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Abstract: Micro-expression is the involuntary emotion of the human that reflects the genuine feelings
that cannot be hidden. Micro-expression is exhibited by facial expressions that last for a short duration
and have very low intensity. Because of these reasons, micro-expression recognition is a challenging
task. Recent research on the application of 3D convolutional neural networks (CNNs) has gained
much popularity for video-based micro-expression analysis. For this purpose, both spatial as well as
temporal features are of great importance to achieve high accuracies. The real possibly suppressed
emotions of a person are valuable information for a variety of applications, such as in security,
psychology, neuroscience, medicine and many other disciplines. This paper proposes a 3D CNN
model architecture which is able to extract spatial and temporal features simultaneously. Thereby,
the selection of the frame sequence plays a crucial role, since the emotions are only distinctive in a
subset of the frames. Thus, we employ a novel pre-processing technique to select the Apex frame
sequence from the entire video, where the timestamp of the most pronounced emotion is centered
within this sequence. After an extensive evaluation including many experiments, the results show
that the train–test split evaluation is biased toward a particular split and cannot be recommended in
case of small and imbalanced datasets. Instead, a stratified K-fold evaluation technique is utilized to
evaluate the model, which proves to be much more appropriate when using the three benchmark
datasets CASME II, SMIC, and SAMM. Moreover, intra-dataset as well as cross-dataset evaluations
were conducted in a total of eight different scenarios. For comparison purposes, two networks from
the state of the art were reimplemented and compared with the presented architecture. In stratified
K-fold evaluation, our proposed model outperforms both reimplemented state-of-the-art methods in
seven out of eight evaluation scenarios.

Keywords: micro-expression analysis; 3D CNN; Apex frame sequence; stratified K-fold; intra-dataset
and cross-dataset evaluation

1. Introduction

Micro-expressions are the type of expression that occurs when a person tries to sup-
press their true feelings. Micro-expressions are spontaneous and usually last for less than
0.5 s [1], resulting in tiny facial muscles’ movements. As per [2], micro-expressions are
generated when someone attempts to hide their true intentions, as these expressions can
neither be mimicked nor concealed. In 1966, micro-expressions were first discovered by
Haggard and Isaacs [3], assuming that they are associated with defense mechanisms and
conveyed feelings.

Later, in 1969, when Ekman and Friesen [4] conducted some experiments, they inad-
vertently encountered micro-expression. In the experiment, they examined the video of a
person with depression who tried to lie about their suicide plan. During ordinary watching
of the patient’s video, they did not observe anything suspicious, but when they watched
the same clip at reduced video speed, they noticed that after the doctor asked the patient
about his future, there was an expression of pain on the patient’s face. These expressions
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lasted for a short time and were only present in two frames of the video, so they named
them micro-expressions [2].

Micro-expression recognition is applicable in many domains, e.g., doctors can rec-
ognize if a patient is suffering from pain [5], or it can be used with criminals during
interrogations or at court to find out if they are lying. In addition, the real possibly sup-
pressed emotions of a person are valuable information for many more applications in the
fields of security, psychology, neuroscience, and medicine. Traditionally, micro-expression
recognition was performed using a handcrafted descriptor that was manually adjusted
to extract features from video clips or images. Local Binary Patterns (LBP) [6], optical
flow features [7], and Local Binary Pattern histograms from Three Orthogonal Planes
(LBP-TOP) [8] were some of these famous manual techniques used for feature extraction.
However, the main drawback of the handcrafted methods was that they extract the man-
ually created features and do not provide a generic data representation. Deep learning
has recently gained much popularity, and convolutional neural networks (CNNs) are
extensively used in solving computer vision problems. By using CNNs [9–11], the re-
sults in the field of micro-expression analysis have also been outperformed compared to
traditional approaches, which is why this field continues to be of great interest for the
research community.

Most of the recently proposed architectures for micro-expression recognition are based
on CNN, long short-term memory (LSTM), or a combination of both network types. The
disadvantage of standard CNNs is that they are only able to gather spatial features and
are unable to capture motion over several frames. Some work [12] attempted to capture
temporal information with the optical flow, but this often involves detecting unwanted
background motion. Usually, the spatial information was extracted with CNNs, and
subsequently, the features obtained were given into an LSTM to analyze the temporal
information [13,14]. However, simultaneous extraction of the spatio-temporal features
is not possible with this workflow. To overcome all the limitations of existing methods,
a 3D CNN model is proposed in this work. It is a new custom architecture for directly
recognizing the persons’ micro-expressions from the video sequences. In addition, we
employ a novel pre-processing technique by selecting the Apex frame sequence from the
entire video. The advantage of this approach is that the Apex event with the highest emotion
shown by the subject is located in the middle of this sequence. This yields better results in
classification compared to using the initial sequence. Moreover, extensive experimental
evaluation is performed with intra-dataset as well as cross-dataset experiments on the three
benchmark datasets CASME II, SMIC, and SAMM. This comparison of cross-dataset results
is unprecedented in the state of the art for micro-expression recognition, and we are the
first to perform this kind of evaluation. It clearly shows that our new 3D CNN architecture
outperforms other state-of-the-art models in terms of recognition performance.

