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Abstract: In this paper, an improved self-organizing fuzzy neural network (SOFNN-CA) based
on a clustering algorithm is proposed for nonlinear systems modeling in industrial processes. In
order to reduce training time and increase training speed, we combine offline learning and online
identification. The unsupervised clustering algorithm is used to generate the initial centers of the
network in the offline learning phase, and, in the self-organizing phase of the system, the Mahalanobis
distance (MD) index and error criterion are adopted to add neurons to learn new features. A new
density potential index (DPI) combined with neuron local field potential (LFP) is designed to adjust
the neuron width, which further improves the network generalization. The similarity index calculated
by the Gaussian error function is used to merge neurons to reduce redundancy. Meanwhile, the
convergence of SOFNN-CA in the case of structural self-organization is demonstrated. Simulations
and experiments results show that the proposed SOFNN-CA has a more desirable modeling accuracy
and convergence speed compared with SOFNN-ALA and SOFNN-AGA.

Keywords: self-organizing fuzzy neural networks (SOFNN); nonlinear system modeling;
Mahalanobis distance; density potential index

1. Introduction

Nonlinear system modeling is a frequently encountered problem in industrial pro-
cesses. Since most systems are nonlinear in nature, control models based on linear systems
can no longer meet the needs of industrial control, so numerous scholars have conducted
extensive and in-depth research on nonlinear systems modeling [1–3]. The methods used
for nonlinear system modeling mainly include first-principles modeling, data-driven mod-
eling, and gray-box modeling [4]. Among them, data-driven modeling mainly establishes a
mathematical regression model based on the measured data, and it is the most commonly
used at present. Furthermore, many modeling methods based on data-driven principles are
proposed, such as a fuzzy neural network, support vector regression, an extreme learning
machine, an error correction algorithm [5], etc. Akhtar et al. [6] used fuzzy inference to
predict the average monthly power generation, and their results can be used in microgrid
and smart grid applications. Czarnowski et al. [7] proposed similarity and fuzzy c-mean
clustering based on neural network structure and verified its effectiveness. Wilamowski
et al. [5] trained neural networks with an extreme learning machine and an error correction
algorithm and conducted a comparative study. At the same time, how to improve the
real-time ability and generalization of system modeling is still the focus of current research.

Fuzzy neural networks have been widely used in industrial processes due to their char-
acteristics such as interpretability and fast convergence. Zhou et al. [8] developed a hierar-
chical pruning scheme to implement a compact wastewater treatment model (SOFNN-HPS),
with a longer hyperparameter table, so only the same center neurons can be merged. Gho-
lami et al. [9] developed the co-active neuro-fuzzy inference system (CANFIS) to predict soil
splash erosion in the Tarar Basin in northern Iran and achieved good performance. A fuzzy
neural network is a hybrid approach that combines the semantic transparency of fuzzy
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rules with the learning ability of neural networks. In practical applications, two important
problems to be solved are structure identification and parameter estimation [10]. Structure
identification needs to determine the size of the fuzzy rules, and parameter estimation
needs to determine the parameters of the fuzzy rules that make the system reliable.

The structure identification of FNN is divided into offline or online. Offline recogni-
tion updates fuzzy rules and parameters based on the whole training set, and generally
uses expert knowledge and clustering algorithms to generate suitable fuzzy rules. There
are many algorithms for neural network structure initialization, such as fuzzy c-means
clustering, k-nearest neighbor clustering, density-based spatial clustering, and agglom-
erative clustering. However, current research often develops self-organizing algorithms
for online identification and ignores the role of offline identification in the early stages of
system modeling.

