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Abstract: Labeled data in insufficient amounts and missing categories are two observable features for
high maneuvering target trajectory data. However, the existing research achievements are insufficient
for solving these two problems simultaneously during data classification. This study proposed a
two-stage semi-supervised trajectory data classification algorithm. By pre-training the autoencoder
and combining it with the Siamese network, a two-stage joint training was formed, which enabled the
model to deal with missing categories by clustering and maintaining the classification ability under
the missing label categories. The experimental simulation results showed that the performance of this
algorithm was better than the classical semi-supervised algorithm label propagation and transferred
learning when the amount of various labeled data was as low as 1–5. The two-stage training model
also had a good effect on the problem of missing categories. When 75% of the types were missing,
the purity could still reach 82%, which was about eight percentage points higher than the directly
trained network. When two problems appeared simultaneously, compared with the directly trained
network, the performance improved by about three percentage points on average, and the purity was
consistently higher than the clustering results. In summary, this algorithm was more tolerant of the
problems of labeled datasets, so it was more practical.

Keywords: trajectory clustering; Siamese neural network; autoencoder; joint training

1. Introduction

Trajectory data records the temporal and spatial changes of moving objects, contains
rich temporal and spatial information, and has extremely high analytical value.

The data of high maneuvering target trajectories, such as aircraft and ships performing explo-
ration tasks or search and rescue, compared with conventional trajectories, have two observable
features. First, these data are difficult to label and relatively small in scale, so the amount of labeled
data is often insufficient. Second, the behavior law of high maneuvering targets rapidly changes
in time and space, so the data is quickly updated. However, manual labeling is difficult as a way
of updating the labeled dataset in real-time. Therefore, in such trajectory datasets, insufficient
quantity and missing categories become too difficult in data processing.

With the development of machine learning and deep learning, the use of neural
networks for trajectory classification has gradually become mainstream. For example,
both [1,2] used an RNN (recurrent neural network) to extract trajectory features for cluster-
ing and classification of trajectories. Both obtained performances superior to traditional
classification methods such as decision trees or support vector machines in experiments.
In addition, other deep neural networks have also been used for trajectory classification,
such as LSTM (long short-term memory) in [3], GRU (gate recurrent unit) in [4], and CNN
(convolutional neural networks) in [5,6]. These algorithms have also achieved excellent
results in the corresponding trajectory classification applications.
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However, training deep network models requires a large amount of high-quality
labeled data, which is difficult to directly use in the upper condition [7].

Aiming at the problem of insufficient label data, existing algorithms have abundant
research results. For example, Wang et al. [8] addressed this problem using a transfer
learning approach, training the model on a dataset similar to the base model. In [9],
Yang et al. made full use of unlabeled data to pre-train a feature extraction network and
train a classifier on this basis. Ju et al. [10] used data augmentation to solve the problem of
too few labels and used GAN (generative adversarial network) to screen out the data with
the same distribution as the labeled data and used the five-label data as new training data.
The above methods can effectively reduce the impact of insufficient label data.

However, for the problem of missing categories, the processing power of existing algo-
rithms is insufficient. Most of the existing semi-supervised algorithms are finally trained models
or classification models, which can only distinguish the labeled and trained categories. For
unlabeled categories, the classification performance will drop significantly. Existing algorithms
generally distinguish untrained classes through anomaly detection or separate the classification
and clustering processes, resulting in poor classification performance.

So, this is a research direction worthy of attention for strengthening the existing semi-
supervised classification algorithms in the field of trajectory classification. In particular, the
ability to handle the problem of missing categories in labeled datasets needs to be improved.
Therefore, this work studied the semi-supervised trajectory classification problem under
the conditions of insufficient label data and missing categories and proposed a two-stage
semi-supervised high maneuvering target trajectory data classification algorithm. The
algorithm designed a network structure combining the Siamese network and autoencoder
and accordingly designed a two-stage model training method. The method first used
unlabeled data to pre-train the clustering model to ensure the clustering ability of the model
for most of the samples in the target domain. Then it used the data in the labeled dataset to
fine-tune the model to improve the model’s processing ability for labeled categories. In the
experimental part of the study, the simulation experiments under different conditions proved
that the model could effectively deal with the problems of an insufficient amount of label
data and missing categories. When there was only the problem of an insufficient amount
of label data, the algorithm achieved the same performance as existing semi-supervised
algorithms. Furthermore, under the condition of missing categories or when there were
two problems at the same time, the performance of the algorithm in this study was better.

To sum up, the main purpose and contribution of this study were to address the
problem of missing categories and insufficient numbers of track data label datasets under
practical application conditions and propose a classification algorithm suitable for this
condition, which was more suitable for applications under practical conditions.