The main contributions of this paper can be summarized as follows:

• We have developed a 3D CNN model architecture for micro-expression recognition
which is able to extract spatial and temporal features simultaneously;

• A novel pre-processing technique is employed by selecting the Apex frame sequence
from the entire video, where the timestamp of the most pronounced emotion is
centered within this sequence;

• Stratified K-fold was applied for model evaluation because it is suitable for small
datasets with imbalanced class distribution as in our case;

• Comprehensive experimental validation was performed by comparing the proposed
model with two reimplemented state-of-the-art methods in intra-dataset as well as
cross-dataset evaluations in a total of eight different scenarios. To the best of our
knowledge, such an extensive evaluation in this or comparable manner has not been
conducted for micro-expression recognition so far.

The paper is organized in the following way: The related works proposed so far
are presented in Section 2. Section 3 is about the spontaneous micro-expression datasets.
In Section 4, the pre-processing steps are examined, and in Section 5, our network architec-
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ture is outlined in detail. Section 8 reports the results and discussions. Finally, in Section 10,
a conclusion is drawn and future work is outlined.

2. Related Works

In micro-expression recognition, feature extraction is the most crucial task [15]. The
classification accuracy of micro-expressions is directly proportional to the feature extraction
efficiency. In recent years, many methods have been proposed to effectively extract features
from facial images [15]. These approaches are mainly classified into two types: those based
on handcrafted methods and those based on deep learning.

2.1. Handcrafted Methods

In the past decade, micro-expression recognition has been based entirely on hand-
crafted approaches. In [16], a feature extraction based on 3D histogram-oriented gra-
dients (3DHOG) was proposed to detect motion in the smaller regions of the face. Po-
likovsky et al. [17] presented a 3DHOG descriptor capable of capturing temporal char-
acteristics and sudden changes on the facial surface. A classifier such as k-means and
the voting method were used to classify the micro-expressions. Pfister et al. [18] utilized
the temporal interpolation method to normalize the length of the video sequence to deal
with the problem of short video samples. In addition, temporal and spatial features were
extracted using the LBP-TOP descriptor and used for the classification with support vector
machine (SVM) or random forest. In [19], new feature extraction techniques were proposed
using a fusion approach. This is based on a histogram of the motion boundaries, where
the vertical and horizontal components of the differential optical flow are fused. The
extracted features are classified by SVM. Shreve et al. [20] proposed a technique to spot the
temporal information from long videos. During expressions in the facial regions, strains
were produced. The optical flow uses these strains in the mouth, chin, forehead, and cheek
areas of the face to identify temporal features. Moreover, the extended video sequence
consists of both the micro- and macro-expression. In [21], a new approach was presented
that automatically recognizes facial expressions. Instead of an expression, this approach
concentrated more on clues related to identity. Hence, video frames were used to generate
registration points or landmarks on the face; then, the local regions and LBP were extracted
for feature representation, and finally, the expressions were classified by SVM.

2.2. Deep Learning-Based Methods

Recent developments in GPUs extended the potential of deep learning models in
various domains. In the last few years, deep learning has become popular in solving
computer vision problems, leading to more advanced algorithms for micro-expression
recognition. Liong et al. [22] designed a network that uses the on-set and Apex frame of
each sample to compute optical flow features. Three such optical flow information, namely
the vertical, horizontal and optical strain, were used, which is why this network is called
shallow triple-stream 3D CNN. Thus, a compact and discriminative feature representation
is learned according to the authors. In [23], a 3D convolutional neural network capable
of extracting spatial and temporal features was proposed, taking advantage of three-
dimensional kernels. The authors used a frame sequence to classify the micro-expression,
but in the entire paper, the authors have not discussed the use of Apex frame or the selection
of an Apex frame sequence. In this paper, the author considered only initial starting frames
of the samples. Furthermore, two different networks were designed, one using the whole
image as input and the other obtaining only cropped parts of the face. For this purpose,
experiments were performed on the intermediate and late fusion of eyes and mouth regions
based on 3D CNNs.

