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Abstract: Species distribution models (SDMs) based on fine-scale environmental data may reduce
the uncertainty in predicting species distributions. However, many scientists have also projected the
robust potential distributions of species using environmental data of different scales and found that
the potential distributions modeled using SDMs are scale dependent. This may be due to the impact
of the scale effect on species richness (as well as on multi-species distributions). To eliminate the
impact of the scale effect, we aim to develop an improved method to integrate different scales into
species distribution models. We use protected areas as the study regions and propose the hypothesis
that there is a spatial element to the threat of invasive species for protected areas under climate change.
We use Maxent to compute the current and future invasion ability and invasion inequality of invasive
species for protected areas based on the potential distributions of species across different scales to
evaluate the risk of invasive species. We find that an increase in the number of present records could
reduce the accuracy of SDMs. There is a significant linear relationship between the fine-scale and
coarse-scale risk of invasive species of alien plants in protected areas, and an appropriate scale should
thus be selected to assess species risk based on this linear relationship of invasive risk. There is a
significant relationship between the potential of IAPS to invade protected areas and the invasion
inequality of IAPS in protected areas across all scales, and 5.0 arcminutes is the most appreciate scale
to evaluate the risk of IAPS for protected areas under climate change based on principal component
analysis. We provide new insights into the use of species distribution models coupled with different
spatial scales to analyze the regional risks associated with species and to assess regional biodiversity.

Keywords: China; climate change; invasion risk; invasive plant species; Maxent; protected areas;
principal component analysis; scale effect

1. Introduction

Species distribution models (SDMs) are widely used to predict current and future
species distributions under various climatic models [1–3]. For instance, we can use the
results of modeling to develop actionable recommendations for biological conservation
and risk prevention and control [4–6]. Despite their important uses, there are still many
technical issues involved with the use of SDMs [7,8]. Addressing these issues will greatly
improve the forecasting accuracy of SDMs, improve the feasibility of environmental man-
agement/policymaking, and create a bridge between modelers and decision-makers.

A significant challenge is due to the fact that using SDMs to predict the current
and future potential distributions of species gives different results at different resolution
scales [9–11]. For instance, some climate refugia modeled at fine scales might be missed at
coarser scales and reducing uncertainty in estimates of richness may improve the accuracy
of modeling at fine scales [3,11,12]. However, a false sense of the accuracy of future
climate scenarios might result in unreliable SDMs when using fine scales [13,14], and some
studies have used coarse resolutions to determine the robust potential distributions of
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species around the world [4,5,12,15]. Moreover, climate factors are the best predictor of
species richness at the finer scales of resolution because of the spatial scale effect [16].
Therefore, we aimed to put forward a solution to address the contradiction between the
fine scale and the coarse scale and to balance results from different scales to develop robust
distribution models [17,18].

There is usually a linear relationship between fine scales and coarse scales in terms of
the model outputs of SDMs [9,17,19]. Therefore, the results of SDMs can be balanced with
different ecological interpretations based on different scales using multivariate statistics. For
example, principal component analysis (PCA) offers the possibility to promptly generate
results, integrating different data with linear regression [20,21]. PCA is a statistical approach
based on actual needs, from which several smaller aggregate variables are chosen, and
reflects the information of the original variables as much as possible. PCA can be used
to compact redundant data into fewer non-correlated and independent dimensions that
are often more readily interpretable than the source data [20]. The linear relationship of
SDM offers an opportunity to balance the various results across different spatial scales
and then select an appropriate scale that is representative of all scales for further analysis,
such as the prediction of the potential species distribution, risk assessments concerning
invasive species, and the planning of priority protected areas [17,18,22,23]. We therefore
used a statistical approach to find solutions to determine the various potential distributions
of species at different scales and used the appropriate scale to produce robust distribution
models. Our method is meaningful for planning long-term management decisions to model
the habitat quality of species across different spatial scales.

Here, we developed a method to balance the various results based on different scales
and used the appropriate scale to model the potential distributions of species. To show how
our approach works, we considered the case of the invasion of invasive alien plant species
(IAPS) into protected areas in mainland China. We used Maxent to model the current and
future potential distributions of nine IAPS at different spatial scales in protected areas in
the mainland of China (the scale range of grid resolutions was 2.5–30.0 arcminutes) and
quantified the potential IAPS-invaded protected areas and the inequalities related to the
invasion of protected areas by IAPS. We showed that our approach is better able to integrate
different scales into species distribution models. Our approach can use different scales to
project the potential distributions of species. Our results clearly showed the impact of scales
on the results of SDMs and showed that SDMs are more practical for decision-making in
regard to management policies.