2. Problem Analysis

In order to more intuitively observe the impact of the insufficient amount and missing
categories problems of the label datasets, we plotted the loss and classification accuracy of a con-
ventional LSTM [11] classification network during training under the corresponding conditions.

In the experiment, there are 12 types of target data. In order to facilitate the training of
the model, it is assumed that there were 12 known types of classification targets. In the case
of sufficient label data, 50 pieces of training data were taken for each type, and in the case
of insufficient label data, 5 pieces of each class were taken as samples. Under the condition
of missing categories, two types of label data were deleted.

After one hot encoding of the labels, the calculation of the loss used the Categori-
cal_Crossentropy function. Categorical_Crossentropy generally cooperated with Softmax
for single-label classification, which was suitable for the classification of track types. The
calculation formula is as follows:

Loss = −

output
size

∑
i=1

yi · log ŷi (1)
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The formula for calculating the accuracy is as follows:

precision =
TP

TP + FP
(2)

In the formula, TP represents the number correctly marked and FP represents the
number wrongly marked.

The experimental results are shown in Figure 1.
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Figure 1. Accuracy and loss curves in classification network training. (a1) Accuracy curve under the
insufficient amount condition; (a2) loss curves under the insufficient amount condition; (b1) accuracy
curve under the categories missing condition; (b2) loss curve under the categories missing condition;
(c1) accuracy curve under the insufficient amount and categories missing condition; (c2) loss curve
under the insufficient amount and categories missing condition.

The two pictures in Figure 1a are the training curves under the insufficient label
data amount condition. Due to the insufficient number of training samples, the curve
significantly oscillated. The final training set accuracy stabilized at around 0.8, while the
test set accuracy was about ten percentage points lower.
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The two pictures in Figure 1b are the training curves under that the label data category
missing condition. The training set loss function and accuracy could quickly tend to be
optimal, and the training set classification accuracy even reached 100%. However, due to
the existence of unlabeled categories in the test set, the accuracy of the test set significantly
dropped to only about 60%.

Under the condition that the two above problems existed at the same time, not only
was the training set’s effect optimal state difficult to achieve, but also the gap between the
effect of the test set and training set was more obvious. In addition, the above training
curve was obtained by training the model and drawing under the condition that the actual
number of categories was known by default. In practical applications, when there were
missing categories in the labeled data, the classification model could not distinguish the
untrained categories. The negative effects of unknown classes in the target dataset were
more severe than in Figure 1.

To sum up, under semi-supervised conditions, the insufficient amount and missing
categories problems of label datasets had a serious impact on the training of classification
models. This study dealt with the trajectory classification problem with the above prob-
lems, so the algorithm required the ability to reduce the scale of the labeled data that the
classification model relied on and the ability to deal with missing categories.

First of all, for the problem of insufficient amount of label data, the solution in this
study was to introduce a network structure called a Siamese neural network [12] and make
full use of unlabeled data to provide auxiliary information in model training.

A Siamese neural network is a network commonly used in metric learning and semi-
supervised problems. It was first proposed in the field of signature verification in refer-
ence [12]. It is widely used in face verification, text recognition, and other fields [13]. Its
basic structure is shown in Figure 2. A pair of samples are input into two neural networks
with the same structure and shared weights, and the paired label data are used for training.
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Figure 2. Siamese network structure.

The loss function is called the contrastive loss and is calculated as follows [12]:

L(W, Y, X1, X2) = (1−Y)
1
2
(DW)2 + (Y)

1
2
[max(0, m− DW)] 2 (3)

In the formula, W is the network weight, and Y is the pairwise label. If the pair of
samples X1 and X2 belongs to the same class, Y = 0 otherwise Y = 1. DW is the Euclidean
distance between X1 and X2 features. When Y = 0, the model minimizes DW. When Y = 1,
if DW is greater than m, do not optimize; if DW is less than m, increase the distance between
the two to m.

Therefore, in the feature domain, the distance between similar positive sample pairs
is narrowed, and the distance between negative sample pairs is widened, which can
effectively measure the network of similarity between samples.
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Siamese neural networks can effectively utilize labeled data. The input in the Siamese
neural network is a pair of samples, so the training samples can be expanded by the
combination of samples. Assuming that there are n trajectory samples, C2

n sets of training
samples can be formed, which greatly increases the number of trainings and uses a small
amount of label data to achieve better training results.

The basic Siamese network model can be trained with labeled data but cannot fully
utilize the information of a large number of unlabeled samples in the dataset. Therefore,
this study referred to the idea of pre-training and model transfer, used unlabeled data to
train the commonly used autoencoder clustering model, and combined the model with a
Siamese network. This processing could reduce the difficulty of model training and the
degree of dependence on labeled data while laying a solid foundation for further processing
of missing categories.

