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Abstract: Industrial control systems play a central role in today’s manufacturing systems. Ongoing
trends towards more flexibility and sustainability, while maintaining and improving production
capacities and productivity, increase the complexity of production systems drastically. To cope
with these challenges, advanced control algorithms and further developments are required. In
recent years, developments in Artificial Intelligence (AI)-based methods have gained significantly
attention and relevance in research and the industry for future industrial control systems. AI-based
approaches are increasingly explored at various industrial control systems levels ranging from
single automation devices to the real-time control of complex machines, production processes and
overall factories supervision and optimization. Thereby, AI solutions are exploited with reference
to different industrial control applications from sensor fusion methods to novel model predictive
control techniques, from self-optimizing machines to collaborative robots, from factory adaptive
automation systems to production supervisory control systems. The aim of the present perspective
paper is to provide an overview of novel applications of AI methods to industrial control systems
on different levels, so as to improve the production systems’ self-learning capacities, their overall
performance, the related process and product quality, the optimal use of resources and the industrial
systems safety, and resilience to varying boundary conditions and production requests. Finally, major
open challenges and future perspectives are addressed.

Keywords: control systems; industrial automation; artificial intelligence; machine learning;
self-learning machine tools; adaptive production systems

1. Introduction

Currently, manufacturing companies have to deal with many challenges in order
to remain competitive within the rapidly changing market dynamics and framework
conditions, including socio-economic, environmental and cultural aspects.

Short delivery times and customization along with comparable production costs and
high-quality parts are order-winning properties and therefore vital for business. Addi-
tionally, accelerated product developments and industrializations are important attributes
to quickly cover market developments with brief time to markets. Moreover, upcoming
regulations as well as growing social and environmental requirements represent additional
challenges to be faced by the industry. Key enabling factors to face such challenges are
production machines, whose developments are crucial to meet the cited and constantly
growing demands of modern manufacturing companies.

To keep pace with these ongoing evolutions and master upcoming challenges, indus-
trial control systems are a key factor for advanced production machines and industrial
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plants [1]. Closed loop and real time control solutions are already widely used and are well
established on various levels of production systems. However, with increasing complexity
of the manufacturing systems and control requirements, further developments of control
algorithms are indispensable to address the demand for future manufacturing systems.

Promising approaches for improved industrial control systems are based on recent
developments in artificial intelligence (AI). AI has obtained wide popularity in the past
years and is one of the most pursued topics in research and industry. Progress in computing
hardware and software has facilitated the collection of data and its exploration with AI for
various use cases. Initiatives such as Industry 4.0 have further highlighted the potential
of AI-based methods and have pushed them to the centre of attention in many fields [2].
A report from McKinsey & Company states that AI could contribute with a value of USD
3.6–6.6 trillion annually in the supply-chain management and manufacturing sector [3].

Especially in the area of manufacturing, AI-based developments further expand the
capabilities and pave the way for more advanced industrial control systems. Current
applications and trends are shown in the following section for various levels.

In addition to existing works about applications of AI or machine learning in manu-
facturing and Industry 4.0 [4–7], this work provides a perspective overview of the current
state of the art, recent developments and future challenges for each manufacturing process
and control level.

Therefore, this paper is structured following a hierarchical and functional bottom-
up approach: starting from the processing and elaboration of sensor signals to the job
scheduling operations of the whole production plant. Thereby, the focus lies on identifying
and illustrating most promising artificial intelligence-based methods coping with current
challenges at each industrial control and automation level, including the related data
acquisition, process modelling, real-time control and task scheduling operations. Due to the
plethora of existing algorithms, the aim is not to present a complete overview of existing
approaches and methods, but to highlight the most promising ones and the potential of their
future development and applications to face modern industrial control and automation
challenges, by means of emerging AI-based methodologies. In particular, the key role of
the integration of AI methods in industrial control solutions is to strive for future self-
optimizing production systems. For the successful implementation of self-optimizing
machines, all components over all hierarchies must be optimally designed and operational.
Figure 1 schematically illustrates the main element of self-optimizing production systems
and forms the basis for the focus of the first sections in the present review and survey paper.
Starting from a controller dedicated to a set of well-defined process variables, multiple
aspects must be considered to enable an accurate and reliable control that is elementary
for subsequent higher-level control structures. The first step of each controller is the direct
or indirect measurement of the process variable under consideration. In order to obtain
the most relevant information and controller inputs, sensor signals must be processed
and elaborated accordingly. Since amount, type and quality of sensor signals can vary
significantly, different methods are required to process them in an appropriate manner.
In particular, trends towards the utilization of multiple sensors and the consequently
increasing data availability require new developments towards suitable approaches for
sensor and data fusion. Related current approaches and AI-based methods are discussed
in Section 2.

A further important element within optimized controllers and manufacturing ap-
plications are process models. Depending on the use case, these process models can be
generated conventionally with multi-physics simulations as finite element methods or
more recently, data-driven approaches enable the generation of process models based on
the previously acquired data. However, not all process models are suitable for control
applications. An overview of available approaches and recent developments concerning
AI-based process models is given in Section 3. By processing the measurement values
and querying process models, the optimizer determines the optimal controller output.
Depending on the application, these processes must be performed very fast or even in
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real time and with as much autonomy as possible, requiring intelligent and specialized
solutions. Therefore, promising AI-based methods to implement effective optimizers are
presented in Section 4.
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Figure 1. Model-based optimized controller.

A further concatenation of multiple optimal controllers enables an advanced control
strategy over all hierarchical process levels. The main elements of self-optimizing machines
are their capability to autonomously adapt to changing requirements and circumstances.
Therefore, the task scheduler coupled with multiple cascaded control chains allows one
to redefine and modify control objectives of control chains towards higher-level optimal
objectives. Thereby, an example for the cascaded control chains could be the process control
of an additive manufacturing process, where the first controller guarantees a constant
energy density during the deposition process and the second controller acts layerwise by
modulating the process parameter for the subsequent layer to obtain an equal deposition
height. In an exemplary additive manufacturing process, the two control loops could
represent the regulation of two laser sources, simultaneously building various features of a
more complex part. A simplified overview of a self-optimizing framework is displayed
in Figure 2.
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Figure 2. Self-optimizing production system control framework.

AI methods can enhance the self-optimization capacity of a cognitive industrial control
system at different hierarchical and functional levels. The combination of models and real-
time data, as well as of real-time control and job scheduling functionalities, allows for
the development of self-optimizing industrial machines and systems with new elevated
degree of autonomy. Current methods and developments of job scheduling functionalities
are described in Section 5, whereas approaches and frameworks towards cognitive self-
optimizing machines are outlined in Section 6.
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2. Methods for Industrial Data Fusion at Sensor, Feature and Decision Level

Efficiency, repeatability, robustness, and quality of manufacturing processes are of
great importance in today’s production sites. Monitoring systems enable to capture pa-
rameters and system states in real time, allowing to effectively control manufacturing
processes. The quality and performance of these automation systems stand and fall with
the reliability and precision of available information. As a result, robust and accurate
process measurements are of crucial relevance to satisfy higher-quality requirements.

A common approach to tackle these issues is a fast developing and huge research
field called sensor fusion. The scope of data fusion, also known as sensor fusion, multi-
sensor data fusion, multi-sensor integration, data combination or data aggregation is
to obtain improved information with higher accuracy by merging multiple information
sources. It fosters the robustness, reliability and confidence of the analysed information and
improves the temporal and spatial resolution [8]. Initial developments of sensor-fusion-
based systems go back to the military industry, where the authentication and tracking of
dynamic objects is of crucial importance. Recently, further sectors such as the automotive
sector experience a strong increase in sensor fusion for autonomous vehicles to accurately
map their environment.

There have been multiple attempts to define a definition and framework for sensor
data fusion. One of the most popular definitions has been presented by the Joint Direc-
tors of Laboratories (JDL) [9] describing sensor fusion as a multi-level process handling
the association, correlation and combination of data and information from single and
multiple sources. This section focuses on the application of AI-based algorithms for in-
dustrial data fusion. For a deeper insight in further data fusion architectures, the reader is
referred to [10–12].

To capitalize on the benefits of sensor data fusion, some challenges must be overcome
for a successful implementation. There are various data properties affecting the feasibility
and success of the data fusion process. The main challenges of data fusion arise from
the heterogeneity of data sources and individual imperfections of each data source such
as uncertainty, imprecision or granularity. An overview of typical data fusion issues is
displayed in Figure 3.
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Depending on the considered data type and its fusion issues, suitable fusion algo-
rithms must be selected. Today’s available algorithms only address a subset of these aspects.
Due to the multitude of applications and available algorithms, the following section does
not claim to be complete, but identifies promising methodologies for applications in in-
dustrial control solutions. Furthermore, there are many ways to classify fusion algorithms.
Meng et al. [13] presented the algorithms according to their abstraction level as signal level,
feature level and decision level, whereas Sasiadek et al. [14] divides fusion approaches in
probabilistic models, least-square techniques and intelligent fusion.
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On a signal level, the most intuitive and easiest way to increase the signal-to-noise
ratio of redundant sources is to apply the weighted average or the least squares method
on captured data. A more sophisticated and widespread method is the Kalman Filter.
The Kalman Filter considers the statistical characteristics of the measurements while still
allowing for real-time processing of the data. Kalman filtering is a discrete and time
invariant approach and only holds for linear models. Unfortunately, practical problems
often have strong non-linear relations. To overcome these limitations, Extended Kalman
Filter (EKF) [15], Unscented Kalman Filter (UKF) or the Particle Filter (PF) [16] also known
as Sequential Monte Carlo (SMC) have been developed to handle non-linear relationships.
A drawback of the latter method is the increasing computational effort and rising amount
of required data.