The 3D CNN-based network by Zhang et al. [24] proposed a multi-scale fusion network
that fuses local regions (such as eyes or mouth) along with the global region (full face) in
order to select the appropriate region of interest to focus on for micro-expression recognition.
These features were later passed to an LSTM to better process the temporal features. Thus,
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they presented a multi-channel fusion model. In [25], the VGG network was used for micro-
expression detection. Since VGG is a deep network model, batch normalization and dropout
techniques were applied to avoid the problem of overfitting. Furthermore, the insufficient
dataset problem was tackled by choosing a random starting frame, fixing the sequence
length, and repeating the process for entire samples to amplify the data. Xu et al. [26]
proposed a method using optical flow to extract motion information between only two
frames (on-set and Apex) in the entire sequence of samples. These features were inputted
to a pre-trained MobileNetV2 and the micro-expressions classified by SVM. They conclude
that micro-expressions involve only local areas of the face, and there are some irrelevant
muscle movements. In [27], the temporal sample deformation method was introduced to
preserve the temporal information, since normalizing the length of the video sequence is an
essential aspect in the case of micro-expressions. The new sequence is randomly sampled
by a normal distribution. The authors developed a three-branched architecture combining
2D and 3D CNNs. They were able to show the advantages of single 3D kernel sizes
and multiple 3D kernel combination. The Eulerian video magnification (EVM) technique
adopted by Wang et al. [28] for magnifying the motion in micro-expressions was performed
to extract the spatio-temporal features for the CNNs. Therefore, Eulerian motion feature
maps were extracted by employing a spatial scale temporal filtering approach. Next, these
feature maps are fed into a 3D CNN for final recognition. In contrast to the previous
approaches, where the optical flow information was obtained from on-set and Apex frames,
Chen et al. [29] utilized a novel method by dividing the optical flow image into small blocks
and then processed them by CNN. A weighted loss function of implicit semantic data
augmentation is applied for augmentation of the training data in the deep features space.
In [30], the authors used only two frames (Apex frame and on-set frame) from the entire
frame sequence of micro-expression samples. Later, feature extraction was performed using
Bi-Weighted Oriented Optical Flow (Bi-WOOF) based on only those two frames instead of
a complete sequence. Thereby, discriminately weighted motion features are intended to be
captured and are weighted by their own magnitudes. The facial regions are weighted by the
magnitude of optical strain. Subsequently, SVM was used to classify the micro-expressions.
Li et al. [31] presented a method that consists of two sub-networks. First, a hierarchical
convolutional recurrent neural network is utilized for the extraction of spatio-temporal
features. Then, a principal-component-analysis-based recurrent neural network is applied,
and the features are merged through the fusion of sub-networks.

3. Datasets

There are two types of micro-expressions posed and spontaneous ones. In earlier
studies, participants were often asked to pose their facial expressions, so the datasets were
generated on this basis. However, the disadvantage of collecting datasets in this way was
that the expressions elicited by the participants were not genuine, which lead them to
differ from natural micro-expressions. In this paper, three spontaneous datasets are used:
Chinese Academy of Sciences Micro-Expression II (CASME II), Spontaneous Actions and
Micro-Movements (SAMM), and Spontaneous Micro-Expression Corpus (SMIC).

3.1. CASME II

The dataset [32] consists of 255 samples collected from 26 subjects with the same
ethnicity. Action Units (AUs) on the basis of the Facial Action Coding System (FACS)
system were employed for labeling the samples. The videos are recorded at a resolution
of 640 × 480 pixels. The samples in the CASME II dataset are distributed among seven
classes namely happiness, disgust, fear, sadness, repression, surprise, and others. However,
only the three classes happiness, disgust, and surprise are taken for the experiment (see
Table 1), as the remaining classes only contained very few samples and the class others
was not annotated consistently across the three datasets. The rest of the samples was
therefore discarded.



Appl. Sci. 2022, 12, 11078 5 of 16

Table 1. Experimental datasets with their class distribution.

Emotions CASME II SMIC SAMM

Happy 32 51 26

Disgust 63 70 15

Surprise 28 43 9

Total 123 164 50

3.2. SMIC

In the SMIC [33] dataset, 16 participants were recorded. Participants were chosen from
three different ethnicities to make this dataset more diversified. This dataset consists of
164 samples, which were further classified into three classes, namely the positive class that
contains happy emotions, combining the three sad, disgust, and fear emotions to form the
negative class and the surprise class.

3.3. SAMM

The SAMM [34] dataset consists of micro-expression samples obtained from 29 par-
ticipants. This was the first spontaneous high-resolution dataset in which participants
belonged to different geographical regions from a total of 13 ethnic groups. AUs were used
to label these samples based on FACS. SAMM contains seven emotions that were captured
at 200 FPS with a high resolution of 2040 × 1088. Again, only three classes are further
processed because of the small amount of samples in the remaining classes and to ensure a
fair comparison between the databases.

4. Pre-Processing

In micro-expression recognition, pre-processing is one of the most critical stages,
consisting of necessary steps before extracting the essential and useful features. Face
detection and face alignment are used to bring all the frames to a common reference. Next,
the landmarks are identified to discard unwanted background information or noise that
negatively affects the model’s accuracy. The final step is to capture the Apex frame sequence
where the emotion is high. Most of the pre-processing is performed by using algorithms
from the Dlib library.

4.1. Face Detection and Alignment

Detecting the face and aligning the faces to a common reference were major steps
which ensure that the extracted features belong to same location corresponding to each
face. Both these steps were performed by calling a function in Dlib named
dlib.get_frontal_face_detector(). This is a face detector that receives as input the
image and the up-scaling factor for the two arguments. By increasing the up-scaling value,
even smaller faces can be detected in the image, but this also increases the computation
time [35]. The output of the face detection function returns x, y, w, and h values, which are
the coordinates of the diagonal corners forming a bounding box around the detected face.