For the problem of missing categories, the key was to deal with unlabeled categories,
which was essentially a clustering problem. This required the algorithm to have the ability
to cluster unlabeled categories while having the ability to classify labeled categories. This
was also one of the reasons why this study chose the structure of the Siamese neural net-
work because the Siamese network can not only use the conventional distance calculation
and threshold design method for trajectory classification but also can obtain the distance
matrix of the samples through the similarity measure for trajectory clustering. Thus, the
classification algorithm was transformed into clustering to ensure the basic processing
ability of the algorithm for unmarked categories.

This study further combined the Siamese network and the clustering network to design
a two-stage model training algorithm to improve the clustering ability of the basic Siamese
network model. The first stage trained the commonly used autoencoder clustering model
to ensure the model’s processing ability for unlabeled categories. The second stage used
the trained clustering model to form a Siamese neural network and used the label data for
fine-tuning to further improve the classification performance of the model. However, under
the condition of missing categories, relying too much on the guidance of the labeled dataset
can lead to overfitting, making the model only able to classify the labeled categories. Therefore,
in the second stage, this study used joint training to simultaneously train the supervised and
the unsupervised parts of the model. This ensured that the model training process used label
data to guide feature extraction without excessive dependence on label data.

Based on the above analysis, this study proposed a two-stage semi-supervised high
maneuvering target trajectory data classification algorithm. The algorithm is introduced in
detail below.

3. Algorithms

The overall idea of the algorithm is shown in Figure 3.
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The training process is divided into two stages.
The first stage trained the autoencoder network in an unsupervised manner as a pre-

trained model. Using the autoencoder to extract features suitable for trajectory clustering
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ensured that the model could extract the general features of most samples in the target
domain and had basic clustering capabilities.

In the second stage, the trained clustering models were formed into a Siamese neural
network and fine-tuned with labeled data. The supervised and unsupervised parts of
the network were simultaneously trained through the design of a hybrid loss function at
fine-tuning. While strengthening the classification ability of label categories, we tried to
ensure the model’s ability to extract the overall clustering features.

Finally, the similarity matrix of the target dataset was obtained and clustered according to
the Siamese network model. The following describes the specific algorithm model in stages.

3.1. Unsupervised Feature Extraction Based on Autoencoder

The purpose of the first stage, the unsupervised learning process, was to fully use
unlabeled data to initially train the model. The required trained model could accurately
extract general features in unlabeled samples. We ensured the model had basic clustering
capabilities for both labeled and unlabeled categories.

In this study, an autoencoder was constructed to perform feature extraction on trajec-
tory data. Autoencoders are commonly used in trajectory clustering and feature extrac-
tion [14]. Its structure is shown in Figure 4.
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The autoencoder generally consisted of an encoder and a decoder. The purpose of
the encoder was to compress the input data into a latent space representation; the decoder
aimed to reconstruct the input data represented by this latent space and express the input
information as much as possible.

The purpose of the entire network was to make the output and input as close as
possible so that the intermediate feature vector could be guaranteed to correspond well
to the input data. Therefore, as long as the error between the input and output was small
enough, the entire network achieved the purpose of compressing the input space. The
most commonly used function was the MSE (mean squared error) loss function, shown in
Equation (4).

Loss =
1
n∑

n
(y_truei − y_predi)

2 (4)

In the formula, y_true represents the input sample, and y_pred represents the restored
sample of the output.

RNN network was the mainstream neural network model for processing time series
data. The trajectory sequence was typical time series data [15], and the time series feature
was the key piece of information for distinguishing the trajectory type [16]. Therefore, this
study used the GRU [17] network structure, a variant of the RNN [18], to build a sequential
autoencoder, shown in Figure 5.

In Figure 5, the GRU layer was used to read the timing features of the trajectory. The
RepeatVector layer was used to regenerate the time series from the extracted feature vectors
and reconstruct the input data using a subsequent symmetric decoder network.
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During model training, the input data was normalized. Zero padding was performed
to keep the input data length consistent. Taken from the encoder intermediate layer
output as the trajectory feature vector. In general clustering algorithms, this feature was
used to calculate the similarity for clustering, but because the model lacked guidance,
the autoencoder could only blindly extract features during feature extraction. Under the
semi-supervised condition of this study, the label data was used to further fine-tune the
model in the next stage and improve the model feature extraction effect.