2. Materials and Methods
2.1. Data on Species and Protected Areas

We selected nine IAPS with widespread distributions in China from the list of “100
of the World’s Worst Invasive Alien Species” compiled by the Invasive Species Specialist
Group (www.issg.org). We selected species according to two criteria: (1) the species
had significantly invaded mainland China and (2) there were more than 25 occurrence
records that ensured the reliability of the SDMs [8,24]. These species included Amaranthus
spinosus, Bidens pilosa, Chamaecrista mimosoides, Erigeron canadensis, Daucus carota, Sonchus
oleraceus, Physalis angulata, Euphorbia hirta, and Medicago sativa. The occurrence records
of the nine IAPS, especially the specimens or recorded sightings, were compiled from
various online databases, including the Global Biodiversity Information Facility (GBIF;
www.gbif.org (accessed on 17 September 2020)) and the Chinese Virtual Herbarium (CVH;
www.cvh.org.cn (accessed on 1 August 2014); Table S1; [5]). The location descriptions we
used were provided in CVH and the literature for the determination of locations in Google
Earth and ArcGIS 10.2 ([15]; ESRl, 2014). We used 425 protected areas to evaluate the
regional risk of IAPS at different spatial scales, as listed in Table S2. The data on protected
areas were downloaded from the Resource and Environmental Science and Data Center
(https://www.resdc.cn/Default.aspx (accessed on 5 December 2021)), as shown in Figure 1.

www.issg.org
www.gbif.org
www.cvh.org.cn
https://www.resdc.cn/Default.aspx
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Figure 1. The distribution map of the protected areas analyzed in this study.

2.2. Environmental Data

We modeled current and future potential distributions of IAPS in protected areas
using eight bioclimatic variables, namely the annual mean temperature, annual precip-
itation, temperature seasonality, mean diurnal range, mean temperature of the wettest
quarter, mean temperature of the warmest quarter, precipitation of the driest month, and
precipitation seasonality (averages from 1950 to 2000; www.worldclim.org (accessed on
1 August 2014)), which were downloaded from the WorldClim database. We selected
two greenhouse gas concentration scenarios (mohc_hadgem2_es RCP 4.5 and 8.5) from
global climate models to simulate the future potential distributions of IAPS in the 2080s
(2071–2099; http//www.ccafs-climate.org (accessed on 1 August 2014)). RCP 4.5 differs
from RCP 8.5 in that RCP 8.5 has higher cumulative concentrations of carbon dioxide than
RCP 4.5. Thus, it predicts different climates caused by various anthropogenic concentra-
tions of greenhouse gases and other pollutants. RCP 8.5 and RCP 4.5 were used as the high-
and low-concentration scenarios, respectively (www.ccafs-climate.org). Here, we used four
resolution scales of bioclimatic variables (2.5, 5.0, 10.0, and 30.0 arcminutes) as the gradient
spatial scales because these resolutions are typically used in SDMs.

The distribution of IAPS is determined not only by climatic factors but also by the
presence of suitable patches for colonization and establishment. Habitat invisibility can de-
pend on topography, soil characteristics, land cover, and the disturbance regime. Hence, we
downloaded four soil variables with a spatial resolution of 5 min (~10 km), including soil
pH in H2O and KCl solutions, bulk density (kg m−3), cation exchange capacity (cmol+/kg),

www.worldclim.org
http//www.ccafs-climate.org
www.ccafs-climate.org
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and soil clay (wt%) of fine soil fraction (<2 mm) from a study by Hengl et al. [25]. Agricul-
tural land (cropland and pasture area) data for the year 2000, as an indicator of land cover
and land use, was downloaded from EarthStat (http//www.earthstat.org/ (accessed on
10 July 2022)) with a spatial resolution of 5 min (~10 km). These data show the proportion
of farmland and pasture area (i.e., a fraction of the 5-arcminute grid cell area) quantify-
ing the satellite-derived land cover data and agricultural inventory data [8]. Elevation
data (2.5, 5.0, 10.0, and 30.0 arcminutes) were downloaded from the WorldClim database
(www.worldclim.org). The data on agricultural lands and the soil variables were resampled
to 2.5, 5.0, 10.0, and 30.0 arcminutes, the same as the climate and elevation variables.