Online recognition means training and updating the weight parameters based on each
sample that comes in real time, which satisfies the requirements of online control in industry.
Online identification commonly uses self-organizing methods to adjust the number of
neurons through a series of structural identification indexes. For example, Wu et al. [11,12]
proposed that the dynamic fuzzy neural network (D-FNN) and its enhanced version of
the generalized dynamic fuzzy neural network (GD-FNN) can be used for online structure
identification and parameter optimization, but the generalization performance of the
system is poor. Han et al. [13] used the relative importance index of each rule to achieve the
self-organization of FNN and [14] used the information theoretic approach to design fuzzy
rules by dividing fuzzy rules with high peak intensity into new rules and branching fuzzy
rules with small relative mutual information (SOFNN-ACA). However, in the initial stage
of online training, it takes a longer time to identify the appropriate result due to the absence
of a suitable cluster center, which undoubtedly increases the response time of the system.
Therefore, some scholars use deep learning method to initialize the sample and then feed
it into a self-organizing fuzzy neural network for learning; for example, Wang et al. [15]
designed a self-growing algorithm based on incremental deep pre-training (IDPT) to extract
effective features and use them as input to SOFNN, which achieves the extraction of deep
features from the original data and effectively speeds up the training. Considering the
characteristics of offline identification and online identification and in order to improve
the training efficiency and rate, this paper adopts the clustering algorithm to initialize the
training data.

Self-organizing fuzzy neural networks are a type of evolutionary fuzzy system, and
the types of evolutionary fuzzy systems and current research results have been described
in detail in [16,17]. According to different structural divisions, evolutionary fuzzy systems
include Mamdani fuzzy systems, Takagi–Sugeno (TS) fuzzy systems, Type-2 fuzzy systems,
etc., which are widely used in clustering, regression, identification, and classification.
SOFNN-CA mainly considers that the pre-training of the network by offline learning can
effectively improve the performance of SOFNN, and, at the same time, for the evolution
method of SOFNN, we propose the neuron width adjustment criterion based on the index of
neuron activation intensity and density, which can improve the generalization performance
of the network.

The main methods for parameter estimation of fuzzy neural networks are the evolu-
tionary method, gradient descent method, and second order algorithm. Among them, the
evolutionary method has the advantages of good effect and moderate structure. Lin et al. [18]
trained a FNN with the genetic algorithm and particle swarm optimization (GA-PSO) to
design an air-quality-prediction system. Leng et al. [19] used the genetic algorithm to
optimize the parameters of SOFNN (GA-SOFNN), but computational cost is an issue to con-
sider due to its evolutionary learning approach. Although the gradient descent algorithm
has the advantage of simple organization, it may fall into local minima. Han et al. [10]
improved the gradient descent method and designed a gradient descent algorithm with
an adaptive learning rate to update the parameters (SOFNN-AGA). The second-order
algorithm is a trust domain method to fine-tune the parameters within a certain range,
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which has the advantages of second-order convergence and fast convergence speed, so
it is widely used. Zhou et al. [20] proposed an adaptive learning algorithm to update
the SOFNN parameters (SOFNN-ALA), which can effectively improve the generalization
ability. In addition, Lughofer [21] proposed to update the evolving fuzzy system based on
a more robust recursive weighted total least squares (RWTLS) algorithm and compare it
with the recursive fuzzily weighted least squares (RFWLS) algorithm, which can effectively
suppress noise and improve accuracy; however, because the algorithm is an analytical
solution parameter algorithm, it is not suitable for adjusting the center and width of neu-
rons and takes a long time for a single operation. Yu et al. [22] designed an improved LM
algorithm that can reduce the computational effort and, thus, improve the computational
speed, which was applied in [8,20,23]. Since the LM algorithm combines the advantages of
gradient descent and the Gaussian Newton method with quick convergence, in this paper
we use the adaptive LM algorithm to optimize the antecedent and consequent parameters
of FNN.

Based on the above analysis, in the design of SOFNN-CA, a simple structured initial
model is firstly generated by the k-means clustering algorithm. The model is pre-trained
using clustering algorithms, which saves time and speeds up training in the subsequent
online training. A Mahalanobis distance index is used in the self-organization phase to
increase the neurons and reduce the computational effort. A density potential indicator is
proposed to realize the adaptive adjustment of neuron width according to the neuron-firing
characteristics. Finally, we decide whether to merge neurons according to the similarity
index between neurons and then obtain a network with compact structure and excellent
generalization performance.