3.2. Classification Feature Enhancement Based on Siamese Network

The second stage was to use the pre-trained autoencoder model to build a Siamese
neural network and use the labeled data to train the model’s classification ability for labeled
categories. In addition, this fine-tuning could also guide and improve the feature extraction
ability of the model.

The model design of the second stage is shown in Figure 6. The main body was the
Siamese neural network. The two branches of the Siamese neural network were composed
of the encoding network in the pre-trained autoencoder, and the two networks shared
weights. The loss in the model consisted of the reconstruction loss of the autoencoder and
the output loss of the Siamese network. This was calculated as follows:

Loss = L(W, Y, X1, X2) + Loss1 + Loss2 (5)
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Among them, the calculation formula of L(W, Y, X1, X2) is shown in Equation (3), and
the formulas of Loss1 and Loss2 are shown in Equation (4).
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Calculating the two losses at the same time ensured that the network parameters did
not have a negative impact on the restoration effect of the autoencoder while using the
label data for adjustment, thereby retaining the clustering ability of the first-stage model.

Conventional Siamese neural networks perform classification by calculating similarity
and setting thresholds. In this study, the data were processed in a clustering manner, so the
Siamese network was used to calculate the similarity of the trajectory data set. Then the
similarity matrix was used for clustering. Compared with direct classification, this method
better preserved the model’s ability to deal with unlabeled categories.

3.3. Clustering

After the trajectory similarity matrix is extracted according to the method described
above, the distance matrix is clustered based on the K-means algorithm. The brief process
is shown in Figure 7.
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It is worth noting that this paper uses the k-means algorithm under the condition of
labels, which can select the initial cluster center in the labeled data to get a better initial
center distribution so as to obtain faster clustering speed and better clustering performance.

This paper only uses the basic clustering algorithm to compare the effectiveness of the
obtained similarity matrix. In practical applications, the clustering method can be changed
according to the application conditions.

4. Experiment and Analysis

In this section, the principle and effect of the algorithm were experimentally verified,
mainly to verify the two capabilities of the algorithm: (1) The algorithm’s ability to handle
the problem of insufficient label data amount and (2) the algorithm’s ability to deal with
the problem of missing label data categories.

4.1. Performance Indicators

Considering that there were some unlabeled categories in the dataset, this study
selected clustering metrics to measure the accuracy of the results. The evaluation indicators
of clustering selected purity [19] and KL (Kullback-Leible) divergence [20].

Purity is the most intuitive evaluation index to measure the clustering effect simple
and transparent. Its calculation formula is similar to the accuracy rate commonly used in
classification. First, the correspondence between clusters and classes needed to be assigned.
The class with the most samples in the cluster was taken as the representative class of the
cluster. This was calculated as follows:

P = (B, C) =
1
N ∑

k
max

j

∣∣bk ∩ cj
∣∣ (6)

In the formula, N represents the total number of samples; B = {b1, b2, bk} represents
the clustered class; C =

{
c1, c2, cj

}
represents the correct class; bk represents all samples in

the corresponding cluster after clustering; cj represents the real samples of this class. The
value range of purity is [0,1].
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The concept of KL divergence could be used to measure the difference between two
distributions. The smaller the difference between the two distributions, the smaller the KL
divergence. Its calculation formula is as follows:

D(p/q) = ∑
x

p(x) log
p(x)
q(x)

(7)

In the formula, p and q represent the category distribution of the clustering results and
the distribution of actual samples, respectively. The smaller the KL divergence, the more
similar the distribution of clustering results was to the actual distribution.

Among them, purity was used to intuitively measure clustering results, and KL
divergence was used to observe the overall distribution of results. The combination of the
two indicators could make a clearer judgment on the clustering effect.

4.2. Data Sources

The lack of labeled data and missing categories under actual conditions were inconve-
nient to quantify, so it was difficult to control variables in experiments. Therefore, this study
artificially generated corresponding simulation datasets based on actual data to simulate
different application conditions.

The original data in the experiment were the civil aviation trajectory data recorded by
the ADS-B (Automatic Dependent Surveillance-Broadcast) system [21], which was down-
loaded from the (https://flightadsb.variflight.com, accessed on 1 March 2021) website,
including flight number, time, latitude and longitude, altitude, speed, heading angle, and
other information. To reduce the variables in the experiment, this study only retained the
two most basic spatiotemporal features of time and location in the data and normalized
them. After preprocessing, such as filtering, interpolation, filtering, and smoothing, taking
the channel as the category label, the trajectories on the 12 complex routes were taken to
create a simulated trajectory dataset. The original trajectory latitude and longitude images
are shown in Figure 8a, and the normalized trajectory images are shown in Figure 8b.
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Based on the above datasets, different application conditions were simulated by
controlling the number of samples and categories of the labeled datasets.