2.3. Species Distribution Models (SDMs)

Maxent (version 3.3.3k; http://www.cs.princeton.edu/~schapire/maxent/ (accessed
on 10 July 2022)) was used to model the current and future potential distributions of the
nine IAPS based on the native and invasive ranges around the world at four spatial scales
(2.5, 5.0, 10.0, and 30.0 arcminute resolutions). Maxent was used to estimate the latent
distribution functions for nine IAPS based on the maximum entropy and then modeled
their geographic locations based on environmental variables. In maps predicted using
Maxent, cells with a value of 1 have the highest distribution probability, and those with
a value of 0 have the lowest. Furthermore, potential distribution areas were determined
in relation to the areas where climate conditions of the study region were similar to the
sites where occurrence localities were already recorded [8,26]. In this way, the computed
result reflected the possibility of potential distributions used to evaluate the risk of IAPS
for protected areas [18,27].

Four-arcminute-resolution current and future climate variables were used as envi-
ronmental input layers for current and future data in Maxent. To improve the accuracy
of Maxent, a 10-fold cross-validation method was used to divide the present dataset into
10 roughly equal partitions, nine of which were used to train the model, and the 10th
of which was used to generate SDM estimates [8]. The regularization multiplier (beta)
was set to 2.0 to produce a smooth and general response [28]. The maximum number of
background points was 10,000 using automatic features; other values remained defaults.
We used the jackknife method to test the importance of bioclimatic variables [1,26].

The receiver operating characteristic (ROC) curve uses each value of the predicted
outcome as a possible judgment threshold. We used the area under the ROC curve (AUC) to
evaluate the performance of the Maxent model. When the randomly selected background
points were removed from the dataset, this statistic treats each estimate as a possible
threshold based on the corresponding sensitivity and specificity. The SDMs predicted the
possibility of potential distribution of invasive species with high accuracy. A higher AUC
indicates a better performance by the SDM [1,19,26].

2.4. Evaluating the Risk of IAPS for Protected Areas

We evaluated the risk of IAPS for protected areas based on multiple species because
(1) we needed to have enough replicates to test the effects of spatial scales on the poten-
tial distribution of IAPS to determine our analysis’s representativeness; (2) there is co-
occurrence of IAPS within conservation habitats in one of the most comprehensive global
conservation management databases (the Nature Conservancy’s conservation projects) [29];
and (3) IAPS may invade different vegetation types, e.g., deserts, swamps, grasslands, sub-
tropical evergreen broad-leaved forests, monsoon forests, and warm-temperate deciduous
broad-leaved forests, and thus the risk of IAPS could be assessed for protected areas with
full coverage of vegetation types.

We defined two indicators to evaluate the risk of IAPS for protected areas: (1) the
potential of IAPS to invade protected areas and (2) the invasion inequality of IAPS for
protected areas. The former indicator was used to assess the risk of IAPS for the overall
protected area, and the latter was used to assess the differentiation of the grids of protected

http//www.earthstat.org/
www.worldclim.org
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areas. Here, we mainly applied the risk of IAPS for the overall protected area in the case of
our study.

We used the improved method of Calabrese et al. [30] to evaluate the current and
future likelihood of the underlying distribution of IAPS in each pixel:

Ej =
k

∑
k=1

Pi,k

where Ej represents the possibility of potential distribution of IAPS in each pixel j, k is the
number of species in pixel j, i is the species i, and Pi,k is the probability of an appropriate
potential distribution for species i in pixel j.

We also computed the potential of IAPS to invade each protected area as follows [4]:

St =
n

∑
j=1

XjYj

where St is the potential of IAPS to invade protected area t, n is the total number of IAPS,
Xj is an indicator of the possibility of a species’ potential distribution (Ej value) in grid j of
protected area t, and Yj is the distribution area percentage of grid j in protected area t.

Additionally, we calculated the standard deviation of the current and future possibility
of species potential distribution in each protected area to assess the discrete degree of IAPS
distribution, namely, the inequality of the IAPS risk for each protected area, as follows:

Dt = STD(Ej)

where Dt represents the inequality of IAPS invasion for protected area t and Ej represents
the possibility of the potential distribution of IAPS in each pixel j.