The organization of the remaining papers is as follows: Section 2 briefly introduces
the foundations of offline clustering and FNN. Section 3 describes in detail the new
self-organization mechanism and parameter update method of SOFNN-CA. A proof for
SOFNN-CA convergence is given. Section 4 provides an experimental validation of the
nonlinear system modeling capability of SOFNN-CA, which has advantages in comparison
with the other existing methods in terms of learning speed and modeling accuracy. Finally,
Section 5 gives the conclusion.

2. Preliminary Knowledge
2.1. K-Means Clustering Algorithm

K-means clustering is an unsupervised learning algorithm [24], and it is used for
offline learning prior to self-organized learning. This algorithm randomly generates q
cluster centers in the initial state and then calculates the distance from each point in the
data to the q centroids using the Euclidean distance in Equation (1).

dist(xi, cj) =

√√√√ k

∑
t=1

(xit − cit)
2, i = 1, 2, . . . , n, j = 1, 2, . . . q, (1)

where x = {x1, x2, x3, xn} is the total of n offline training data samples, and c =
{

c1, c2, c3, . . . , cq
}

is q randomly generated clustering centers.
Assign each sample to the cluster with the smallest Euclidean distance from the center

and, when all points have been assigned, recalculate the center of that cluster according to
Equation (2),

Cl =

∑
Xi∈Sl

Xi

|Sl |
, i = 1, 2, . . . , |Sl |; l = 1, 2, . . . , q, (2)

where Cl is the updated cluster center, q is the number of clusters, |Sl | is the number of
objects in the lth cluster, and Xi is the ith sample in the cluster.

Then, the samples are reassigned, and the cluster centroids are updated until the
specified number of iterations is reached. Finally, q cluster centers are obtained and set as
the initial centers of the fuzzy neural network.



Appl. Sci. 2022, 12, 11435 4 of 21

2.2. Fuzzy Neural Network

For nonlinear dynamic systems, the core problem is to fit the mapping relationship
between the input and output variables using a fuzzy neural network, with a mathematical
model that can be described by the mathematical expression Equation (3):

y(t) = f (x(t)), (3)

where x(t) = [x1(t), x2(t), . . . , xk(t)]
T is the input vector at moment t, k is the dimen-

sion of the vector x, y(t) is the output of the system at time t, and f (·) is this unknown
nonlinear system.

To model a multiple-input single-output system, we defined a four-layer fuzzy neural
network model with the structure shown in Figure 1: this neural network can be divided
into input layer, membership function (MF) layer, rule layer, and output layer [25].
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Figure 1. Fuzzy neural network structure diagram.

The input layer: This layer has a total of k neurons, each input neuron represents a
different variable of the system, and the output value of this layer can be expressed as:

ui(t) = xi(t), i = 1, 2, . . . , k, (4)

where ui(t) is the output value of the ith input neuron x(t) = [x1(t), x2(t), . . . , xk(t)]
T at

moment t, and k is the dimension of the input variable determined by the system model.
The MF layer: In this layer, the membership functions are Gaussian functions, which

can effectively improve the generalization. Each membership function neuron is repre-
sented as:

uij(t) = e
−

(xi(t)−cij(t))
2

σ2
ij(t) , j = 1, 2, . . . , r; i = 1, 2, . . . , k, (5)

where uij(t), σij(t), and cij(t) are, respectively, the output value, width value, and center of
the ith dimensional input of the jth neuron, and r is the number of membership functions.
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The rule layer: There are r neurons in this layer. The output value of each rule neuron
is the multiplication of the MF layers. The output value of the jth rule layer neuron can be
expressed as:

vj =
n

∏
i=1

uij(t) = e
−

n
∑

i=1

(xi(t)−cij(t))
2

σ2
ij(t) , i = 1, 2, . . . , k; j = 1, 2, . . . , r, (6)

The obtained output needs to be normalized, as shown in Equation (7):

hj(t) =
vj(t)

r
∑

j=1
vj(t)

=
e
−

n
∑

i=1

(xi(t)−cij(t))
2

σ2
ij(t)

r
∑

j=1
e
−

n
∑

i=1

(xi(t)−cij(t))
2

σ2
ij(t)

, i = 1, 2, . . . , k; j = 1, 2, . . . , r, (7)

where h(t) = [h1(t), h2(t), . . . , hr(t)]
T is the normalized output.