4.3. Model Training Process Validation

One of the problems faced in Siamese network training is the imbalance of training
samples. The training samples were composed of pairs of input data, but the number of

https://flightadsb.variflight.com
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training samples that were composed of the same pieces was less than that consisting of
different types of samples. Unbalanced training data might lead to a decrease in model
training performance. Therefore, the training sample pairs composed of the same category
were artificially added to ensure the practical effect. We ensured that positive and negative
samples had relatively balanced training probabilities. The clustering results of the two
methods, comparing taking and not taking treatment measures, are shown in Table 1. It can
be seen that this treatment could effectively improve the processing effect of the Siamese
network model.

Table 1. Experimental results of sample balance processing.

Clustering Algorithm Purity KL Divergence

Siamese network 0.89 0.068
Siamese network (balance adjustment) 0.937 0.046

Then, the model training process was tested to prove that the model could normally
train and work. The accuracy and loss curves during the two-stage model training process
were plotted as shown in Figure 9.
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Figure 9. Model training process. (a) Stage 1 training loss curve and (b) Stage 2 training loss curve.

Figure 9a is the variation of the loss with the number of iterations during the training
of the first-stage unsupervised autoencoder. It can be seen that as the number of iterations
increased, the loss value rapidly dropped and converged, and the final loss value stabilized
at a low level. It showed that the model had a good degree of data reduction in the process
of encoding and decoding and could effectively extract data features, and the extracted
features would not lose too much information.

The change of loss in the second stage of training is shown in Figure 9b. The two curves
correspond to the change of loss of the autoencoder and Siamese network parts, respectively.
It can be seen that the Siamese network gradually decreased and stabilized with the training
loss. The weight parameters of the autoencoder model were migrated, so they were in a
low state at the beginning and could remain stable during training.

The similarity matrix obtained by the two models before and after fine-tuning in the
second stage was used for dimensionality reduction using the PCA method. Plot PCA
plotted to test the effect of the second-stage algorithm. The result is shown in Figure 10:

It can be intuitively seen from Figure 9 that the similarity matrix obtained by the cluster-
ing model after the first stage of training could distinguish samples of different categories.
However, after the second stage of fine-tuning, the distance distribution between various
samples was more reasonable, and the distinction between samples was more effective.

The above chart results show that the two-stage training algorithm designed in this
paper can be trained normally and achieve the expected effect at each stage.
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4.4. Label Data Amount Insufficient Problem

This section verifies the ability of the algorithm to deal with the problem of insufficient
labels and does not consider the problem of unlabeled categories. The label data set used
was consistent with the target data set trajectory category.

It was generally considered that less than 10 labels for each category were the condition
of few labels. Firstly, the influence of different amounts of labeled data on the algorithm of
this study was studied, and the robustness of the algorithm to the problem of few labels
was tested. The statistical results are shown in Table 2.

Table 2. Experimental results of different training samples.

The Amount of
Various Labels 20 10 5 1 0

(Clustering)

Purity 0.943 0.945 0.921 0.898 0.794
KL divergence 0.016 0.047 0.034 0.037 0.142

As can be seen from the table, with the reduction of various label data, the overall
clustering purity slowly decreased, and the KL divergence kept fluctuating at a low level,
indicating that the overall effect of clustering was maintained at a high level. Even under
the extreme condition that the number of labels for each type of data was 1, the performance
could be significantly improved compared with the last unlabeled clustering model. It
showed that the algorithm in this study could effectively utilize the label data and was
robust in the reduction of label data.

First, we observed the model loss curve in the algorithm training process, compared it
with the general classification model training curve, and conducted experiments with five
label data for each category. The results are shown in Figure 11.

Figure 11 show the change of the loss curve during the training of the two algorithms on
the same few-label dataset. Although it cannot be numerically compared due to the different
models and loss functions, it can be clearly seen that during the training process of the model
in this paper, the training set and test set losses were closer. It shows that the model in this
paper uses the label data more reasonably, and the possibility of overfitting is lower.

Then, the algorithm in this study was compared with other classic semi-supervised
algorithms to test the ability of the algorithm to utilize label data. The comparison algorithm
selected the label propagation algorithm [22] and the GRU migration model algorithm.

The label propagation algorithm is a popular semi-supervised clustering method. The
principle is to use the labeled data as the starting point, calculate the distance between
samples, and judge the samples with closer distances as the corresponding category. In
this paper, DTW [23] distance is used for label propagation. Compared with unsupervised
clustering methods, label propagation algorithms can make better use of labeled data and
significantly improve clustering accuracy.
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Another comparison algorithm referred to the algorithm principle in [9], which used
unlabeled data to train a clustering model to provide auxiliary information and then
transferred the model to a classification network for fine-tuning. Hereafter, this paper calls
it the GRU migration model. The general idea of this model is similar to this study; the
main difference lies in the Siamese neural network and the handling of the missing category
problem. Comparing our algorithm with this algorithm, we could test the working effect of
the Siamese neural network and the ability of the algorithm to utilize data information.

