O.; Zhu, W.; Li, Q. Toward Interpretable Deep Reinforcement Learning with Linear Model U-Trees. In
Proceedings of the ECML/PKDD, Dublin, Ireland, 10–14 September 2018.

30. Vannella, F.; Iakovidis, G.; Hakim, E.A.; Aumayr, E.; Feghhi, S. Remote Electrical Tilt Optimization via Safe Reinforcement
Learning. In Proceedings of the 2021 IEEE Wireless Communications and Networking Conference (WCNC), Nanjing, China,
29 March–1 April 2021; pp. 1–7. [CrossRef]

31. Vannella, F.; Jeong, J.; Proutiere, A. Off-policy Learning for Remote Electrical Tilt Optimization. In Proceedings of the 2020 IEEE
92nd Vehicular Technology Conference (VTC2020-Fall), Online, 18 November–16 December 2020; pp. 1–5. [CrossRef]

32. Vannella, F.; Proutiere, A.; Jedra, Y.; Jeong, J. Learning Optimal Antenna Tilt Control Policies: A Contextual Linear Bandit
Approach. In Proceedings of the IEEE INFOCOM 2022—IEEE Conference on Computer Communications, Online, 2–5 May 2022,
pp. 740–749. [CrossRef]

33. Bouton, M.; Farooq, H.; Forgeat, J.; Bothe, S.; Shirazipour, M.; Karlsson, P. Coordinated Reinforcement Learning for Optimizing
Mobile Networks. CoRR 2021, arXiv:2109.15175. Available online: https://arxiv.org/abs/2109.15175 (accessed on 16 March 2022).

34. Jin, Y.; Vannella, F.; Bouton, M.; Jeong, J.; Hakim, E.A. A Graph Attention Learning Approach to Antenna Tilt Optimization.
CoRR 2021, arXiv:2112.14843. Available online: https://arxiv.org/abs/2112.14843 (accessed on 16 March 2022).

35. Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò, P.; Bengio, Y. Graph Attention Networks. In Proceedings of the
International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018.

36. Barredo Arrieta, A.; Díaz-Rodríguez, N.; Del Ser, J.; Bennetot, A.; Tabik, S.; Barbado, A.; Garcia, S.; Gil-Lopez, S.; Molina, D.;
Benjamins, R.; et al. Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward
responsible AI. Inf. Fusion 2020, 58, 82–115. [CrossRef]

37. van Hasselt, H.P.; Guez, A.; Guez, A.; Hessel, M.; Mnih, V.; Silver, D. Learning values across many orders of magnitude. In
Proceedings of the Advances in Neural Information Processing Systems, Barcelona, Spain, 5–10 December 2016; Lee, D., Sugiyama,
M., Luxburg, U., Guyon, I., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2016; Volume 29.

38. Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.; Schulman, J.; Tang, J.; Zaremba, W. OpenAI Gym. arXiv 2016,
arXiv:1606.01540. Available online: https://doi.org/10.48550/arXiv.1606.01540 (accessed on 20 June 2022).

http://dx.doi.org/10.1145/3387166
https://arxiv.org/abs/1901.08558
http://dx.doi.org/10.1609/aaai.v34i03.5631
http://dx.doi.org/10.1109/WCNC49053.2021.9417363
http://dx.doi.org/10.1109/VTC2020-Fall49728.2020.9348456
http://dx.doi.org/10.1109/INFOCOM48880.2022.9796783
https://arxiv.org/abs/2109.15175
https://arxiv.org/abs/2112.14843
http://dx.doi.org/10.1016/j.inffus.2019.12.012
https://doi.org/10.48550/arXiv.1606.01540

	Introduction
	Background and Related Works
	Background
	Related Works
	Explainability for Input Features
	Explainability for Output/Reward Components
	Quantification of the Explanations
	Other XRL Methods
	Explainability of Remote Electrical Antenna Tilt

	Both End Explanations for Reinforcement Learning (BEERL) Method
	RL Environment
	Reward Functions
	User Configuration
	Reward Prioritization
	Relevance Table

	RL Agent
	Q-Function
	Component Aggregator
	Output Layer

	Generating Explanation
	Attributive Explanation
	Contrastive Explanations

	Evaluator
	Data Flow

	Experimental Evaluations and Results
	Remote Electrical Antenna Tilt Environment
	Explanations Using Existing XAI Methods
	Attributive Explanations with BEERL
	Analysis of Shapley-Based Explainer
	Contrastive Explanations with BEERL
	Usages with BEERL
	Focus Value: Quantifying the Desired Propreties

	Conclusions
	Patents
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix D.1
	Appendix D.2

	References