Regarding the feature level, unsupervised learning algorithms such as K-means clus-
tering or self-organizing maps can be used to classify relationships between entities and
extract further information. These methods are particularly suitable for applications where
patterns or geometrical relations need to be detected. Further methods to address pattern
recognition problems are adaptive resonance theory (ART), ARTMAP or Fuzzy ART.

For applications with limited bandwidth, Challa et al. [17] applied support vector
machines (SVM) to compress the information in sensor fusion for large amounts of samples.
Further algorithms and their applications are presented by Fung et al. [18]. Depending
on the use case and its requirements, the suitability of the data fusion algorithm must
be evaluated individually. Thereby, the target application defines the required accuracy,
computational complexity, processing power and available amount of data.

King et al. [16] introduced a classification depending on the degree of complexity.
Thereby, low-complexity algorithms such as k-means allow for an enhanced battery life for
wearable health monitoring systems due to their reduced computational complexity and
resource requirements.

In Table 1, the presented algorithms are distinguished regarding their application or
abstraction level as sensor fusion, feature fusion and decision fusion. In general, there is a
wide range of possible data fusion applications.

Table 1. Overview of data fusion algorithms at sensor, feature and decision level.

Abstraction Level Method Applications/References

Sensor Level

Weighted average [19]
Kalman Filter (EKF, UKF) [20,21]

Particle Filtering [22,23]
Dempster-Shafer method [24,25]

Feature level

k-nearest neighbour (k-NN), k-means [26]
Decision Trees [27]

Support vector machines (SVM) [28]
Artificial neural networks (ANN) [29–31]
Gaussian mixture model (GMM) [32,33]

Decision level
Bayesian inference [34,35]

Fuzzy logic [36,37]

Typical examples of the military industry are the location and tracking of moving
objects. Depending on the target, multiple sensor platforms are used, and various sources as
acoustic signals or electromagnetic radiation can be observed [38]. More recent applications
are in the health care [39] or telecommunication sectors as wireless sensor networks. The
widespread machine learning algorithms such as ANN, SVM or GMM lead to an increased
adoption in sensor fusion approaches and enhance the possibilities of sensor fusion.

However, the efficient handling of big amounts of data in industrial applications
remains an important challenge for the future. Approaches called consensus filters try to
address this issue by implementing distributed filters to create scalable algorithms [40,41].
More recent developments were published in the automotive sector, where fast develop-
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ments are noticeable. Future self-driving or autonomous vehicles require reliable infor-
mation about their environment and are therefore predestined for sensor fusion [42–44].
Wei et al. [45] fusioned LiDAR and a vision system to reduce the false positive detection of
the LiDAR system utilizing neural networks to project the camera to the LiDAR space. A
more detailed review in this sector is presented by Wang et al. [42] and Alatise et al. [44].

These developments will probably lead to further adoption and improvements in
manufacturing industries. Besides data-related issues, the interaction and data fusion of
human inputs and machine data will play an important role in the future and requires
more research to be developed in the near future.

3. Empirical Data Driven Methods for Production Process Modelling

Production process modelling enables the development of stable and repeatable pro-
cess models, which are of crucial relevance for manufacturing companies. Production
processes can be viewed from different perspectives ranging from the overall production
process chain including raw material delivery, manufacturing steps and the final stock
exploitation with the final product to simulations of the microscopic material behaviour
during a manufacturing step [46]. This section focuses on the modelling of manufacturing
processes for control purposes. The following sections consider high-level perspectives
accounting for multiple manufacturing machines and systems.

In the domain of manufacturing processes, as for example additive manufacturing,
models can be classified in analytical, numerical or empirical approaches [47]. Analytical
models consist of the mathematical analysis of a physical problem described by partial
differential equations (PDE) and given boundary conditions. Given the assumptions made,
the obtained solution accurately represents the reflected domain. However, the process to
determine analytical solutions is not trivial, and for complex processes, advanced numerical
methods and demanding computational efforts are necessary to solve the considered
physical equations.

Numerical methods are typically finite element method (FEM), boundary element
method (BEM), finite difference method (FDM) or finite volume method (FVM). The solving
of PDE is an essential element for multi-physics simulations enabling the simulation of
complex manufacturing processes. Offline process simulations allow to perform parameter
or design engineering without performing costly experiments and are therefore widely
spread in R&D departments. An important limitation of these methods is the computational
burden for complex processes including multiple physical phenomena. Furthermore, the
computational effort scales drastically with increasing simulation domain sizes. Besides
computational drawbacks, setting up a model is not trivial and requires highly skilled
employees to define model parameters. The model definition and its assumptions are
crucial to obtain representative results for a predefined process window.

In certain applications, it can be more suitable to create empirical models by perform-
ing a series of experiments and analysing the observations. Thus, relations between process
inputs and obtained measurements can be captured without knowing the detail about the
physical phenomena. This method is in particular suitable for low-cost experiments, where
numerical or analytical models would require more resources. To approximate the captured
observations in terms of an exploitable model, various approaches exist. One of the most
straightforward methods in statistical analysis is linear regression, where a line is fitted
to capture the relation between two variables. For more complex non-linear applications,
machine learning based methods as neural networks (NN) have experienced a widespread
adoption in recent years [48–53]. Due to the increased availability of computational re-
sources, the increasing development of machine learning libraries and the possibility to
approximate highly non-linear relationships lead to many applications in industry, as
for example machining operations and additive manufacturing [54]. The approximation
capacities can be customized by varying NN hyperparameters as the number of hidden
layers or the number of neurons of each layer. A further advantage of the NN-based model
is the possibility to apply the model for similar processes. Therefore, only few additional
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data points are required to fine tune the already trained model by adapting the model to the
changed conditions [55]. However, the main drawbacks of NN are the required amount of
data to train the network and the reliability of the predictions. The structure of NNs makes
it difficult to interpret and predict the behaviour, in particular for unseen data points.

Recent developments combine the advantages of physics-based simulations and neural
networks by including the physical knowledge in the training of the neural network [56–59].
In contrast to conventional neural networks, physics-informed neural networks contain
additional loss terms. Besides the prediction error, terms satisfying the partial differential
equation of the simulated domain penalize solutions disagreeing with the physical equa-
tions. As a result, less data are required to train and optimize the weights of the network,
and predictions are more stable. Moreover, the additional loss terms shrink the solution
space and prevent overfitting of the model. For data scare applications, this method is
very promising but needs further research for industrial applications. In particular, the
scalability needs to be investigated since the additional computations for each iteration
and the coordinates dependent on PDE are potentially limiting factors for an adoption on
larger part dimensions.

With a similar objective, but without directly implementing the physics of the consid-
ered process, a recent method has been presented by Li et al. [60]. The authors presented
the Fourier neural operator (FNO) to learn the underlying multiple partial differential
equations (PDE) by mapping from a functional parametric dependence to the solution.
The proposed architecture method appears to be significantly faster than traditional PDE
solvers. To train the FNO, a sequence of timeframes of a physical phenomenon is given as
input to predict the following time frames. The inputs are processed by transforming the
input into the frequency space, filtering the higher frequency modes and transforming the
filtered data back to the time space; furthermore, the inputs are multiplied with weights
and summed up with the filtered results. Subsequently, the results are passed through an
activation function, and the described layer is repeated multiple times. The advantages
of the method are the mesh invariance and the capability of learning the relevant physics
behind the process. Therefore, this method could be a promising approach for the mod-
elling of manufacturing processes. First adoptions for solving the PDE for two-phase flow
fields have been demonstrated by Zhang et al. [61]. However, the transfer from theoretical
physical problems to empirical data is still missing.

Besides AI-based algorithms inspired by the structure of NN, probabilistic approaches
as Bayesian Optimization (BO) have also been proven to be suitable for data scare ap-
plications. Due to the probabilistic nature of BO, probabilities and uncertainties of the
prediction are computed. These values enable the development of data sampling meth-
ods, minimizing the uncertainty of the predictions. As a result, less experimental data
are required to obtain a model of the manufacturing process. Maier et al. [62] success-
fully applied this method to optimize grinding parameters after a few trials for an un-
known workpiece and tool combination. Table 2 summarizes the mentioned process
modelling methods.