In addition, the unsupervised clustering and the GRU classification model obtained
by direct training were used as comparison algorithms. The statistical clustering effects of
the above algorithms are shown in Table 3.

Table 3. Experimental results of different algorithms under the condition of few labels.

Clustering Algorithm
The Labels’ Number Is 5 The Labels’ Number Is 1

Purity KL Divergence Purity KL Divergence

Unsupervised clustering 0.794 0.142 0.794 0.142
GRU network 0.780 0.133 0.650 0.304

GRU migration model 0.916 0.042 0.785 0.067
Label propagation algorithm 0.909 0.022 0.821 0.077

Our algorithm 0.921 0.034 0.883 0.037

The model for direct clustering and the classification model trained with a small
number of labels performed the worst. The reason is that both algorithms do not make full
use of known information and only use unlabeled data or labeled data, respectively. The
effect of the classification model trained under the condition of few labels was even worse
than the clustering model, indicating that the amount of label data under this experimental
condition was too small to reflect the characteristics of the dataset, and the classification
model could not be effectively trained.

The performance of the two semi-supervised classification algorithms was signifi-
cantly improved. The GRU migration model algorithm made full use of the pre-training
information provided by unlabeled data, which effectively reduced the difficulty of training
the classification model and alleviated the problems caused by insufficient labeled data,
but this method had limitations. As shown in Table 3, under the extreme condition that the
amount of all kinds of label data was 1, too little label data brought negative effects to the
original clustering model, which reduced the performance compared with the clustering
algorithm. The label propagation algorithm also required the number of labels. Under
the condition that the amount of label data was 1, this method was essentially equiva-
lent to the k-means algorithm for determining the initial cluster center. The effect of two
semi-supervised classification algorithms, label propagation and transfer training, was
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significantly improved. These two semi-supervised algorithms were regarded as enhance-
ments to the clustering and directly trained classification models, which better synthesized
the label dataset and target data to improve classification performance.

However, the algorithm designed in this study achieved comparable or even better
results than the two classical semi-supervised algorithms under the general low-label
situation with five labeled data. The advantage was more obvious under the condition of
extremely few labels. Therefore, based on the above analysis, it was proven that methods
such as twinning network clustering and two-stage training designed in this study effec-
tively utilized label data and were excellent semi-supervised classification algorithms. It
was an excellent semi-supervised classification algorithm.

4.5. Label Data Category Missing Problem

The processing capability for labeled categories has been verified in the previous
section. This section further examines the clustering ability of the algorithm for unlabeled
categories in the target dataset.

For categories with missing labels, the classification model could effectively classify,
and the classification accuracy was greatly reduced, so this section will no longer use
the label propagation and GRU classification model as the comparison algorithm. In
our algorithm, the processing ability of unlabeled categories in the dataset mainly came
from the designed two-stage training method. Therefore, the conventional Siamese neural
network training method that does not perform clustering pre-training and directly uses
label data to train was selected as a comparison.

We created simulation datasets for the experiments. The condition of missing cat-
egories in the labeled dataset was simulated by removing the entire class of data in the
labeled dataset.

First, under the conditions of the same learning rate and the number of iterations, we
compared the training processes of the two methods in the categories of complete label and
missing label datasets, as shown in Figure 12.

From the loss curve plotted in Figure 12, it can be seen that in the labeled dataset
with complete categories, both algorithms could obtain lower losses through training.
However, the training process of the model directly trained was unstable, and the loss of
final convergence was larger. The gap between the test set and training set results was
larger, indicating that it was more prone to overfitting. In contrast, the initial loss in the
training process of the two-stage model designed in this study was smaller, so the training
convergence was faster. This advantage was even more pronounced on incomplete labeled
datasets. The above results showed that the two-stage fine-tuning method designed in this
paper was beneficial to the training of the model and was more robust in the problem of
missing categories.

After that, datasets with different proportions of missing labels were made, the missing
categories were selected by cross-validation, and the average value was obtained after
multiple experiments. Table 4 shows the clustering results of the above two algorithms
under different missing ratios in the statistical label dataset.