The output layer: In this layer, the values obtained from the previous layer are
summed by the weights to obtain the output result

y(t) = w(t)v(t) =
r

∑
j=1

wj(t)hj(t), (8)

where w(t) = [w1(t), w2(t), . . . , wr(t)] is the vector of weights between the regular layer
neurons and the output neurons at moment t.

3. Implementation of Modeling Methods

The modeling process of SOFNN includes structure initialization, structure identifica-
tion and parameter estimation. A suitable number of FNN neurons can improve the training
speed and generalization ability of the network [8]. Therefore, SOFNN-CA is initialized
by k-means clustering offline learning, and the q centers of the MF layer are obtained after
determining the number of clusters from experience. A self-organization mechanism is
then adopted to add or merge neurons online to obtain a network structure with better
generalization performance. The parameter estimation of SOFNN is optimized online
using an improved LM algorithm, which ensures the convergence of the system model.

3.1. Self-Organizing Mechanism

To ensure the generalizability of the neural network, new features of the input samples
need to be learned online. We examined the Mahalanobis distance of the new one from the
current network center, and if the Mahalanobis distance from the nearest neuron is greater
than the empirical value we set, it means that the sample is a new sample. We need to learn
its features, add it as a new center, and identify parameters.

Recent neurological research has shown that neuronal proliferation, migration, and
differentiation are not entirely driven by genetic programs. Both in the early and adult
nervous system, the intensity of neuronal activity and the density of synapses established
around neurons respond reflect their growth and differentiation to some extent [23,26].
Based on this principle, the neuronal activation intensity index and the density potential
index are proposed to adjust the neuronal width and number in this paper.

During the training of the network, if the similarity between two neurons is high,
it indicates that there is a redundancy of neurons, and they should be merged. As two
important parts of the self-organization method, the growth phase and the merging phase
of the design structure are described as follows.
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3.1.1. Neuronal Growth

Unlike the Euclidean distance, the Mahalanobis distance can fully take into account
the width of neurons when calculating multidimensional data points. The Mahalanobis
distance index first rotates the variables according to the principal components to make
the dimensions independent of each other and then normalizes, so that the dimensions are
jointly distributed. Using the covariance matrix can make the calculation results not be
affected by the correlation between dimensions and variables, which can provide a more
reasonable metric for calculating the distance between the sample and the central neuron.
The Euclidean distance can be:

dis(xp, cj) =

√√√√ k

∑
t=1

(xpt − cjt)
2. (9)

Lughofer et al. [27] developed a generalized intelligent evolutionary fuzzy system
that uses the non-axial parallel rule of the multivariate Gaussian kernel to better cover
clustered samples, calculates the Mahalanobis distance between the input sample and the
Gaussian center in the regular evolution stage, and adds new Gaussian neurons according
to the rules if the threshold is exceeded. Similar to [27], if the sample has too large a
Mahalanobis distance for the current neuron, it means that the influence range of the
current center is too small, so this sample needs to be subjected to feature extraction. The
distance factor between the input vector xp = [x1

p, x2
p, . . . , xk

p]
T

of the pth observation and

the center cj = [c1j, c2j, . . . , ckj]
T of the jth affiliation function can be defined as [28]:

mdj(xp) =
√
(xp − cj)

TS−1
j (xp − cj), j = 1, 2, . . . , r, (10)

Sj(Xp) = diag(σ2
1j(x1

p), . . . , σ2
rj(xr

p)), (11)

where σj(Xk) and σij(Xij
k) are the dynamic width vector of the ith dimension in the jth

neuron of the kth observation and its dynamic width, respectively.
Calculate the marker of the smallest Mahalanobis distance from each center and the

root-mean-square error (RMSE):