However, a general challenge of process simulations remains the lack of generalizabil-
ity of models and the increased computational burden for complex processes. Simulation
domains are often tiny volumes and only represent a small element of the manufactur-
ing step. Previously mentioned recent developments could be promising to handle both
larger simulation domains and complex processes. Particularly, data-driven methods have
recently shown great potential. Further research regarding the explainability and gener-
alizability of data-driven methods must be carried out to enable an imminent transition
to industry.
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Table 2. Overview of sensor fusion algorithms.

Modelling Type Modelling Methods Applications

Analytical Analytical Well-known and simpler models

Numerical FEM, FVM Complex processes, limited domain size and
computational expensive

Empirical/Data-driven

Statistical analysis, e.g., linear regression Well-known, low computational cost, for less
complex problems

Neural network Mapping of nearly arbitrary relations, with
sufficient experimental data

Gaussian processes
Process parameter optimization, difficulties in
handling high-dimensional problems, small

amounts of available data

Physics-Informed Neural Networks Process modelling, small amounts of data

Fourier Neural Operator Mesh invariant modelling methods. Novel
approach needs to be tested for real use cases

4. Machine Learning Applications for Production Machines Real Time Control

Real-time control of manufacturing machines is a further essential element of produc-
tion machines to achieve repeatable and stable processes with high-quality parts. Appli-
cations range from accurate positioning of machine axes to adaptive control of process
parameters as the laser power during laser welding. Today’s industrial control systems
are mainly based on highly consolidated solutions, as for example PID controllers for axis
control. The simple structure, ease of implementation and long experience in parameter
tuning lead to an established technology for control applications. However, there were
many further developments in the controller design and automated parameter tuning [63].
AI-based methods have been increasingly adopted in recent years to optimize control
parameters tuning or to develop new types of control methods.

In general, machine learning methods can be divided into supervised, unsupervised
and reinforcement learning (RL) [64]. Supervised learning trains for example an NN by
reducing the mean squared error between predictions and the corresponding labelled
solution. In unsupervised learning, no information about the ground truth is available.
Unsupervised learning often consists in clustering or reducing data dimensionality by
grouping correlated data points. In contrast to supervised and unsupervised learning, RL
forms a semi-supervised learning approach, where an agent interacts with the environment
and a reward is given for performed actions. The algorithms explore the environment by
executing actions and receiving rewards for the actions and decisions taken. The optimal
execution order of the actions, the policy, is not known and will be determined during the
learning process. A good introduction into Deep RL is given by Mousavi et al. [65]. RL can
be further subdivided into dynamic programming, Monte Carlo methods and temporal
difference methods [66].

Regarding PID parameter tuning, RL has been successfully applied to find suitable
controller parameters. Besides traditional approaches such as trial and error or Ziegler–
Nichols [67], Wang et al. [68] utilized an actor critic RL approach to determine the PID
parameters. The results demonstrated the algorithm’s ability to track non-linear systems
while ensuring adaptability and robustness. Besides parameter tuning, RL also experiences
an increased adoption within process control applications. Table 3 lists the currently most
adopted RL algorithms for control applications.



Appl. Sci. 2022, 12, 10962 9 of 19

Table 3. Overview of common and new control algorithms.

Type Control Method

Traditional PID, fractional PID
Fuzzy Logic Fuzzy controller

Reinforcement Learning

Temporal difference (TD),
SARSA (State–Action–Reward–State–Action)

Soft Actor–Critic (SAC) or
Asynchronous Advantage Actor–Critic (A3C)

Q-learning, Double Q-learning

Nian et al. [66], Shin et al. [63] and Lee et al. [69] recently published reviews of ma-
chine learning and process control methodologies. In particular, Shin et al. [63] compared
reinforcement learning with model predictive control algorithms. For complex and dynam-
ical systems, model predictive controllers (MPC) represent an effective alternative to PID
controllers. Due to their ability to explicitly consider constraints and predictively optimize
the controller output, MPC solutions are already well established in the industry. Important
for the applicability of MPC are sufficient slow system dynamics so as to execute the model
online during every sampling step. Reinforcement learning for process control appears
to be a promising method to reduce online computation times. The m ain differences lie
in the modelling approach, where RL algorithms learn the model through trial and error,
whereas MPC requires a model developed with first principles or process identifications.
Furthermore, the online execution time of model-free RL is faster than MPC, since only
a forward run of the policy network is required, whereas the MPC requires solving an
optimization problem at each execution. A general comparison between deep RL and MPC
for optimal control is given by Lin et al. [70] and is displayed in Table 4. More details about
the comparison of MPC and RL can be found in [70,71].

Table 4. Comparison of deep reinforcement learning and model predictive control for optimal
control [72].

Comparison Criteria Reinforcement Learning MPC

Solution form Neural networks Model based optimization

Online computation time Low High, especially for high-degree
non-linear systems

Optimality-seeking capability Near-optimal Near-optimal with long
prediction horizons

Generalization issue of
machine learning Reduced optimality N/A

Handling of hard constraints Under development Yes

Handling of modelling errors,
control delays, and/

or disturbances
Better with larger errors Worse if not robust MPC

Due to the possibility of offline training, reinforcement learning is suitable for real-time
control. Famous results of reinforcement learning were achieved by DeepMind beating
human players in games such as Go [72]. However, these kinds of simulated environments
are perfectly known and are therefore particularly suitable for the learning of reinforcement
algorithms. In contrast to simulated environments, industrial processes suffer from high
levels of imprecision and uncertainty (see sensor fusion; Section 2). The training requires a
lot of data and interactions with the environment, which can be performed by interacting
with a model. However, accurate models covering the entire manufacturing process over all
parameter combinations are extremely complex, and experiments are costly. As discussed
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in Section 3, AI-based modelling approaches could therefore be suitable to model the
process and serve as an environment for the RL algorithm. In contrast to traditional
control approaches, there are no stability guarantees for RL controllers. Compared to
traditional control methods, the development of RL control algorithms is still in an early
stage. Nevertheless, the general learning capability of RL is promising for the future.
Furthermore, research is needed to search for methods to improve stability and convergence
of RL algorithms. For further applications as control approaches, safe RL will be, in the
future, an important topic to enhance the reliability of RL-based controllers [73,74].

5. Real-Time Scheduling Methods for Flexible Manufacturing Systems

Trends towards customized products and shorter delivery times lead to a major chal-
lenge for manufacturing factories automation and management systems. The increase in
product variants introduces significant non-production times due to system reconfiguration
and set up needs at each product changeover. Besides internal production uncertainties,
external factors such as a varying customer demand, supply chain ruptures or even raw
material price dynamics increase the complexity level of the manufacturing configuration,
planning and scheduling tasks [75]. To cope with these challenges, today’s manufacturing
companies need not only high-performance and flexible processes but also robust concepts
to handle foreseen variances and unforeseen disturbances with minimal impact and small
additional production costs [76,77]. Approaches to raise the production flexibility can range
from improvements and development of adaptive work cells with self-adaptive control
functions [78,79] to optimized production planning and scheduling solutions [80].

The mapping and optimization of these increasingly complex production processes
is an important field of research. Recent works underline the relevance of production
scheduling and show a tendency towards the following topics in the last years [81]:

• Self-organization of resources;
• Self-regulation of the production process;
• Self-learning capacities of the overall manufacturing industrial system.

These topics highlight the importance of autonomous and self-optimizing scheduling
approaches to handle the overall growing production dynamics. Frequently applied
scheduling optimization objectives are the maximization of machine utilization and the
minimization of the lead time to produce a product [82]. Additionally, an increased
sensibility and awareness of the climatic impact lead to further requirements such as the
minimization of utilized resources and the reduced emission of greenhouse gases.

Once the scheduling objectives are defined, various approaches exist to implement
a job shop scheduling policy. A general classification divides them into centralized, dis-
tributed or more recent hybrid scheduling and control architectures (HCA) [83]. These
hybrid structures aim to combine the advantages of both approaches, while reducing their
drawbacks. State-of-the-art architectures are multi-agent systems (MAS), holonic man-
ufacturing systems (HMS) or product-driven systems (PDS) [83]. Another classification
presented by Zhang et al. [84] groups the job shop scheduling models by the problem
space in the following five types: basic type job shop scheduling problem (JSP), flexible JSP,
multi-resources FJSP model (MrFJSP), multi-plants-based MrFJSP (MpFJSP) and MpFJSP
with smart factory.

Independently of the scheduling architecture or model, dynamic scheduling ap-
proaches are required to cover and react on production events in real time. Events can
be classified in resource- or job-related events [85]. Thereby resource-related events in-
clude process-linked incidents, as for example machine breakdowns or material shortages.
Examples for job-related events are job cancellation or a change in priorities. Handling
these dynamic and unforeseen events, while considering constraints and variations of
each production process, is a key challenge of industrial production scheduling solutions.
To cope with the challenge, accurate production models are required to obtain realistic
results. However, with increasing model complexity, computation times and resulting
optimization times increase significantly, limiting the real-time application potential of
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advanced scheduling methods. To overcome these issues, new technologies and algorithms
are required to model and optimize the industrial operation scheduling problem.