As can be seen from Table 4, as the number of missing categories in label data increased,
the performance of the models trained by the two training methods continuously decreased.
However, the two-stage fine-tuning model designed in this study eventually converged in
the performance of the general clustering model, while the directly trained model fell all
the way and lost the ability to classify normally. This result proved that the algorithm in
this study successfully combined the clustering and classification models, which ensured
that the label data was used to improve the classification effect of the model without losing
the previous clustering performance of the model.

In addition, from the results of 100% category completeness in Table 4, it can be seen
that the network trained in two stages still has a better classification effect in the absence
of the missing category problem. This was because the training method based on the
clustering model had better initial weights and could find the optimal solution during
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training more quickly and accurately, while the direct training method initially required
more weight adjustment, and the training was more difficult.
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Table 4. Experimental results under different label category completeness.

Label Category
Completeness 100% 75% 50% 25% 0%

(Clustering)

Two-Stage Trained Model
Purity 0.941 0.898 0.862 0.82 0.794

KL divergence 0.012 0.021 0.049 0.115 0.142

Directly Trained Model
Purity 0.933 0.890 0.80 0.75 — —

KL divergence 0.037 0.114 0.27 0.323 — —

In order to compare the classification effect of the algorithm on the unlabeled categories
in the dataset more intuitively, the clustering purity of the two classification algorithms for
each category of trajectories was plotted, as shown in Figure 13. There were two classes
of labels missing from the label dataset, where class 11 and class 12 corresponded to the
classes for which labels were removed.

It can be seen that the directly trained model had a rapid decline in classification
performance for the two types of unlabeled data, resulting in a serious decline in overall
performance. It can be speculated that the reason was the lack of basic weights of the
clustering model, which led to the trained Siamese network only having the ability to
process the known categories of the label data, resulting in a phenomenon similar to
overfitting. It was even possible to classify a category with missing labels and other
categories of data as 1, resulting in a decrease in overall performance. Combined with the



Appl. Sci. 2022, 12, 10979 15 of 18

indicator of purity in Table 4, it was shown that the distribution of the results obtained
by the model designed in this study was more reasonable, and the overall processing
capability for each category was stronger.

The above experiments prove that the two-stage Siamese neural network classification
algorithm designed in this paper can effectively deal with the problem of missing label
data categories.
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Label Category 

Completeness 
100% 75% 50% 25% 

0% 

(Clustering) 

Two-Stage Trained Model  

Purity 0.941 0.898 0.862 0.82 0.794 

KL divergence 0.012 0.021 0.049 0.115 0.142 

Directly Trained Model 

Purity 0.933 0.890 0.80 0.75 —— 

KL divergence 0.037 0.114 0.27 0.323 —— 

As can be seen from Table 4, as the number of missing categories in label data in-

creased, the performance of the models trained by the two training methods continuously 

decreased. However, the two-stage fine-tuning model designed in this study eventually 

converged in the performance of the general clustering model, while the directly trained 

model fell all the way and lost the ability to classify normally. This result proved that the 

algorithm in this study successfully combined the clustering and classification models, 

which ensured that the label data was used to improve the classification effect of the 

model without losing the previous clustering performance of the model. 

In addition, from the results of 100% category completeness in Table 4, it can be seen 

that the network trained in two stages still has a better classification effect in the absence 

of the missing category problem. This was because the training method based on the clus-

tering model had better initial weights and could find the optimal solution during training 

more quickly and accurately, while the direct training method initially required more 

weight adjustment, and the training was more difficult. 

In order to compare the classification effect of the algorithm on the unlabeled catego-

ries in the dataset more intuitively, the clustering purity of the two classification algo-

rithms for each category of trajectories was plotted, as shown in Figure 13. There were 

two classes of labels missing from the label dataset, where class 11 and class 12 corre-

sponded to the classes for which labels were removed. 
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Figure 13. Classification accuracy of various types of data. (a) Directly Trained model; (b) two-stage
trained model.

4.6. Comprehensive Performance Analysis

From the results and analysis of Tables 3 and 4 in the previous two sections, the
algorithm’s ability to deal with the problem of insufficient data and missing categories
could be generally judged. In order to more intuitively observe the working performance
of the algorithm under the condition that there were two kinds of problems at the same
time, we used the amount of label data and the completeness rate of label category as the x-
and y-coordinates and the purity as the z-axis, and drew a 3-dimensional surface graph, as
shown in Figure 14.

Figure 14. Purity surface plot.
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Among them, the specific values of the purity results of the two algorithms are shown
in Table 5.

Table 5. Purity results.