4.2. Facial Landmark Detection

After detecting the face, the next task was to obtain the facial landmarks. Based on these
landmarks, the face can be cropped properly ignoring the background as shown in Figure 1.
In Dlib, there is a pre-trained model called shape_predictor_68_face_landmarks.dat
that is used to generate the landmarks on the detected face. With the help of this pre-
trained model, a function called dlib.shape_predictor(). acts as a landmark detector.
The output of this model returns 68 points on the face [35]. After determining the landmarks,
all micro-expression frames were cropped according to the requirements of each model.
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Figure 1. The workflow of pre-processing steps.

4.3. Apex Frame Spotting

In our work, Apex frame spotting is not applied, since the information is already
provided in the datasets. The purpose of this section is to give an overview of existing
approaches for this task, which in particular has high relevance for real-world applications.
In real applications, the recorded data do not contain information about the Apex, which
indicates the point of time in the sequence with the highest micro-expression present.
However, this information can help to effectively reveal the genuine emotions behind a
particular video sample [36]. Few works have been proposed to detect the Apex frame from
a video sequence. In [37], the authors used an LBP descriptor to extract the features from
each frame and computed the difference by subtracting the features of the on-set frame
with the remaining frames. Then, they divided the sequence into two halves and calculated
the sum of each subsequence. The subsequence with the largest difference is selected. This
binary search process continues as described until an Apex frame is determined from the
entire sequence. In [38], optical flow and the LBP algorithm were used to determine the
Apex frame. Based on the distance of facial movements and their directions, the optical
flow was employed to examine the facial changes for identifying the Apex frame. In [39],
the authors used Region HOOF to spot the Apex frame with the help of five ROIs.

4.4. Selection of Apex Frame Sequence

In pre-processing, the last task was to choose the best sequence of frames with high
emotion or where the facial muscle movement was at its peak. The sequence with high
emotion needs to be considered for micro-expression recognition. Details about the frames
with high emotional content are obtained from the data annotations by analyzing their
AU levels. The CASME II and SMIC datasets also provide information about the on-set
frame (where micro-expression starts), the Apex frame (where micro-expression peaks),
and the off-set frame (where micro-expression ends). By taking advantage of these details,
the selection of frame sequence is performed. The Apex frame sequence consists only
of frames surrounding the Apex event with the highest micro-expression intensity. For
instance, a fixed frame length of 36 frames is chosen for a video sample from CASME II.
Then, 18 frames before and 18 frames after the Apex frame (including it) are considered in
the Apex frame sequence. For SMIC, the sequence length is 26 frames.

5. Network Architectures

The application of 3D CNN exploits the spatio-temporal correlation. Our proposed
model is named Model-A. The main aim of this work is to improve the recognition per-
formance of micro-expressions by using a 3D CNN. Two state-of-the-art models are reim-
plemented to compare the performance with our model. These two models are named
Model-B [23] and Model-C [40], respectively. Both also employ a 3D CNN in their model
architecture. In this section, the networks of Model-A, Model-B, and Model-C are presented.

5.1. Model-A (Proposed 3D CNN Model)

The goal of the proposed 3D CNN model architecture named Model-A is to recognize
micro-expressions in video clips. The architecture is demonstrated in Figure 2. The dimen-
sions height, width, and depth were passed as input into the model. Height and width are
kept constant with a size of 128 × 128 pixels, and the depth dimension varies based on
the frame sequence length of each dataset (36 frames for CASME II, 26 frames for SMIC,
and 30 frames for the Combined dataset). The entire model was created using the Keras
framework. Initially, a sequential model was constructed to which the layers were added.
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Figure 2. Architecture of our proposed 3D CNN Model-A.

The main block of Model-A consists of two Conv blocks followed by flatten and
dense layers. Each Conv block contains a convolution, batch normalization, max pooling,
and dropout layer, as shown in Figure 3. For the convolutional layer, a 3D CNN was chosen
instead of a 2D CNN because 3D CNNs are capable of capturing temporal information
along with spatial information. Each convolutional layer operates with 16 filters and a
kernel size of 3 × 3 × 3. The model uses a HeNormal initializer for better initial weights.
The padding type was kept the same so that edge information was retained. The output
from each convolution was passed to the batch normalization in order to converge the
model faster and reduce the problem of overfitting. Then, 3D max-pooling with a 3 × 3 × 3
kernel was applied to decrease the spatio-temporal size and preserve critical features.
Furthermore, to avoid overfitting, dropout layers were added to the model with a dropout
rate of 0.4.

Figure 3. Layers of each Conv block.