Promising approaches are dynamic HCA with self-adaptive mechanisms to improve
the agility and reactivity [86]. Cardin et al. [75] presented an optimized reactive control
architecture (ORCA) consisting of a global and local control layer. Important is the dis-
tinction between normal and disrupted mode. In the case of a local perturbation, the local
optimizer triggers the switch to disrupted mode, where the local optimizer controls the
entity without the input of the global control layer. As a result, the system is able to handle
reactive and local disturbances, while maintaining a global optimal solution at the start of
each time window. The overall architecture is shown in Figure 4, illustrating the different
control levels and the disrupted mode.
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However, a crucial element for effective industrial scheduling solutions is an algorithm
that optimizes the objective functions in dynamic rescheduling operations. An overview of
scheduling algorithms is shown in Figure 5 [84]. With increasing complexity, approximate
methods are more suitable to optimize the production scheduling problem.
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In recent years, AI-based methods have received increasing attention and have been
more commonly applied to support the scheduling process in high-performing indus-
trial applications. Predictive maintenance enables to predict and even anticipate produc-
tion disturbances. The research in this field has increased drastically due to the expo-
nentially increasing amount of available production data and the adoption of AI-based
techniques [87,88]. Developments in this area are especially helpful for scheduling solutions
to anticipate disturbances and future changes, so as to proactively adapt the scheduling so-
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lution. Within the developments under Industry 4.0, new frameworks such as the MpFJSP
with smart factory are presented [84]. Thereby the actual job shop situation can be mea-
sured in real time by various sensors and identification technologies. As a result, the actual
situation can be compared to the planned scheduling solution. AI-based methods such
as deep learning technologies enable to extract information and learn from the produc-
tion processes autonomously to provide the necessary basis for decision making and new
scheduling solutions identification.

Priore et al. [89] presented an approach to predict the suitable decision rule with
machine learning based methods. Thereby, ensemble methods have been successfully
applied to exploit the prediction of multiple algorithms and increase the prediction accuracy.
Another work using ensemble methods has been presented by Lubosch et al. [90]. Thereby,
a Monte Carlo Tree Search was used to develop a flexible scheduling algorithm. To achieve
a good tradeoff between exploration and exploitation, the algorithms’ hyper parameters
are tuned with a Gradient Boosted Decision Tree (GBDT), avoiding a manual parameter
tuning. Recently, reinforcement learning-based production scheduling systems have gained
increasing attention in research [91]. Thereby a clear research trend towards more reliability-
aware algorithms can be identified.

Besides further research in modelling and optimization algorithms, human aspects
need to be considered in future adaptive automation solutions as well [92]. In particular,
human–robot collaboration is a promising approach for higher productivity and product
quality [93,94]. Worker-aware adaptive solutions enable the possibility to harmonize
human well-being to obtain a synergic human-automation solution, including the related
job scheduling aspects. Bettoni et al. [95] and Valente et al. [96] demonstrated an approach of
adaptive huma–machine collaboration, enabling an effective reduction of the physical and
mental stress of the operator. The monitoring of physiological parameters and classification
with random forest algorithms allow for estimating the state of the operator and adapting
the behaviour of the human-aware manufacturing systems, also considering the system
evolution over time, as outlined in Bracco et al. [97].

6. Emerging Cognitive Approaches for Self-Optimizing Machines

The key idea behind self-optimizing machines (SOM) or self-optimizing production
systems (SOPS) is to enable industrial production systems to produce customized high-
quality parts while satisfying productivity demands [98]. Therefore, highly autonomous
production machines are required to maximize the counteracting targets of efficient produc-
tion and customization. Enhanced autonomy enables the system to produce complex parts,
while handling and reacting to unforeseen events autonomously without any intervention
of external operators [99].

Adapting the machine state automatically towards the objectives requires increased
decision-making capabilities [100]. Thereby, the decision-making process can be compared
to the human decision-making requirements [101]. These cognitive processes consist of the
perception of the environment, its interpretation, the crosslink with existing knowledge and
the subsequent decision with a coupled action. The general cognitive process is displayed
in Figure 6 and illustrates the high-level control strategy.

The illustrated control structure includes the elements of each control loop. Cascading
these process control loops forms a fundamental element to achieve this elevated degree of
autonomy. These process control loops enable the SOM to react on changing objectives and
subsequently adapt the machine state levelwise top–down. The cascaded implementation
allows one to act on various influences on different impact levels, ranging from high-
level product modifications to microscopic tool wear during the manufacturing process.
Figure 7 visualizes a cascaded self-optimization loop for an additive manufacturing process.
Thereby, the control loops are linked top–down to consider production objectives within
the process control and act on each process level. Based on the Viable System model of
Stafford Beer, Permin et al. [102] presented a concept of the Viable System model, including
different levels of production and production management. Thereby, objectives are divided
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into normative production management, strategic production management and tactical
production management.
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A main element of the SOM and its cascaded process loops is the exploitation of
multiple information sources to capture and control the machine state. Moreover, the
link between all processing elements allows for the process control over multiple levels.
Thereby, process models as described in Section 3 support the control process by pre-
dicting target parameters or by optimizing control outputs with model-based controllers.
Thombandsen et al. [103] presented a framework of a model-based self-optimizing manu-
facturing machine. Within this concept, accurate observations and the understanding of
their relation to the product quality are crucial prerequisites for self-optimizing machines.
Based on sensor signals, machine states and operating points are identified, and control
parameters are computed by a model-based optimization.

A more higher-level perspective of a SOM is presented by Möhring et al. [104] and is
displayed according to the framework in Figure 8. Within this concept, the process starts
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with generation of the trajectory for the imported part to manufacture. During this process,
the planning process considers already processed and machine properties to optimize the
toolpath. Further optimizations of the settings are performed by modelling and simulation
of the process and the machine. These models enable the prediction of various product
target properties, as for example the surface quality or part geometry. Afterwards, the
actual machining process is performed, and monitoring solutions record the real-time
process behaviour and interact with real-time controllers. The actual process measurements
allow one to automatically update and improve the process model. Furthermore, the inline
measurements form the input of real-time controllers to perform accurate control tasks,
such as axis positioning. Considering the machine characteristics and measured process
deviations, real-time controllers are constantly refined. Further details and examples can
be found in Möhring et al. [104].
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Figure 8. Self-optimizing manufacturing machine [104].

Essential prerequisites for SOM are developments in data fusion, process modelling
and real-time control mentioned in the previous sections. In particular, the implementation
of suitable measurement devices is crucial for the subsequent process steps. Only if the
machine state is captured properly by accurate and robust measurements can valid process
models be generated and subsequent optimal actions selected. Key enabling technologies
as artificial intelligence and machine learning are promising approaches to process and
analyse sensor data. These techniques are necessary to build cascaded process control loops
based on comprehensive process observations, accurate process models and the knowledge
about quality-influencing factors. Even if there have been promising advancements in
various applications, there is still a lack in industrial implementations of comprehensive
SOM solutions. A general overview of AI applications in manufacturing is given by
Monostori [105]. Mayr et al. [106] presented an adaptive self-learning control approach to
compensate for thermal errors on five-axis machine tools. Based on data captured during
the process, a thermal autoregressive with exogenous input (ARX) model is identified and
updated during the process to reduce thermal errors. Dittrich et al. [107] presented a self-
optimizing process planning approach for five-axis milling to automatically compensate
for tool deflections. Combining a simulation model with support vector regression enabled
the prediction of shape errors. The subsequent automated toolpath adaption resulted in a
shape error reduction by 50%.

The overall promising benefits of SOM are becoming more and more realistic with
recent progresses in computational power, sensor techniques and AI algorithms. Au-
tonomous selection of data sampling points enables an efficient generation of process
models [64]. Based on these models, integrated optimization processes pave the way for
autonomous self-tuning of parameters to guarantee a constant product quality.
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To enable further widespread in industrial applications, faster and data-scarce simu-
lation and analysis methods will be needed. AI algorithms are promising techniques to
generate fast models and to handle process uncertainty, while updating the model during
manufacturing processes. However, these approaches suffer from low data efficiency and
reliability of its predictions and are therefore still critical regarding safety requirements.

Further challenges are the process dynamics, requiring fast optimized control values
to control the process. Further developments are needed to cope with the complexity and
dimensionality of the optimization problems.

Moreover, more research will be needed to integrate the human interaction and
transparency of the decisions made and an interactive machine user interface.

7. Major Ongoing Research Directions and Future Perspectives

The presented work introduced recent progress on different hierarchic and functional
levels of industrial control solutions, discussing how AI-based methods enable further
enhancements in many applications and sectors. Promising algorithms and methods were
mentioned and discussed for every level following a bottom-up approach, starting from the
sensor level and data fusion to more complex applications such as self-optimizing machines.