J = arg min
1≤j≤r

(mdj(Xp)), (12)

ep = ŷp − yp, (13)

RMSEi =

√√√√ 1
p

p

∑
i=1

ei. (14)

Unlike the evolutionary method in [27], SOFNN-CA uses error criteria to evaluate
the approximation of the entire system, and, if the error decreases or does not change,
the sample can be well-estimated, so neurons are added only when neither the error
criterion RMSE nor the Mahalanobis distance criterion are met:

RMSEi > RMSEi−1 and mdj(Xp) > mdth. (15)

This indicates that the sample has new features to learn and then adds the kth sample
to the network as a new MF neuron.

cj+1 = Xp, σj+1 = rand(0, 1), wj+1 =
ej(t)

hj+1(t)
, (16)

where σj+1 is a random number between 0 and 1.
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3.1.2. Adjustment of Neuron Width

Neuronal activity is an important factor in the construction of neural network struc-
tures, and their local field potential (LFP) is used as the indicators for the construction of
new neurons. In [20,23], the mathematical model of LFP is:

V(r) =
1

4πτ
× Io

|r− ro|
. (17)

where V(r) is the extracellular potential at position r in the extracellular space, Io is the
current source, τ is a constant value representing the conductivity, and |r− ro| is the
absolute distance between r and the current source position ro.

From Equation (17), it is known that when the sample is far from the neuron, the local
field potential value of the sample is smaller, so the activation strength (AS) of the sample
on the neuron is defined as

ASi =
(xi − ci,J)

2

σ2
i,J

, i = 1, 2, . . . , (18)

where i is the dimension of the input sample, J is the number of center columns closest to
the sample, and σi,J is the width of the neuron.

According to Figure 2, the activation strength of neuron decays as the distance of the
sample from the center increases. When the value of ASi as in Equation (19) is less than the
minimum activation strength we set, and, here, the activation strength threshold is 0.2,

ASi < ASth. (19)
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The center is not well-activated by the sample, and the ith dimensional generalization
performance of the neuron is not good. Therefore, we expand the neuron width of the
current center to improve its generalization, and the width growth parameter ε is set to 0.01

σi,J = (1 + ε)× σi. (20)

A large number of samples are gathered around an effective center. As the training
samples enter, there is an overlap of samples [29], as shown in Figure 3. There is an overlap
of samples attributed to centers A and B. Ref. [8] showed that the width of the MF neurons
has a significant effect on the generalization performance of the system. If the width is too
large, the MF neurons will have a large amount of overlap and will give a value close to
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1 for the different input systems. Since the number of samples around neurons A and B
differs, the activation strength of each sample for a neuron is also inversely proportional
to the distance between the neurons. To evaluate the generalization properties of the MF
neurons, the neuron density potential is defined as:

density_potJ =

p
∑

k=1
m

√
∏

i=1,2,...,m
ASi

P
, (21)

where the density potential energy increases or decreases with the number of neurons, and
J denotes the nearest neuron marker to the sample.
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If the density potential of a neuron is greater than the threshold we set, it means that
the width of that central neuron can be appropriately converged in that neuron sample set
to reduce redundancy. The density threshold is set according to the experiment, and the
width convergence parameter δ is set to 0.01

density_potJ ≥ den_th, (22)

σJ = (1− δ)× σ_orJ , (23)

where σ_orJ is the original width.

3.1.3. Neuron Deletion

According to the above analysis, the density potential energy can effectively reflect
the activity of a neuron. If the density potential energy of a neuron is low, it proves that the
center of the neuron is not a centroid with high density characteristics. Finding the neuron
with the lowest density potential energy,

g = arg min
0≤i≤m

density_poti, (24)

If the density potential does not satisfy the threshold, a pruning of the neuron is
required, and the result is as follows:

density_potg < Ith, (25)

delete cg, σg, wg, density_potg. (26)
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The threshold value is mainly determined by experience, and, here, we set the thresh-
old value to 1.