As the dimensions for the dense layer need to be one-dimensional, a flatten layer was
applied prior to dense. The first dense layer consists of 128 neurons, which is subsequently
connected to another dropout layer. Then, a second dense layer with three neurons performs
the classification into the three micro-expression classes. Finally, softmax is applied to the
output. Rectified linear unit (ReLU) activation functions were used across all feasible layers.
A summary of the sequential model is shown in Table 2, indicating the output feature map
size of each layer.

Table 2. Summary of our Model-A with CASME II dataset samples as input.

Layer Type Filter Size Output Shape

Conv3D-1 3 × 3 × 3 36 × 128 × 128 × 16
BatchNorm-1 - 36 × 128 × 128 × 16

3D-MaxPooling-1 3 × 3 × 3 12 × 42 × 42 × 16
Dropout-1 - 12 × 42 × 42 × 16
Conv3D-2 3 × 3 × 3 12 × 42 × 42 × 16

BatchNorm-2 - 12 × 42 × 42 × 16
3D-MaxPooling-2 3 × 3 × 3 4 × 14 × 14 × 16

Dropout-2 - 4 × 14 × 14 × 16
Flatten - 12,544

Dense-1 - 128
Dropout-3 - 128

Dense-2 - 3

5.2. Split-Model

The architecture of Model-A employed for the train–test split evaluation differs slightly
from the proposed one in Section 5.1. The only difference is that the architecture consists of
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three Conv blocks instead of two for Model-A. The rest of the layers and model parameters
remain unchanged. For better distinction, this variant for the intra-dataset train–test split is
named Split Model.

5.3. Model-B

This reimplemented model was originally called MicroExpSTCNN [23] in the corre-
sponding paper. To avoid confusion, our reimplementation is called Model-B. It is a 3D
CNN with input dimensions for width and height of 64 × 64, whereby the depth dimension
changes depending on the database selection. The model starts with a convolutional layer
with 32 filters and a kernel size of 3 × 3 × 15. Then, max-pooling is applied with a size
of 3 × 3 × 3 to retain important features. To prevent model overfitting, a dropout layer
with 0.5 dropout rate is employed afterwards. Then, the obtained output was flattened and
inputted to a dense layer with 128 neurons, which was followed by another dropout layer.
Finally, a dense layer with three neurons and softmax activation are used to classify the
samples into the classes anger, disgust, or happy. More details can be found in the original
paper [23].

5.4. Model-C

In the original work, the architecture was referred to as the 3D CNN network model [40].
This is the second reimplementation, which will be called Model-C in the rest of this paper.
This model is again a 3D CNN, but some model parameters were not listed by the authors,
e.g., the input image shape, the number of filters and the kernel size for the convolution,
the max-pooling size, the number of neurons in the dense layer, and the dropout rate.
To the best of our knowledge, missing values were assumed and empirically selected.
An input image size of 128 × 128 was chosen, and the depth depends as with Model-B on
the database. A convolution with 32 filters and a 3 × 3 × 3 kernel was picked; additionally,
batch normalization was added for better convergence. For the two max-pooling blocks, a
pooling size of 3 × 3 × 3 was taken. Moreover, a dropout rate of 0.5 was implemented, and
for the dense layer, 128 neurons were chosen. See [40] for more information.

6. Model Training Parameters

In this section, the parameter specifications for each model are specified.

6.1. Model-A

Our proposed model was implemented with the Keras framework and TensorFlow
backend. The system specification involved in all experimental setups includes a Intel®

Core™ i7-4770S CPU @ 3.10GHz, with 16 GB RAM and a NVIDIA GeForce RTX 2080 Ti
GPU with 12 GB. As hyperparameters during model training, a learning rate of 0.001 was
chosen with a batch size of 4. Categorical cross-entropy was used as the loss function,
and stochastic gradient descent (SGD) was used as the optimizer with a momentum of 0.9.
Accuracy was the metric utilized for measuring the performance of the model. In total,
the model was trained for 100 epochs.

6.2. Model-B

In the paper [23], the model was implemented through the Keras framework via
TensorFlow. The model training was performed along with an NVIDIA Tesla K80 GPU
server with 24 GB dedicated GDDR5 graphics processor. For the experiment, SGD was the
optimizer used along with categorical cross-entropy as the loss function. The model was
trained with a batch size of eight for 100 epochs.

6.3. Model-C

The experiment conducted in the paper [40] also employed the Keras framework
with TensorFlow backend. The experimental setup was equipped with an Intel® Core™
i7-9700 CPU 3.70 GHz with 32 GB RAM and a NVIDIA GeForce GTX 3090 GPU. The model
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parameters included a learning rate of 0.01, an SGD optimizer with a momentum 0.9,
and categorical cross-entropy as the loss function. The Nesterov accelerated gradient is
employed for SGD, and the learning rate decay is 1 × 10−6. The model was trained with a
batch size of four for 800 epochs.