2.5. Scale-Balancing Method

The use of different spatial scales can affect St and Dt as described above. Here, we
need to determine an appropriate spatial scale to evaluate the risk and inequality of risk of
IAPS for protected areas using PCA that uses St and Dt across different spatial scales. Some
previous studies showed that the appropriate spatial scale was useful for SDMs such as
Maxent [9,17,18]. Hence, we have aimed to propose a simple method to solve this specific
problem. PCA is the most commonly used multivariate statistical analysis method to
determine the principal components and select the appropriate variables accounting for the
total variation (all scales [20,21]). PCA could explain most of the variation between different
scales and help us select the most likely spatial scale based on relationships between two
or more feature sets of source data (scale data: 2.5, 5.0, 10.0, and 30.0 arcminutes) in this
study [9,17,19]. Hence, we combined the datasets of the risk of IAPS for protected areas
across all scales into a single analysis.

First, we used St and Dt across different scales (2.5, 5.0, 10.0, and 30.0 arcminutes)
as the PCA variables for the current concentration, low gas concentration, and high gas
concentration, respectively. PCA was used to estimate the correlation matrix and percentage
of variance of St and Dt, respectively. We used the St and Dt values of 2.5, 5.0, 10.0, and
30.0 arcminutes as the inputs of the PCA, respectively. We conducted PCA based on the
correlation among these four resolutions (i.e., 2.5, 5.0, 10.0, and 30.0 arcminutes). We
extracted the loadings of the first principal component (PC1) explaining more than 60%
of the variance in St and Dt. The PC1 was significant (p < 0.001; Monte Carlo test) and
accounted for more than a cumulative 60% of St and Dt across all spatial scales, respectively,
for the current concentration, low gas concentration, and high gas concentration.

Second, we extracted the St and Dt scores of protected areas in the first principal
component (PC1), respectively. PC1 was regarded as a single index representing the risk of
IAPS for protected areas across all scales. Third, we separately assessed the relationship
between IAPS risk and PC1 in protected areas at all scales (St and Dt) using simple linear
regression analysis. This analysis was used to explore the bias of IAPS risk for protected
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areas between a certain scale and all scales. Fourth, we performed a simple linear regression
analysis on the relationship between St and Dt (the results from all the scales and PC1). We
aimed to explore the impact of scale effects on the relationship between St and Dt. Finally,
we chose the appropriate spatial scales used for the risk of IAPS for protected areas under
climate change based on two criteria: (1) the highest representativeness, accounting for the
highest amounts of St and Dt at all scales (and the smallest bias of risk of IAPS for protected
areas between a certain scale and all scales), and (2) the smallest impact of scale effects on
the relationship between St and Dt.

3. Results

We found that an increase in the number of present records could reduce the accuracy
of the SDMs (Figure 2). We found that there were significant relationships between fine
scales and coarse scales in the current day and in the future (Table 1). The relationships
between 2.5 arcminutes and the other three spatial scales were the largest for the poten-
tial of IAPS to invade protected areas and the inequality of IAPS invasion for protected
areas (Table 1).
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Figure 2. The records and AUC values for nine IAPS.

Table 1. The relationships between the potential presence of IAPS-invaded protected areas and the in-
equality of IAPS-invaded protected areas; 0.5: 0.5 arcminutes; 2.5: 2.5 arcminutes; 5.0: 5.0 arcminutes;
10.0: 10.0 arcminutes. All the relationships were significant (p < 0.001).

Potential Inequality

2.5 5 10 30 2.5 5 10 30

2.5 1 0.9987 0.9935 0.9438 1 0.949 0.7711 0.4126
5 0.9987 1 0.9952 0.9473 0.949 1 0.7882 0.4057

10 0.9935 0.9952 1 0.9536 0.7711 0.7882 1 0.4616
30 0.9438 0.9473 0.9536 1 0.4126 0.4057 0.4616 1