Two-Stage Trained Model

Label Category Completeness 1-Label 5-Label 10-Label 20-Label

25% 0.804 0.808 0.816 0.822
50% 0.826 0.852 0.861 0.86
75% 0.873 0.898 0.902 0.905

100% 0.9 0.915 0.945 0.942

Directly Trained Model

Label Category Completeness 1-Label 5-Label 10-Label 20-Label

25% 0.744 0.759 0.773 0.77
50% 0.763 0.819 0.836 0.84
75% 0.869 0.884 0.885 0.9

100% 0.9 0.903 0.905 0.933

The specific result data under the condition that the amount of each label data was
5 and 25% of label categories were missing are shown in Table 6. In addition, the directly
trained Siamese neural network and the method of combining the GRU network classifica-
tion model and autoencoder clustering were used. That is, we first classified the untrained
categories as abnormal categories and then used the autoencoder to cluster the abnormal
categories as a comparison algorithm.

Table 6. Clustering results.

Clustering Algorithm Purity KL Divergence

GRU migration model + autoencoder clustering 0.821 0.104
Label propagation algorithm 0.735 0.158

Direct training (Siamese network) 0.832 0.115
Algorithm in this study 0.885 0.077

It can be seen from the data in Table 6 that compared with other semi-supervised
algorithms, the model based on the Siamese neural network had obvious advantages.
Combining the conclusions of the previous two sections, it was judged that this advantage
was mainly reflected in the ability to deal with the problem of missing categories.

Figure 14 shows the comparison of the two methods based on a Siamese neural network.
The ordinate in Figure 14 is the clustering purity; the red surface corresponds to the purity
change of the algorithm in this study; the blue surface corresponds to the directly trained
Siamese neural network; the gray plane represents the unlabeled clustering purity, which is
stable at around 0.8. It can be seen from the figure that the two surfaces have no obvious
change in the coordinate axis of the data amount, indicating that the two methods both
have high robustness in this problem, which was due to the Siamese network effectively
dealing with the problem of few labels. However, for the problem of missing categories, the
processing capabilities of the two algorithms were significantly different. In the figure, the
purity surface of the algorithm in this study always remained above the direct clustering
effect, and the classification accuracy of the directly trained Siamese network model was
even lower than that of the direct clustering when the missing class rate was high. It
showed that the two-stage training method designed in this study could better maintain the
clustering effect of the model. It was more robust in the missing class problem.

Compared with the directly trained Siamese network, the two-stage training method
designed in this study was more effective, especially in the KL divergence that reflected the
overall distribution of the overall clustering results. This was because the method retained the
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clustering performance obtained by training with a large amount of unlabeled data, so the
overall distribution of the obtained results was more reasonable. In summary, the algorithm
in this study effectively dealt with the two problems of insufficient numbers and missing
categories of labels. Under the corresponding conditions, the clustering purity was higher.

5. Conclusions

Aiming at the problem of insufficient numbers and missing categories of trajectory
label datasets, a two-stage semi-supervised high maneuvering target trajectory data classi-
fication algorithm was proposed. The algorithm referred to the principles of pre-training
models and metric learning methods in the semi-supervised field, combined the autoen-
coder with the Siamese neural network to design a classification model, and designed a
corresponding two-stage model training method.

Experiments showed that the algorithm improved the classification ability by using
labeled data and had the ability to cluster unlabeled categories at the same time. It effec-
tively dealt with the special cases of insufficient label data and missing categories. For the
problem of missing categories, when only 25% types were labeled, the purity still reached
82%, which is about eight percentage points higher than the directly training the network;
when there were two problems at the same time, the purity was maintained at the average
above the clustering results. Compared with the directly trained network, the performance
improved by about three percentage points on average.

5.1. Practical Application

In this study, a semi-supervised classification algorithm was proposed by fully consid-
ering the practical problems of insufficient label data amount and missing categories. We
reduced the algorithm’s dependence on labeled data and increased the processing capacity
of abnormal track labeled datasets. The algorithm has backward compatibility. When the
amount of data marking was sufficient, and the data type marking was not missing, it still
achieved a considerable performance index, which could be used for data processing under
normal circumstances.

So, this algorithm could be used as a beneficial supplement to the current track data
processing system, to enhance the applicability of the system, and to lay the foundation for
subsequent applications, such as target identity attribute recognition and behavior monitoring.

5.2. Limitations and Future Developments

The algorithm still has some limitations, which will serve as an improvement direction
for future research. For example, the above experiments were conducted under the condi-
tion that various types of data were relatively balanced. When the number of various types
of samples, especially unlabeled categories, was small, the method was difficult to achieve
the recognition effect. At the same time, the two-stage training of the algorithm inevitably
brought a larger amount of computation. In addition, further optimization of the network
structure of the model and experiments on more datasets deserves further research. The
above shortcomings will affect the practical application of the algorithm. Therefore, future
research will take these as the direction for improvement.
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