Note that the learning rate of 0.01 was changed to 0.001 and the number of training
epochs was changed from 800 to 100 for experimental purposes. Many model parameters
were not mentioned in the paper and therefore had to be assumed. As a result, some given
hyperparameters had to be adjusted, as they were no longer suitable for model training due
to the assumptions made. The initial assumptions on the parameters were made based on
the proposed Model-A, since Model-C has a similar architecture. Subsequently, these model
parameters were fine-tuned and empirically optimized to improve the results of Model-C.

7. Experimental Analysis

In this section, an experiment is conducted to observe the difference in the performance
of the proposed model by selecting the initial frames or the frames around the Apex frame.
For experimental purposes, 36 frames were used in CASME II and 26 frames in SMIC. The
number of frames for SMIC is less because the average video length is shorter at 34 frames
compared to 68 frames in CASME II. From the results comparison in Table 3, it is clearly
visible that the performance of the proposed model achieves 9.6% higher accuracy when
using the Apex frame sequence instead of the original frame sequence for the CASME II
dataset. A similar observation is made for the SMIC dataset, where Model-A performs
9.4% better in accuracy using the Apex frame sequence compared to the initial frame
sequence. More details about the process of selecting the Apex frame sequence can be
found in Section 4.4.

Table 3. Performance of Model-A using initial frames and the Apex frame sequence.

Type of Frame Sequence

Dataset Initial Frame Sequence Apex Frame Sequence

CASME II 46.9% 56.5%

SMIC 34.3% 43.7%

From the results of this experiment, the overall superiority of our choice of the Apex
frame sequence is clearly demonstrated. Therefore, in all experiments for the eight scenarios
in the next section, the Apex frame sequence is used instead of the initial frames.

8. Results And Discussions

The results for the two evaluation techniques and eight scenarios are given and
discussed in this section. All the evaluation results are stated in the terms of accuracy.
The accuracy metric is used for model evaluation, as it is applied in two state-of-the art
models [23,40] as well. For better comparison, this paper applies the accuracy as the main
evaluation measure for all three models in the eight scenarios.

8.1. Train–Test Split

In the experiments, the Split Model was used for train–test split evaluation. It was
trained on the CASME II dataset and achieved an accuracy of 85.2% compared to 80.3%
by Model-C.

The results obtained seemed good at first sight, but a major problem was encountered,
as they are not reproducible for randomly shuffled splits and differ drastically in their
performance. In an experiment of five random splits, Run-1 achieved the highest accuracy
of 85.2%, whereas Run-3 achieved only 45%. The results of the other three splits are in
between them. The validation curves for all runs are shown in Figure 4.
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Figure 4. Evaluation accuracies for our Split Model with train–test split for multiple runs.

This clearly illustrates that a train–test split is not suitable for the small and imbalanced
datasets in micro-expression recognition. In other papers in the state of the art, a split was
then accordingly selected allowing the generation of the best possible results. However,
from our point of view, this does not correspond to a fair comparison and is not a good
scientific practice. To address this common practice in the field of micro-expression recog-
nition and to provide a fair comparison, we compared our model with two state-of-the-art
models in eight evaluation scenarios for both intra-dataset and cross-dataset. The splits
were generated using stratified K-fold validation. More details can be found in the next
subsection. To the best of our knowledge, we are the first to perform such a comparison in
this manner in micro-expression recognition.

8.2. Stratified K-Fold

The approach of stratified K-fold validation ensures that in every split, there will
be always the same ratio of class samples. Therefore, this approach was deployed for
all experiments. Overall, stratified K-fold validation was employed for eight different
evaluation scenarios. The number of K was always chosen to be five. Three of these
scenarios are intra-dataset experiments and five are cross-dataset experiments. For this
purpose, varying combinations of the three datasets CASME II, SMIC, and SAMM (see
Section 3) were applied. The combined dataset is a merging of CASME II and SMIC. As
the number of samples in SAMM with 50 was insufficient for training, it is only used for
testing purposes in the cross-dataset comparisons.

The results of the three methods Model-A, Model-B, and Model-C across all eight
scenarios are summarized in Table 4. It can be observed that our proposed Model-A out-
performs the state-of-the-art architectures Model-B and Model-C in seven out of eight
scenarios, with the exception of Scenario-8, where Model-C performs best. This clearly
shows the superiority of our architecture compared to the methods presented so far. De-
tailed results for each scenario with further explanations and discussions can be found in
the following subsections.

8.2.1. Scenario-1

Scenario-1 is an intra-dataset experiment where both training and validation were
performed on the SMIC dataset. Our Model-A reached an accuracy of 43.7% compared to
33.5% and 37.3% of Model-B and Model-C, respectively. Thus, the performance difference
is 10.2% and 6.4%. The advantage of Model-A is that it is deeper and consists of more
convolutional layers. Therefore, it is able to better identify spatio-temporal features related
to micro-expressions. Another benefit is provided by our pre-processing technique, which
involves selecting an Apex sequence and interpolating the first and last frames of each
video, resulting in fewer samples being discarded because of too short length.
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A overall low accuracy can be noticed for all three models. The main reason for this is
that the videos were recorded at 100 FPS, which is low compared to the other benchmark
datasets. Thus, there is a lag in the models’ ability to capture the temporal information,
which is an essential factor in micro-expression recognition. Consequently, poor temporal
feature quality leads to low accuracies. Additionally, the average sample length in SMIC
is only 34 frames, which is shorter than for the other databases. It is likely that this only
allows the extraction of features with lower quality from the samples.