The most significant relationship was observed between the potential of IAPS to
invade protected areas modeled with 5.0 arcminutes and PC1 in the present and future (St;
average R2 = 95.92%; p < 0.001; Figure 3). The invasion inequality of IAPS for protected
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areas modeled with 5.0 arcminutes was also significantly related to PC1 in the present
and future (Dt; average R2 = 89.23%; p < 0.001; Figure 3 and 2.5 arcminutes also showed a
significant relationship with PC1 (average R2 = 92.75% for potential and R2 = 86.78% for
inequality; p < 0.001; Figure 3). There was little bias in the invasion inequality of IAPS for
protected areas between 2.5 arcminutes and 5.0 arcminutes. The scale of 5.0 arcminutes was
the most consistent when using PC1 of these two indicators to evaluate the risk of IAPS for
protected areas (Figure 4). However, above all, we used 5.0 arcminutes to evaluate the risk
of IAPS for protected areas via the potential of IAPS to invade protected areas (St; Figure 4).
Based on 2.5 arcminutes and 30 arcminutes, most protected areas that were invaded by
IAPS were distributed in southern China under climate change (Figure 5; Table S2). The
protected areas, including Damingshan, Dayaoshan, Yunkaishan, Maolan, Qianjiadong,
and Yongzhoudoupangling, were shown to be significantly invaded by IAPS in the present
and the future (Figure 5; Table S2).
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comparing different scales of resolution (i.e., 0.5 arcminutes, 2.5 arcminutes, 5.0 arcminutes, and
10.0 arcminutes) and PC1 in different concentration scenarios. Current: the present day; RCP4.5:
low-gas-concentration scenario; RCP8.5: high-gas-concentration scenario; 0.5: 0.5 arcminutes; 2.5:
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(i.e., p < 0.001).
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4. Discussion

We built on a simple method that uses PCA to amalgamate different scales into SDMs
when predicting the potential distributions of species and used our method to evaluate
the risk of IAPS for protected areas in mainland China. We were able to use the linear
relationship between the results of SDMs from different scales to select an appropriate scale
to model the potential distributions of species. The results showed that the AUC values
were significant, which ensures the accuracy and credibility of the experimental results.
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Here, increasing records may weaken the performance of SDMs, which may be affected by
the uncertainties in the GBIF and CVH data. The increase in records could be enriching
the distribution in areas where it had not been recorded, and with other environmental
conditions that also enrich the bioclimatic profiles of the species. Coarse scales can lead to
a small number of occurrence records. Hence, it is possible that coarse scales can lead to
high accuracy in SDM for predicting IAPS distributions under climate change.

Wang et al. [16] found that the patterns and determinants of species richness vary
on different spatial scales. The reasons for this might include (1) the scale effect of large-
scale ecology, with the effect of climate change increasing relative to species richness with
decreasing scales of resolution [31], and (2) cases in which the power of the climate, in-
cluding environmental energy, water resource availability, and climate seasonality, increase
with geographic expansion while the power of habitat heterogeneity and human activity
declines [16]. At small scales, the dispersal of IAPS and human disturbance (e.g., changes
in land use) made large contributions to the development of suitable habitats for IAPS.
IAPS distributions were more strongly influenced by dispersal limitations. Human distur-
bance can change global land cover, resulting in ecosystem fragmentation, habitat loss, and
consequent changes in the local distributions of IAPS. Hence, we should identify the forms
of dispersal of IAPS, and incorporate changes in land use into SDMs [16,31,32]. Hence,
modeling the potential distributions of multiple species was influenced by the spatial scale.
We need to determine the scale units to model the potential distributions of species with
a fine or increasingly coarse resolution. Franklin et al. [17] studied the impact of using
various scales on plant species distributions and proposed that it is necessary to balance
fine and coarse scales. Some studies have found that there was a bias in the scale effect
for the results of SDMs when using fine scales or coarse scales, and this indicated that
the selection of scales may lead to an over- or underestimation of the potential distribu-
tions of species [18,19]. We also found that the extent of the differences in the results of
Maxent—namely, the invasion risk—for different scales suggested this pattern in our study.

The effect of scale can be solved by applying a scale balance to the SDM results of
Maxent based on the relationship between the potential distributions of species on fine
scales or coarse scales [12,30,31]. Here, we used PC1 as the indicator representing all scales,
and PC1 could explain most of the SDM results across all scales. We selected the most
appropriate scale related to PC1. Our main objective was to select the scale that could
reduce the difference between SDM results across all scales due to the scale effect. Thus,
we could select the appropriate scale based on the relationship between the scales and
PC1. We used the case of the invasion of IAPS into Chinese protected areas to explore the
effect of applying a scale balance to the SDM results of Maxent using fine and increasingly
coarse scales.