Thereby, the (self)-learning properties of AI-based algorithms are promising ap-
proaches to deal with complex processes. Compared to conventional FEM-based modelling
approaches, AI-based methods come with short inference times, which are important for
real-time production systems. However, future research is required to overcome the draw-
backs of AI-based methods as far as the model reliability and explainability are concerned.
Approaches such as neural networks are difficult to interpret for data points outside the
training set. A linked issue is the required amount of data for the training process, which
can be a burden for data scare applications. Furthermore, data quality in terms of uncer-
tainty, outliers or missing data points is crucial for accurate training. The data preparation
can be time-expensive and requires specialized skills. Depending on the application, AI
approaches should be evaluated individually and compared to conventional methods in
terms of effort and resulting costs. The mentioned factors can be currently limiting factors
for a widespread exploitation of AI methods in industrial control and automation solutions,
particularly in small to medium companies (SME). To assess the suitability of AI algorithms,
Bettoni et al. [108] proposed a conceptual framework for SMEs. However, ongoing research
and developments in this field are constantly showcasing new applications and pushing the
technology towards industrial applications. These developments foster the wide spread of
AI-based methods and facilitate the accessibility for companies. For data scare applications,
transfer learning or physics-informed neural networks are promising methods to deal with
this limitation and will potentially increase the interpretability of the models. Regarding
control applications, reinforcement learning approaches are constantly gaining an interest
in research, and new approaches and use cases will permit to understand and assess their
suitability for industrial use. The combination of advanced monitoring, modelling, control
and scheduling methods will in the future allow for the development of self-optimizing
machines, leading to production machine improvements in terms of product quality, pro-
ductivity and resource efficiency, and representing a crucial point for the next generation of
human-centric manufacturing systems.

Author Contributions: Conceptualization, E.C. and D.K.; methodology, E.C. and D.K.; investigation,
E.C. and D.K.; writing—original draft preparation, D.K.; writing—review and editing, E.C.; visualiza-
tion, D.K.; supervision, E.C.; project administration, E.C. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Appl. Sci. 2022, 12, 10962 16 of 19

References
1. Krüger, J.; Wang, L.; Verl, A.; Bauernhansl, T.; Carpanzano, E.; Makris, S.; Fleischer, J.; Reinhart, G.; Franke, J.; Pellegrinelli, S.

Innovative control of assembly systems and lines. CIRP Ann. 2017, 66, 707–730. [CrossRef]
2. Jamwal, A.; Agrawal, R.; Sharma, M.; Giallanza, A. Industry 4.0 technologies for manufacturing sustainability: A systematic

review and future research directions. Appl. Sci. 2021, 11, 5725. [CrossRef]
3. Chui, M.; Francisco, S.; Manyika, J. Notes from the Ai Frontier Insights from Hundreds of Use Cases. n.d. Available online:

www.mckinsey.com/mgi (accessed on 10 September 2022).
4. Weichert, D.; Link, P.; Stoll, A.; Rüping, S.; Ihlenfeldt, S.; Wrobel, S. A review of machine learning for the optimization of

production processes. Int. J. Adv. Manuf. Technol. 2019, 104, 1889–1902. [CrossRef]
5. Yang, L.; Zhu, M. Review on the status and development trend of AI industry. In Proceedings of the 4th International Conference

on Cloud Computing and Big Data Analytics (ICCCBDA 2019), Chengdu, China, 12–15 April 2019; pp. 89–93. [CrossRef]
6. Kim, D.H.; Kim, T.J.Y.; Wang, X.; Kim, M.; Quan, Y.J.; Oh, J.W.; Min, S.H.; Kim, H.; Bhandari, B.; Yang, I.; et al. Smart Machining

Process Using Machine Learning: A Review and Perspective on Machining Industry. Int. J. Precis. Eng. Manuf. Green Technol.
2018, 5, 555–568. [CrossRef]

7. Lee, C.; Lim, C. From technological development to social advance: A review of Industry 4.0 through machine learning. Technol.
Forecast. Soc. Chang. 2021, 167, 120653. [CrossRef]

8. Elmenreich, W. An Introduction to Sensor Fusion; Vienna University of Technology: Vienna, Austria, 2002; pp. 1–28.
9. White, F.E. Joint Directors of Laboratories, Technical Panel for C3. In Data Fusion Subpanel; Naval Ocean Systems Center: San

Diego, CA, USA, 1991.
10. Ayed, S.B.; Trichili, H.; Alimi, A.M. Data fusion architectures: A survey and comparison. In Proceedings of the 2015 15th

International Conference on Intelligent Systems Design and Applications (ISDA), Marrakesh, Morocco, 14–16 December 2015;
pp. 277–282. [CrossRef]

11. Azimirad, E.; Haddadnia, J.; Izadipour, A. A comprehensive review of the multi-sensor data fusion architectures. J. Appl. Inf.
Technol. 2015, 71, 33–42.

12. Steinberg, A.N.; Bowman, C.L.; White, F.E. Revisions to the JDL data fusion model. In Proceedings of the AeroSense ‘99, Sensor
Fusion: Architectures, Algorithms, and Applications III, Orlando, FL, USA, 12 March 1999; Volume 3719, p. 430. [CrossRef]

13. Meng, T.; Jing, X.; Yan, Z.; Pedrycz, W. A survey on machine learning for data fusion. Inf. Fusion 2020, 57, 115–129. [CrossRef]
14. Sasiadek, J.Z. Sensor fusion. Annu. Rev. Control 2002, 26, 203–228. [CrossRef]
15. Julier, S.J.; Uhlmann, J.K. New extension of the Kalman filter to nonlinear systems. In Proceedings of the AeroSense ‘97, Signal

Processing. Sensor Fusion, and Target Recognition VI, Orlando, FL, USA, 28 July 1997; Volume 3068, p. 182. [CrossRef]
16. Crisan, D.; Doucet, A. A survey of convergence results on particle filtering methods for practitioners. IEEE Trans. Signal Processing

2002, 50, 736–746. [CrossRef]
17. Challa, S.; Palaniswami, M.; Shilton, A. Distributed data fusion using support vector machines. In Proceedings of the 5th

International Conference on Information Fusion (FUSION 2002), Annapolis, MD, USA, 8–11 July 2002; Volume 2, pp. 881–885.
[CrossRef]

18. Fung, M.L.; Chen, M.Z.Q.; Chen, Y.H. Sensor fusion: A review of methods and applications. In Proceedings of the 29th Chinese
Control and Decision Conference (CCDC), Chongqing, China, 28–30 May 2017; pp. 3853–3860. [CrossRef]

19. Goebel, K.; Agogino, A.M. Fuzzy sensor fusion for gas turbine power plants. In Proceedings of the AeroSense ‘99, Sensor Fusion:
Architectures, Algorithms, and Applications III, Orlando, FL, USA, 12 March 1999; Volume 3719, p. 52. [CrossRef]

20. Yazdkhasti, S.; Sasiadek, J.Z. Multi Sensor Fusion Based on Adaptive Kalman Filtering. In Advances in Aerospace Guidance,
Navigation and Control; Dołęga, B., Głębocki, R., Kordos, D., Żugaj, M., Eds.; Springer: Cham, Switzerland, 2018. [CrossRef]

21. Assa, A.; Janabi-Sharifi, F. A Kalman filter-based framework for enhanced sensor fusion. IEEE Sens J. 2015, 15, 3281–3292.
[CrossRef]

22. Rigatos, G.G. Extended Kalman and Particle Filtering for sensor fusion in motion control of mobile robots. Math. Comput. Simul.
2010, 81, 590–607. [CrossRef]

23. Pham, M.; Yang, D.; Sheng, W. A Sensor Fusion Approach to Indoor Human Localization Based on Environmental and Wearable
Sensors. IEEE Trans. Autom. Sci. Eng. 2019, 16, 339–350. [CrossRef]

24. Bezerra, E.D.C.; Teles, A.S.; Coutinho, L.R.; Silva, F.J.D.E. Dempster–shafer theory for modeling and treating uncertainty in iot
applications based on complex event processing. Sensors 2021, 21, 1863. [CrossRef] [PubMed]

25. Koksalmis, E.; Kabak, Ö. Sensor fusion based on Dempster-Shafer theory of evidence using a large scale group decision making
approach. Int. J. Intell. Syst. 2020, 35, 1126–1162. [CrossRef]

26. Vitola, J.; Pozo, F.; Tibaduiza, D.A.; Anaya, M. A sensor data fusion system based on k-nearest neighbor pattern classification for
structural health monitoring applications. Sensors 2017, 17, 417. [CrossRef]

27. Nweke, H.F.; Teh, Y.W.; Mujtaba, G.; Alo, U.R.; Al-garadi, M.A. Multi-sensor fusion based on multiple classifier systems for
human activity identification. Hum. -Cent. Comput. Inf. Sci. 2019, 9, 34. [CrossRef]