Table 4. Accuracy comparison of the three models across all eight evaluation scenarios.

Scenario Train Test Model-A Model-B Model-C

01 SMIC SMIC 43.7% 33.5% 37.3%

02 CASME II CASME II 56.5% 45.4% 48.1%

03 Combined Combined 88.2% 85.4% 80.4%

04 SMIC SAMM 44.3% 31.1% 42.0%

05 CASME II SAMM 24.8% 24.3% 23.1%

06 SMIC CASME II 44.7% 43.7% 39.1%

07 CASME II SMIC 37.7% 35.4% 36.5%

08 Combined SAMM 27.1% 23.1% 36.9%

8.2.2. Scenario-2

In Scenario-2, CASME II was applied for training and testing. Again, Model-A per-
forms best with a margin of 8.4% to the second best Model-C. An accuracy of 56.5% was
obtained for Model-A, which is 12.8% higher than for the SMIC dataset in Scenario-1.
Model-B and Model-C were also able to increase by 11.9% and 10.8%, respectively. This can
be mainly attributed to the higher frame rate in the video recordings, which is with 200
FPS twice as high as with SMIC. Thus, the networks are capable of detecting even more
minor motion information. As mentioned above, a higher frame rate can help produce
higher accuracies in micro-expression recognition. Another advantage of the CASME II
dataset is that the on-set frame, Apex frame, and off-set frame information is provided by
the authors. As the Apex frame was known in the entire video, the pre-processing was
executed easily in a correct manner.

Even though the accuracy achieved with CASME II is higher than with SMIC, it is still
not very high for micro-expression recognition. There are some reasons for this: The major
problem in CASME II was the data imbalance. So, for the experiments, only three classes
are appropriate: namely, happiness, disgust, and surprise. These emotions were mainly
considered in order to be consistent with SMIC and SAMM. Even though the dataset has
255 samples, only 123 samples were utilized in the experiments. Thus, the low overall
performance in CASME II can be attributed to insufficient and imbalanced samples.

8.2.3. Scenario-3

In Scenario-3, SMIC and CASME II are combined by joining their samples. Discussing
the performance of the individual models, all three models achieved more than 80%
accuracy. The performance of Model-A with an accuracy of 88.2% is the best over all eight
scenarios. Model-B and Model-C rank behind with 85.4% and 80.4%, respectively.

The higher performance for this scenario can be explained by two reasons: First,
the combined dataset contains an amount of 230 more samples for training. Second,
the model benefits from the mixture of higher and lower frame rates, making it more robust.

8.2.4. Scenario-4

In this cross-dataset scenario, the SMIC dataset was used for model training, whereas
SAMM was used for evaluation. Model-A achieved an accuracy of 44.3%. This can be
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regarded as relatively high when it is compared to the intra-dataset evaluation results of
SMIC in Scenario-1, where the performance of Model-A is lowered by 0.6%. In cross-dataset
experiments, the ethnicities of the subjects play a crucial role, as they will lead to better
generalization of the model. It is all the more astonishing that the model trained on SMIC,
which includes only three ethnicities (Africa, Asia, and Caucasian) in the training samples,
performs that well on SAMM.

Compared to Model-C, Model-A performs better by 2.3%. A relatively large drop can
be seen for Model-B with a difference of over 13% to Model-A.

8.2.5. Scenario-5

In Scenario-5, the models were trained on CASME II and evaluated on SAMM. Com-
pared to Scenario-4, where SAMM was also employed for evaluation, there is a significant
decrease in the accuracies of between 7% and 20% for the three models. Reasons for this
may be that CASME II contains only Asian subjects and therefore generalizes less accurately
for other people. In addition, CASME II has a high data imbalance.

All three models perform almost identically in Scenario-5 with a slight edge: Model-A
is 0.5% higher than Model-B and 1.7% higher than Model-C.

8.2.6. Scenario-6

The SMIC dataset was used for training in Scenario-6 and CASME II was used for
evaluating the model. Model-A again outperforms the two others with 44.7% accuracy,
which is 1.0% and 5.6% higher in comparison with Model-B and Model-C, respectively.

In contrast to Scenario-2, where intra-dataset evaluation was performed for CASME II,
the model trained on SMIC has to cope with a drop of 11.8%.

It can be observed that all models trained on SMIC perform similarly well on the
different test sets. The accuracy of Model-A on the intra-dataset in Scenario-1 is 43.7%, while
in Scenario-4 on SAMM, it is 44.3%. Such balanced results are found only with the model
trained on SMIC. Due to the comparatively high number of samples of 164, the different
ethnicities of the subjects, and a relatively balanced class distribution, the networks trained
on SMIC show the best generalization and do not vary strongly across the datasets, which
would be an indicator for a bias in the training data.