Previous studies [17,18,33,34] showed the impact of the scale effect on the results of
SDMs (e.g., Maxent) and indicated that the fine scales were fit for modeling the potential
distributions of species. However, several studies have also used coarse scales to map the
distributions of species [4,15,35,36]. Hence, our suggestion was to use different scales of
resolution as the inputs of SDMs, and then a simple method to integrate various scales
into SDMs was proposed. We found that 2.5 arcminutes and 5.0 arcminutes were the most
appropriate for the evaluation of the risk of IAPS for protected areas (2.5 arcminutes and
5.0 arcminutes for the invasion inequality of IAPS for protected areas and 5.0 arcminutes
for the potential of IAPS to invade protected areas). Hence, 5.0 arcminutes could account
for most scales and demonstrated the weakest effect of scale on the potential distributions
of multiple species. We also found an interesting result in that there was a significant
relationship between the potential of IAPS to invade protected areas and the invasion
inequality of IAPS for protected areas across all scales, and 5.0 arcminutes was the most
consistent with PC1 for these two indicators. To summarize, we used 5.0 arcminutes to
evaluate the risk of IAPS in protected areas.

Some researchers have used SDMs to model the potential distributions of species in
protected areas, including endangered species and IAPS [4,37–40]. Here, we predicted the
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potential distributions of IAPS in Chinese protected areas and found that Damingshan,
Dayaoshan, Yunkaishan, Maolan, Qianjiadong, and Yongzhoudoupangling would be sig-
nificantly invaded by IAPS, which indicates that we need to conduct long-term monitoring
of these protected areas, particularly grids with a high possibility for the invasion of IAPS,
to prevent the invasive spread of IAPS because of climate change [41,42]. More importantly,
our finding that there was a significant relationship in terms of invasion risk between the
present day and the future suggests that we should attach importance to the current risk of
IAPS for protected areas.

How can we evaluate the risk of IAPS for protected areas under climate change?
We used the ability of IAPS to invade protected areas to assess the risk of IAPS for the
overall protected area and the invasion inequality of IAPS for protected areas for part of
the protected area. A study by Araújo et al. (2011), who used SDMs to assess the ability of
protected areas to protect endangered species under climate change, provided insights into
evaluating the risk of IAPS for protected areas [4,43]. We regarded a large proportion of
suitable habitats of IAPS as having a high risk in the overall protected area. The current
level of protected areas invaded by IAPS was consistent with the future when following
the patterns of greenhouse gas emissions. However, we also found that greenhouse gas
emissions, particularly in the high-emissions scenario, will increase the uncertainty of the
change in IAPS risks for protected areas. We should not ignore the differentiation of IAPS
invasions into different parts of protected areas. For the protected areas violently invaded
by IAPS, the high invasion inequality of IAPS indicated that the difference in habitat quality
was large, and vice versa. Hence, the invasion inequality reflected the risk areas of IAPS at
some levels. For protected areas with high invasion inequality, we should take conservation
actions based on the parts of protected areas while attaching importance to the protected
areas invaded by IAPS. If the protected areas have low invasion inequality in terms of
IAPS, the regions with high habitat quality are a key consideration for protected areas with
high IAPS invasion risks [44]. Greenhouse gas emissions could enhance the relationship
between the invasion ability and invasion inequality of IAPS for protected areas [45]. This
indicates that future invasions of IAPS will be more intensely focused on protected areas
compared to those of the present day. Our findings suggested that we need to strengthen
ecological monitoring to find highly suitable habitats for IAPS in protected areas. Hence,
our method could provide conservation suggestions for the assessment scales of invasive
species used by biological conservationists and land managers. Can we evaluate the risk of
IAPS on finer scales, such as the grid of protected areas? We need to solve the problem of
how spatial scales affect habitat quality.