28. Zhang, J.-W.; Sun, L.-P.; Cao, J. SVM for Sensor Fusion-a Comparison with Multilayer Perceptron Networks. In Proceedings
of the 2006 International Conference on Machine Learning and Cybernetics, Dalian, China, 13–16 August 2006; pp. 2979–2984.
[CrossRef]

http://doi.org/10.1016/j.cirp.2017.05.010
http://doi.org/10.3390/app11125725
www.mckinsey.com/mgi
http://doi.org/10.1007/s00170-019-03988-5
http://doi.org/10.1109/ICCCBDA.2019.8725756
http://doi.org/10.1007/s40684-018-0057-y
http://doi.org/10.1016/j.techfore.2021.120653
http://doi.org/10.1109/ISDA.2015.7489238
http://doi.org/10.1117/12.341367
http://doi.org/10.1016/j.inffus.2019.12.001
http://doi.org/10.1016/S1367-5788(02)00045-7
http://doi.org/10.1117/12.280797
http://doi.org/10.1109/78.984773
http://doi.org/10.1109/ICIF.2002.1020902
http://doi.org/10.1109/CCDC.2017.7979175
http://doi.org/10.1117/12.341370
http://doi.org/10.1007/978-3-319-65283-2_17
http://doi.org/10.1109/JSEN.2014.2388153
http://doi.org/10.1016/j.matcom.2010.05.003
http://doi.org/10.1109/TASE.2018.2874487
http://doi.org/10.3390/s21051863
http://www.ncbi.nlm.nih.gov/pubmed/33800039
http://doi.org/10.1002/int.22237
http://doi.org/10.3390/s17020417
http://doi.org/10.1186/s13673-019-0194-5
http://doi.org/10.1109/ICMLC.2006.259150


Appl. Sci. 2022, 12, 10962 17 of 19

29. Farias, G.; Fabregas, E.; Peralta, E.; Vargas, H.; Hermosilla, G.; Garcia, G.; Dormido, S. A neural network approach for building an
obstacle detection model by fusion of proximity sensors data. Sensors 2018, 18, 683. [CrossRef]

30. Hu, G. Neural network applications in sensor fusion for a mobile robot motion. In Proceedings of the WASE International
Conference on Information Engineering (ICIE 2010), Beidai, China, 14–15 August 2010; pp. 46–49. [CrossRef]

31. Petrich, J.; Snow, Z.; Corbin, D.; Reutzel, E.W. Multi-modal sensor fusion with machine learning for data-driven process
monitoring for additive manufacturing. Addit. Manuf. 2021, 48, 102364. [CrossRef]

32. Pfeifer, T.; Protzel, P. Robust Sensor Fusion with Self-Tuning Mixture Models. In Proceedings of the IEEE International Conference
on Intelligent Robots and Systems, Madrid, Spain, 1–5 October 2018; pp. 3678–3685. [CrossRef]

33. Vasic, M.; Martinoli, A. A Collaborative Sensor Fusion Algorithm for Multi-object Tracking Using a Gaussian Mixture Probability
Hypothesis Density Filter. In Proceedings of the IEEE Conference on Intelligent Transportation Systems (ITSC), Gran Canaria,
Spain, 15–18 September 2015; pp. 491–498. [CrossRef]

34. Stief, A.; Ottewill, J.R.; Baranowski, J.; Orkisz, M. A PCA and Two-Stage Bayesian Sensor Fusion Approach for Diagnosing
Electrical and Mechanical Faults in Induction Motors. IEEE Trans. Ind. Electron. 2019, 66, 9510–9520. [CrossRef]

35. Mehta, P.; Werner, A.; Mears, L. Condition based maintenance-systems integration and intelligence using Bayesian classification
and sensor fusion. J. Intell. Manuf. 2015, 26, 331–346. [CrossRef]

36. Chen, S.; Deng, Y.; Wu, J. Fuzzy sensor fusion based on evidence theory and its application. Appl. Artif. Intell. 2013, 27, 235–248.
[CrossRef]

37. Shitsukane, A.; Cheruiyot, W.; Otieno, C.; Mvurya, M. Fuzzy logic sensor fusion for obstacle avoidance mobile robot. In
Proceedings of the 2018 IST-Africa Week Conference IST-Africa, Gaborone, Botswana, 9–11 May 2018; pp. 108–112.

38. Liggins, M.E.; Hall, D.L.; Llinas, J. Handbook of Multisensor Data Fusion: Theory and Practice; CRC Press: Boca Raton, FL, USA, 2009.
39. King, R.C.; Villeneuve, E.; White, R.J.; Sherratt, R.S.; Holderbaum, W.; Harwin, W.S. Application of data fusion techniques and

technologies for wearable health monitoring. Med. Eng. Phys. 2017, 42, 1–12. [CrossRef] [PubMed]
40. Li, W.; Wang, Z.; Wei, G.; Ma, L.; Hu, J.; Ding, D. A Survey on Multisensor Fusion and Consensus Filtering for Sensor Networks.

Discrete Dyn. Nat. Soc. 2015, 2015, 683701. [CrossRef]
41. Olfati-Saber, R.; Shamma, J.S. Consensus filters for sensor networks and distributed sensor fusion. In Proceedings of the 44th IEEE

Conference on Decision and Control, and the European Control Conference (CDC-ECC ’05), Seville, Spain, 15 December 2005;
Volume 2005, pp. 6698–6703. [CrossRef]

42. Wang, Z.; Wu, Y.; Niu, Q. Multi-Sensor Fusion in Automated Driving: A Survey. IEEE Access 2020, 8, 2847–2868. [CrossRef]
43. Yeong, D.J.; Velasco-Hernandez, G.; Barry, J.; Walsh, J. Sensor and Sensor Fusion Technology in Autonomous Vehicles: A Review

Autonomous Systems, Data Analytics, Remote Sensing View project PROPAT Integrated Process Control View project Sensor and
Sensor Fusion Technology in Autonomous Vehicles: A Review. Sensors 2021, 21, 2140. [CrossRef]

44. Alatise, M.B.; Hancke, G.P. A Review on Challenges of Autonomous Mobile Robot and Sensor Fusion Methods. IEEE Access
2020, 8, 39830–39846. [CrossRef]

45. Wei, P.; Cagle, L.; Reza, T.; Ball, J.; Gafford, J. LiDAR and camera detection fusion in a real-time industrial multi-sensor collision
avoidance system. Electronics 2018, 7, 84. [CrossRef]

46. Mourtzis, D.; Doukas, M.; Bernidaki, D. Simulation in manufacturing: Review and challenges. Procedia CIRP 2014, 25, 213–229.
[CrossRef]

47. Bikas, H.; Stavropoulos, P.; Chryssolouris, G. Additive manufacturing methods and modeling approaches: A critical review. Int. J.
Adv. Manuf. Technol. 2016, 83, 389–405. [CrossRef]

48. Lecun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef]
49. Negahban, A.; Smith, J.S. Simulation for manufacturing system design and operation: Literature review and analysis. J. Manuf.

Syst. 2014, 33, 241–261. [CrossRef]
50. Knüttel, D.; Baraldo, S.; Valente, A.; Bleicher, F.; Wegener, K.; Carpanzano, E. Machine learning based track height prediction for

complex tool paths in direct metal deposition. CIRP Ann. 2022, 71, 193–196. [CrossRef]
51. Caiazzo, F.; Caggiano, A. Laser direct metal deposition of 2024 al alloy: Trace geometry prediction via machine learning. Materials

2018, 11, 444. [CrossRef] [PubMed]
52. Kara, F.; Aslantas, K.; Çiçek, A. ANN and multiple regression method-based modelling of cutting forces in orthogonal machining

of AISI 316L stainless steel. Neural Comput. Appl. 2015, 26, 237–250. [CrossRef]
53. Kara, F.; Karabatak, M.; Ayyildiz, M.; Nas, E. Effect of machinability, microstructure and hardness of deep cryogenic treatment in

hard turning of AISI D2 steel with ceramic cutting. J. Mater. Res. Technol. 2020, 9, 969–983. [CrossRef]
54. Qi, X.; Chen, G.; Li, Y.; Cheng, X.; Li, C. Applying Neural-Network-Based Machine Learning to Additive Manufacturing: Current

Applications, Challenges, and Future Perspectives. Engineering 2019, 5, 721–729. [CrossRef]
55. Knüttel, D.; Baraldo, S.; Valente, A.; Wegener, K.; Carpanzano, E. Transfer learning of neural network based process models in