8.2.7. Scenario-7

In this scenario, the training was performed on CASME II and evaluation was per-
formed on SMIC. The performances of all three models are comparable with only a differ-
ence of 2.3% between the worst and the best. Model-A ranks again first with an accuracy of
37.7%.

The drop of Model-A in Scenario-7 is kept within limits at 6% compared to the model
trained on SMIC (Scenario-1). Nevertheless, if we examine all three models trained on
CASME II, it is noticeable that the results differ heavily depending on the test set. Here,
again, the lack of diversity and the class imbalance problem of CASME II become obvious.
The intra-dataset experiment (Scenario-2) performs about 20 % better than testing on SMIC
(Scenario-7), which is in turn around 13 % better than on SAMM (Scenario-5). Overall, it
appears that CASME II contains high levels of bias, and therefore, the models trained on it
have limited ability to cope with other data.

8.2.8. Scenario-8

Scenario-8 along with Scenario-5 contain the worst results across all eight experiments.
Here, again, testing is completed on SAMM, but here, the training is carried out on the
combined dataset of SMIC and CASME II. This scenario forms an exception, because it is
the only scenario not dominated by Model-A. Model-C clearly performs better here with
36.9% compared with Model-A’s 27.1%.

Comparing the results of Model-A, CASME II seems to have a greater impact on
training the model. Through the combination, the accuracy compared to training solely
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on CASME II can increase from 24.8% to 27.1%. However, this still leaves a large gap with
the SMIC trained model in Scenario-4, where the accuracy is 17.2% higher. This confirms
the conclusions drawn in Scenario-7 that CASME II is only limitedly qualified for the
implementation of models with a high degree regarding generalization ability.

9. Applications and Use Cases

Micro-expressions play an important role in applications of lie detection, person au-
thentication, and many more. For instance, in an interrogation, facial micro-expressions
of the criminal can assist the police in convicting him. Another use case is that border
guards can use them to identify unusual behavior of persons during border control [41].
Moreover, knowing a patient’s true feelings is considered to be very helpful for psychother-
apists while treating their patients. Furthermore, micro-expression can also be used in
the field of marketing to understand people’s reactions and comments to the company’s
advertisements, goods and services [41].

10. Conclusions

In this work, we proposed a novel 3D CNN architecture capable of extracting fea-
tures from both spatial as well as temporal dimensions simultaneously. Especially in
micro-expression recognition, these combined spatio-temporal features are crucial for the
subsequent performance of the network. In order to improve the input sequence selection,
a pre-processing technique was introduced to select the Apex frame sequence from the
video, which is the part with the most visible emotions. This Apex frame sequence shows
better results than picking the first or a random starting frame from the video. Another
benefit of our pre-processing is that for samples with short videos, the first and last frame
will be interpolated to meet the fixed-lenght input criteria so that they do not need to
be discarded.

In addition, an extensive experimental evaluation was performed in our work, which
is unprecedented in the state of the art for micro-expression recognition. To conduct
this comparison, two state-of-the-art models were reimplemented, and intra-dataset as
well as cross-dataset experiments were executed on the three datasets: CASME II, SMIC,
and SAMM across a total of eight different evaluation scenarios. In addition, a stratified
K-fold evaluation was proposed and adopted, since in a classical train–test split comparison,
the performance varies strongly depending on the split chosen and the samples included for
training and testing, making the results not meaningful. Our proposed Model-A was able
to outperform the other two state-of-the-art architectures in seven out of eight evaluation
scenarios, clearly demonstrating the superiority of our network. The highest accuracy of
88.2% is shown in the intra-dataset validation in Scenario-3, where the CASME II and SMIC
datasets were merged.

Overall, in particular, the cross-dataset results of consistently below 50% accuracy
exhibit great potential for improvement. Specifically, the CASME II dataset reveals that it is
not suitable for achieving a network with a high degree of generalization ability. The lack
of diversity in the subjects’ origin countries and the class imbalance between the samples
lead to a severe performance drop on other datasets. In comparison, SMIC is well suited
for achieving consistent results on a variety of data, but results also need to be further
improved. Especially, the different ethnicities (Africa, Asia, and Caucasian) of the subjects
and the class distribution are good, but the frame rate of 100 FPS and the total number
of 164 samples are not high enough. Even though the results seem comparatively poor
and irrelevant at first glance, they show an unvarnished, fair and reproducible comparison
which allows existing challenges and future work to be identified for the field of micro-
expression recognition. In this regard, the main task for the future is the acquisition of
new large databases with a high level of annotation quality. Thereby, SMIC can provide
good preliminary knowledge on how to set up and accomplish this dataset recording. In
addition, generative adversarial networks might be able to contribute to the collection of
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these additionally required amounts of data. In recent years, these could be successfully
exploited in many areas of deep learning to enhance the available data.
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