Modeling the habitat quality of species was influenced by the spatial scale of climate
change. We aimed to determine the scale units to model the habitat quality of species—a fine
resolution or coarse resolution [46]. This led us to question of whether SDM results obtained
using different scales were accurate. The results obtained from Maxent for all scales were
positively related to the regions’ species richness, indicating that the habitat quality of
species at different scales was useful for long-term management [18]. Franklin et al. (2013)
studied the impact of the use of various scales on plant species’ distributions and proposed
that it is necessary to balance fine and coarse scales [17]. Some studies have found that
there is an important relationship between habitat quality when using fine scales or coarse
scales, and this indicates that scale selection might overestimate or underestimate SDM
outcomes [12,17,18,46]. We also found that the extent of the difference in the results of
Maxent—namely, the invasion risk—of different scales suggested this pattern in our study.
This problem can be solved by applying a scale balance to the SDM results of Maxent based
on the relationship between habitat quality using fine scales or coarse scales [17,47].

PCA is the most commonly used multivariate statistical analysis tool to select the
appropriate variables accounting for the total variation [20,21]. Hence, we could balance
the biases of IAPS risk that occurred when fine or coarse scales were used in the estimates.
Recent studies have shown that fine scales can reduce uncertainty when modeling regional
habitat quality [9,17,18]. The finding that the invasion inequality of IAPS for protected areas
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at the finest scales could account for all scales was consistent with the findings of previous
studies [17]. It is necessary to conduct long-term monitoring of protected areas, particularly
grids with highly suitable habitats for IAPS to prevent the invasive spread of IAPS that is
due to climate change [46]. However, we used 5.0 arcminutes to predict the ability of IAPS
to invade protected areas because 5.0 arcminutes had a significant relationship with each
spatial scale and represented the results of all scales [48,49].

We invented a simple and convenient method to balance the various results of mod-
eling at different spatial scales to prevent the overestimation or underestimation of SDM
results caused by the selection of the spatial scale and to consider the impact of different
scales on SDM results. In China, between the west and the east there is a substantial
difference of almost 3000 km, as well as a latitudinal gradient of around 2000 km, making it
difficult to use the same eight variables for all species. Perhaps this is possible when using
a coarse spatial resolution, but it minimizes environmental variation in large areas of the
country according to the resolution used. Hence, 5.0 arcminutes were relatively coarse for
SDM applications in predictions of the distributions of IAPS compared to previous studies.

We should emphasize that conservation measures cannot afford to wait until there is
enough information available on IAPS [46]. Our study provides a great example of the use
of SDMs: for instance, the application of Maxent to biological conservation and ecological
risk assessment. Here, we offer helpful suggestions to assess the risk of invasive species:
(1) it is necessary to calculate two metrics, the ability of IAPS to invade protected areas and
the invasion inequality of IAPS in protected areas; (2) the various effects of different spatial
scales on the results of SDMs should be balanced; and (3) we should determine the regional
scales of IAPS risk for the overall part or grid of a region. The effect of scale on the outcomes
of SDMs still perplexes researchers and land managers and makes it impossible for them
to use data to make reasonable and accurate decisions regarding biological conservation
policies [9,17,19]. Therefore, we have attempted to put forward a method to balance the
results of SDMs across all scales and used the fitted results to determine the risk of IAPS for
regions [50–53]. Despite the limited number of studies conducted on ecological validation
methods such as ecological monitoring and field investigation, there is an urgent need for
innovative assessment approaches and tools to predict invasive species distributions and
assess the invasive risks of species at different spatial scales [54–56].

5. Conclusions

We must emphasize that conservation measures cannot afford to wait until there
is enough information available on IAPS. This study provides a good example of the
application of SDMs to biological conservation and ecological risk assessment. First, we
attached importance to the selection of the resolution (2.5, 5.0, 10.0, and 30.0 arcminutes)
because these four resolutions have been widely used in studies using SDMs around the
world. Hence, we used the method of our study to select the appropriate scale as the input
of SDMs. Second, we computed two indicators: the potential of IAPS to invade protected
areas and the invasion inequality of IAPS in protected areas. Third, the various impacts of
different spatial scales on the results of SDMs should be balanced. The effect of scale on
the results of SDMs still perplexes researchers and land managers and keeps them from
using data to make reasonable and accurate decisions regarding biological conservation
policies. Finally, we hope that future research will expand on the application of SDMs
to provide actionable recommendations for the risk evaluation of invasive species under
climate change.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/app122111108/s1: Table S1: Occurrence records of IAPS; Table S2:
The potential of IAPS to invade protected areas and the invasion inequality of IAPS for protected areas.
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