Direct Metal Deposition. Procedia CIRP 2022, 107, 863–868. [CrossRef]
56. Knüttel, D.; Baraldo, S.; Valente, A.; Wegener, K.; Carpanzano, E. Model based learning for efficient modelling of heat transfer

dynamics. Procedia CIRP 2021, 102, 252–257. [CrossRef]
57. Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics-informed neural networks: A deep learning framework for solving forward

and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2019, 378, 686–707. [CrossRef]

http://doi.org/10.3390/s18030683
http://doi.org/10.1109/ICIE.2010.19
http://doi.org/10.1016/j.addma.2021.102364
http://doi.org/10.1109/IROS.2018.8594459
http://doi.org/10.1109/ITSC.2015.87
http://doi.org/10.1109/TIE.2019.2891453
http://doi.org/10.1007/s10845-013-0787-1
http://doi.org/10.1080/08839514.2013.769078
http://doi.org/10.1016/j.medengphy.2016.12.011
http://www.ncbi.nlm.nih.gov/pubmed/28237714
http://doi.org/10.1155/2015/683701
http://doi.org/10.1109/CDC.2005.1583238
http://doi.org/10.1109/ACCESS.2019.2962554
http://doi.org/10.3390/s21062140
http://doi.org/10.1109/ACCESS.2020.2975643
http://doi.org/10.3390/electronics7060084
http://doi.org/10.1016/j.procir.2014.10.032
http://doi.org/10.1007/s00170-015-7576-2
http://doi.org/10.1038/nature14539
http://doi.org/10.1016/j.jmsy.2013.12.007
http://doi.org/10.1016/j.cirp.2022.03.032
http://doi.org/10.3390/ma11030444
http://www.ncbi.nlm.nih.gov/pubmed/29562682
http://doi.org/10.1007/s00521-014-1721-y
http://doi.org/10.1016/j.jmrt.2019.11.037
http://doi.org/10.1016/j.eng.2019.04.012
http://doi.org/10.1016/j.procir.2022.05.076
http://doi.org/10.1016/j.procir.2021.09.043
http://doi.org/10.1016/j.jcp.2018.10.045


Appl. Sci. 2022, 12, 10962 18 of 19

58. Raissi, M.; Karniadakis, G.E. Hidden physics models: Machine learning of nonlinear partial differential equations. J. Comput.
Phys. 2018, 357, 125–141. [CrossRef]

59. N Zobeiry, K.D.H. A Physics-Informed Machine Learning Approach for Solving Heat Transfer Equation in Advanced Manufac-
turing and Engineering Applications. arXix 2020, arXiv:2010.02011. [CrossRef]

60. Li, Z.; Kovachki, N.; Azizzadenesheli, K.; Liu, B.; Bhattacharya, K.; Stuart, A.; Anandkumar, A. Fourier Neural Operator for
Parametric Partial Differential Equations. arXiv 2020, arXiv:2010.08895.

61. Zhang, K.; Zuo, Y.; Zhao, H.; Ma, X.; Gu, J.; Wang, J.; Yang, Y.; Yao, C.; Yao, J. Fourier Neural Operator for Solving Subsurface
Oil/Water Two-Phase Flow Partial Differential Equation. SPE J. 2022, 27, 1815–1830. [CrossRef]

62. Maier, M.; Rupenyan, A.; Bobst, C.; Wegener, K. Self-optimizing grinding machines using Gaussian process models and
constrained Bayesian optimization. Int. J. Adv. Manuf. Technol. 2020, 108, 539–552. [CrossRef]

63. Shin, J.; Badgwell, T.A.; Liu, K.; Lee, J.H. Reinforcement Learning—Overview of recent progress and implications for process
control. Comput. Chem. Eng. 2019, 127, 282–294. [CrossRef]

64. Wuest, T.; Weimer, D.; Irgens, C.; Thoben, K.D. Machine learning in manufacturing: Advantages, challenges, and applications.
Prod. Manuf. Res. 2016, 4, 23–45. [CrossRef]

65. Mousavi, S.S.; Schukat, M.; Howley, E. Deep Reinforcement Learning: An Overview. In Proceedings of SAI Intelligent Systems
Conference; Lecture Notes in Networks and Systems; Springer: Cham, Switzerland, 2018; Volume 16, pp. 426–440. [CrossRef]

66. Nian, R.; Liu, J.; Huang, B. A review on reinforcement learning: Introduction and applications in industrial process control.
Comput. Chem. Eng. 2020, 139, 106886. [CrossRef]

67. Ziegler, J.G.; Nichols, N. Optimum Settings for Automatic Controllers. J. Dyn. Syst. Meas. Control. Trans. ASME 1942, 115, 220–222.
[CrossRef]

68. Wang, X.-S.; Cheng, Y.-H.; Sun, W. A Proposal of Adaptive PID Controller Based on Reinforcement Learning. J. China Univ. Min.
Technol. 2007, 17, 40–44. [CrossRef]

69. Lee, J.H.; Shin, J.; Realff, M.J. Machine learning: Overview of the recent progresses and implications for the process systems
engineering field. Comput. Chem. Eng. 2018, 114, 111–121. [CrossRef]

70. Lin, Y.; McPhee, J.; Azad, N.L. Comparison of Deep Reinforcement Learning and Model Predictive Control for Adaptive Cruise
Control. IEEE Trans. Intell. Veh. 2021, 6, 221–231. [CrossRef]

71. Shah, P.; Agashe, S. Review of fractional PID controller. Mechatronics 2016, 38, 29–41. [CrossRef]
72. Holcomb, S.D.; Porter, W.K.; Ault, S.V.; Mao, G.; Wang, J. Overview on DeepMind and its AlphaGo Zero AI. In Proceedings of the

International Conference on Big Data and Education, Honolulu HI USA, 9 March 2018; pp. 67–71. [CrossRef]
73. Garcia, J.; Fernández, F. A Comprehensive Survey on Safe Reinforcement Learning. J. Mach. Learn. Res. 2015, 16, 1437–1480.
74. Brunke, L.; Greeff, M.; Hall, A.W.; Yuan, Z.; Zhou, S.; Panerati, J.; Schoellig, A.P. Safe Learning in Robotics: From Learning-Based

Control to Safe Reinforcement Learning. Annu. Rev. Control Robot. Auton. Syst. 2022, 5, 411–444. [CrossRef]
75. Cardin, O.; Trentesaux, D.; Thomas, A.; Castagna, P.; Berger, T.; El-Haouzi, H.B. Coupling predictive scheduling and reactive

control in manufacturing hybrid control architectures: State of the art and future challenges. J. Intell. Manuf. 2017, 28, 1503–1517.
[CrossRef]

76. Schuh, G.; Reuter, C.; Prote, J.P.; Brambring, F.; Ays, J. Increasing data integrity for improving decision making in production
planning and control. CIRP Ann. Manuf. Technol. 2017, 66, 425–428. [CrossRef]

77. Mourtzis, D.; Angelopoulos, J.; Panopoulos, N. Robust engineering for the design of resilient manufacturing systems. Appl. Sci.
2021, 11, 3067. [CrossRef]

78. Carpanzano, E.; Jovane, F. Advanced Automation Solutions for Future Adaptive Factories. CIRP Ann. Manuf. Technol.
2007, 56, 435–438. [CrossRef]

79. Ecarpanzano; Cesta, A.; Orlandini, A.; Rasconi, R.A. Valente, Intelligent dynamic part routing policies in Plug&Produce
Reconfigurable Transportation Systems. CIRP Ann. Manuf. Technol. 2014, 63, 425–428. [CrossRef]

80. Valente, A.; Carpanzano, E. Development of multi-level adaptive control and scheduling solutions for shop-floor automation in
reconfigurable manufacturing systems. CIRP Ann. Manuf. Technol. 2011, 60, 449–452. [CrossRef]

81. Cadavid, J.P.U.; Lamouri, S.; Grabot, B.; Pellerin, R.; Fortin, A. Machine learning applied in production planning and control: A
state-of-the-art in the era of industry 4. 0. J. Intell. Manuf. 2020, 31, 1531–1558. [CrossRef]

82. Montazeri, M.; van Wassenhove, L.N. Analysis of scheduling rules for an FMS. Int. J. Prod. Res. 1990, 28, 785–802. [CrossRef]
83. Pach, C.; Berger, T.; Bonte, T.; Trentesaux, D. ORCA-FMS: A dynamic architecture for the optimized and reactive control of flexible

manufacturing scheduling. Comput. Ind. 2014, 65, 706–720. [CrossRef]
84. Zhang, J.; Ding, G.; Zou, Y.; Qin, S.; Fu, J. Review of job shop scheduling research and its new perspectives under Industry 4.0. J.

Intell. Manuf. 2019, 30, 1809–1830. [CrossRef]
85. Ouelhadj, D.; Petrovic, S. A survey of dynamic scheduling in manufacturing systems. J. Sched. 2009, 12, 417–431. [CrossRef]
86. Barbosa, J.; Leitão, P.; Adam, E.; Trentesaux, D. Nervousness in dynamic self-organized holonic multi-agent systems, Ad-

vances in Intelligent and Soft Computing. In Highlights on Practical Applications of Agents and Multi-Agent Systems; Springer:
Berlin/Heidelberg, Germany, 2012; Volume 156, pp. 9–17. [CrossRef]

87. Carvalho, T.P.; Soares, F.A.A.M.N.; Vita, R.; Francisco, R.D.; Basto, J.P.; Alcalá, S.G.S. A systematic literature review of machine
learning methods applied to predictive maintenance. Comput. Ind. Eng. 2019, 137, 106024. [CrossRef]

http://doi.org/10.1016/j.jcp.2017.11.039
http://doi.org/10.1016/j.engappai.2021.104232
http://doi.org/10.2118/209223-PA
http://doi.org/10.1007/s00170-020-05369-9
http://doi.org/10.1016/j.compchemeng.2019.05.029
http://doi.org/10.1080/21693277.2016.1192517
http://doi.org/10.1007/978-3-319-56991-8_32
http://doi.org/10.1016/j.compchemeng.2020.106886
http://doi.org/10.1115/1.2899060
http://doi.org/10.1016/S1006-1266(07)60009-1
http://doi.org/10.1016/j.compchemeng.2017.10.008
http://doi.org/10.1109/TIV.2020.3012947
http://doi.org/10.1016/j.mechatronics.2016.06.005
http://doi.org/10.1145/3206157.3206174
http://doi.org/10.1146/annurev-control-042920-020211
http://doi.org/10.1007/s10845-015-1139-0
http://doi.org/10.1016/j.cirp.2017.04.003
http://doi.org/10.3390/app11073067
http://doi.org/10.1016/j.cirp.2007.05.104
http://doi.org/10.1016/j.cirp.2014.03.111
http://doi.org/10.1016/j.cirp.2011.03.036
http://doi.org/10.1007/s10845-019-01531-7
http://doi.org/10.1080/00207549008942754
http://doi.org/10.1016/j.compind.2014.02.005
http://doi.org/10.1007/s10845-017-1350-2
http://doi.org/10.1007/s10951-008-0090-8
http://doi.org/10.1007/978-3-642-28762-6_2
http://doi.org/10.1016/j.cie.2019.106024


Appl. Sci. 2022, 12, 10962 19 of 19

88. Selcuk, S. Predictive maintenance, its implementation and latest trends. Proc. Inst. Mech. Eng. B J. Eng. Manuf.
2017, 231, 1670–1679. [CrossRef]

89. Priore, P.; Ponte, B.; Puente, J.; Gómez, A. Learning-based scheduling of flexible manufacturing systems using ensemble methods.
Comput. Ind. Eng. 2018, 126, 282–291. [CrossRef]

90. Lubosch, M.; Kunath, M.; Winkler, H. Industrial scheduling with Monte Carlo tree search and machine learning. Procedia CIRP
2018, 72, 1283–1287. [CrossRef]

91. De Puiseau, C.W.; Meyes, R.; Meisen, T. On reliability of reinforcement learning based production scheduling systems: A
comparative survey. J. Intell. Manuf. 2022, 33, 911–927. [CrossRef]

92. D’Addona, D.M.; Bracco, F.; Bettoni, A.; Nishino, N.; Carpanzano, E.; Bruzzone, A.A. Adaptive automation and human factors in
manufacturing: An experimental assessment for a cognitive approach. CIRP Ann. 2018, 67, 455–458. [CrossRef]

93. Wang, L.; Gao, R.; Váncza, J.; Krüger, J.; Wang, X.V.; Makris, S.; Chryssolouris, G. Symbiotic human-robot collaborative assembly.
CIRP Ann. 2019, 68, 701–726. [CrossRef]

94. Kemény, Z.; Váncza, J.; Wang, L.; Wang, X.V. Human–Robot Collaboration in Manufacturing: A Multi-agent View. In Advanced
Human-Robot Collaboration in Manufacturing; Wang, L., Wang, X.V., Váncza, J., Kemény, Z., Eds.; Springer International Publishing:
Cham, Switzerland, 2021; pp. 3–41. [CrossRef]

95. Bettoni, A.; Montini, E.; Righi, M.; Villani, V.; Tsvetanov, R.; Borgia, S.; Secchi, C.; Carpanzano, E. Mutualistic and adap-
tive human-machine collaboration based on machine learning in an injection moulding manufacturing line. Procedia CIRP
2020, 93, 395–400. [CrossRef]

96. Valente, A.; Pavesi, G.; Zamboni, M.; Carpanzano, E. Deliberative robotics—A novel interactive control framework enhancing
human-robot collaboration. CIRP Ann. 2022, 71, 21–24. [CrossRef]

97. Bracco, F.; Bruzzone, A.A.; Carpanzano, E. Transfactory: Towards a New Technology-Human Manufacturing Co-evolution
Framework. In Advances in System-Integrated Intelligence; Valle, M., Lehmhus, D., Gianoglio, C., Ragusa, E., Seminara, L., Bosse, S.,
Ibrahim, A., Thoben, K.-D., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 636–645.

98. Klocke, F.; Abel, D.; Hopmann, C.; Auerbach, T.; Keitzel, G.; Reiter, M.; Reßmann, A.; Stemmler, S.; Veselovac, D. Approaches of
Self-optimising Systems in Manufacturing. In Advances in Production Technology; Springer: Cham, Switzerland, 2015; pp. 161–173.
[CrossRef]

99. Brettel, M.; Fischer, F.G.; Bendig, D.; Weber, A.R.; Wolff, B. Enablers for Self-optimizing Production Systems in the Context of
Industrie 4.0. Procedia CIRP 2016, 41, 93–98. [CrossRef]

100. Simeone, A.; Zeng, Y.; Caggiano, A. Intelligent decision-making support system for manufacturing solution recommendation in a
cloud framework. Int. J. Adv. Manuf. Technol. 2021, 112, 1035–1050. [CrossRef]

101. Schmitt, R.; Brecher, C.; Corves, B.; Gries, T.; Jeschke, S.; Klocke, F.; Loosen, P.; Michaeli, W.; Müller, R.; Poprawe, R.; et al.
Integrative Production Technology for High-Wage Countries; Springer: Berlin/Heidelberg, Germany, 2012. [CrossRef]

102. Permin, E.; Bertelsmeier, F.; Blum, M.; Bützler, J.; Haag, S.; Kuz, S.; Özdemir, D.; Stemmler, S.; Thombansen, U.; Schmitt, R.; et al.
Self-optimizing production systems. Procedia CIRP 2016, 41, 417–422. [CrossRef]

103. Thombansen, U.; Buchholz, G.; Frank, D.; Heinisch, J.; Kemper, M.; Pullen, T.; Reimer, V.; Rotshteyn, G.; Schwenzer, M.;
Stemmler, S.; et al. Design framework for model-based self-optimizing manufacturing systems. Int. J. Adv. Manuf. Technol.
2018, 97, 519–528. [CrossRef]

104. Möhring, H.C.; Wiederkehr, P.; Erkorkmaz, K.; Kakinuma, Y. Self-optimizing machining systems. CIRP Ann. 2020, 69, 740–763.
[CrossRef]

105. Monostori, L. AI and machine learning techniques for managing complexity, changes and uncertainties in manufacturing. Eng.
Appl. Artif. Intell. 2003, 16, 277–291. [CrossRef]

106. Mayr, J.; Blaser, P.; Ryser, A.; Hernandez-Becerro, P. An adaptive self-learning compensation approach for thermal errors on 5-axis
machine tools handling an arbitrary set of sample rates. CIRP Ann. 2018, 67, 551–554. [CrossRef]

107. Dittrich, M.A.; Uhlich, F.; Denkena, B. Self-optimizing tool path generation for 5-axis machining processes. CIRP J. Manuf. Sci.
Technol. 2019, 24, 49–54. [CrossRef]

108. Bettoni, A.; Matteri, D.; Montini, E.; Gladysz, B.; Carpanzano, E. An AI adoption model for SMEs: A conceptual framework.
IFAC-Pap. 2021, 54, 702–708. [CrossRef]

http://doi.org/10.1177/0954405415601640
http://doi.org/10.1016/j.cie.2018.09.034
http://doi.org/10.1016/j.procir.2018.03.171
http://doi.org/10.1007/s10845-022-01915-2
http://doi.org/10.1016/j.cirp.2018.04.123
http://doi.org/10.1016/j.cirp.2019.05.002
http://doi.org/10.1007/978-3-030-69178-3_1
http://doi.org/10.1016/j.procir.2020.04.119
http://doi.org/10.1016/j.cirp.2022.03.045
http://doi.org/10.1007/978-3-319-12304-2_12
http://doi.org/10.1016/j.procir.2015.12.065
http://doi.org/10.1007/s00170-020-06389-1
http://doi.org/10.1007/978-3-642-21067-9
http://doi.org/10.1016/j.procir.2015.12.114
http://doi.org/10.1007/s00170-018-1951-8
http://doi.org/10.1016/j.cirp.2020.05.007
http://doi.org/10.1016/S0952-1976(03)00078-2
http://doi.org/10.1016/j.cirp.2018.04.001
http://doi.org/10.1016/j.cirpj.2018.11.005
http://doi.org/10.1016/j.ifacol.2021.08.082

	Introduction 
	Methods for Industrial Data Fusion at Sensor, Feature and Decision Level 
	Empirical Data Driven Methods for Production Process Modelling 
	Machine Learning Applications for Production Machines Real Time Control 
	Real-Time Scheduling Methods for Flexible Manufacturing Systems 
	Emerging Cognitive Approaches for Self-Optimizing Machines 
	Major Ongoing Research Directions and Future Perspectives 
	References