3.1.4. Merging of Network-Rule Neurons

After completing the adjustment of neuron width or updating the parameters, some-
times one or more pairs of neurons become highly similar. In order to obtain a highly com-
pact model and avoid overfitting, a similarity calculation is required. Lughofer et al. [30]
developed two methods of merging rules to eliminate local redundancy; the first is to
merge the overcoincident clusters in the clustering space, and the other is to calculate the
projection overlap of fuzzy sets in different dimensions, to merge any similar fuzzy sets.
We belong to the second method, which calculates the similarity index of different input
dimensions separately, so only the similarity index and the largest pair of neurons in all
input dimensions will be merged. The similarity is calculated, mainly referring to the
method in [31,32], where the ratio of the intersection and concatenation between a pair of
neurons is defined as the similarity:

S(A, B) =

n
∑

i=1
M(Ai ∩ Bi)

n
∑

i=1
M(Ai ∪ Bi)

, (27)

where S(A, B) represents the similarity between A and B fuzzy set, and Equation (27)
indicates the intersection of A and B, rather than the concatenation of A and B.

As shown in Figure 4, Gaussian function A(x) intersects with Gaussian function B(x)
at points X1 and X2, and their centers are C(a) and C(b), respectively. The intersection of A
and B is the area where the two Gaussian functions intersect:

M(Ai ∩ Bi) =
∫ bi

ai
µAi∩Bi (xi)dxi

=
∫ X1

ai
µAi (xi)dxi

+
∫ X2

X1
µBi (xi)dxi

∫ bi
X2

µAi (xi)dxi,

(28)

M(Ai ∪ Bi) =
∫ bi

ai
µAi∪Bi (xi)dxi

=
∫ X1

ai
µBi (xi)dxi

+
∫ X2

X1
µAi (xi)dxi

∫ bi
X2

µBi (xi)dxi,

(29)
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According to [31], the integral item
∫ b

a µA(x)dx with Gaussian function µa(x) can be
calculated by the Gaussian error function, thus improving the computational efficiency:

∫ b

a
µA(x)dx =

σA
√

π

2

[
er f (

b− cA
σA

)− er f (
a− cA

σA
)

]
, (30)

er f (x) = 1− 1

(1 + a1x + a2x2 + a3x3 + a4x4)
4 , x ≥ 0, (31)

where a1 = 0.278393, a2 = 0.278393, a3 = 0.278393, and a4 = 0.278393.
Calculate the similarity between each center and find the maximum value,

Sqw = arg max
0≤i,j≤m

Sij, (32)

where q and w are the labels of similar neurons.
If the similarity of a pair of neurons is larger than the threshold, it means that there is

a redundancy of centers, and we merge them into one with the number of neurons minus
one, as shown in Figure 5, merging two neurons into one.

Sqw > Sth. (33)
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The merged neuron is the mean value of the original neuron:

cnew =
(cq + cW)

2
, (34)

σnew =
(σq + σW)

2
, (35)

wnew =
(wq + wW)

2
, (36)

density_potnew =
(density_potq + density_potW)

2
. (37)

3.2. Adaptive Second-Order Learning Algorithm

Currently, first-order optimization algorithms such as the error back-propagation
(EBP) algorithm in [33] are widely used for parameter learning, but EBP tends to fall into
the local minimum when dealing with large-scale computing problems. In order to improve
the system performance, in this paper, we use the improved second-order LM algorithm
proposed in [34] to implement parameter updates, combining it with the adaptive learning
rate in [20], which can further speed up the convergence rate.
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Each time a self-organizing operation is performed on a fuzzy neural network, the
parameters need to be adjusted using a second-order algorithm,

ψ(t + 1) = ψ(t)− (H(t) + λ(t)I(t))−1Ω(t). (38)

where H is the quasi-Hessian matrix, λ(t) is the learning coefficient, I is an identity matrix,
Ω denotes the gradient vector, and ψ denotes all parameters:

Ψ(t) = [c1(t), c2(t), . . . , cr(t), σ1(t), σ2(t), . . . , σr(t), ω1(t), ω2(t), . . . , ωr(t)]. (39)

The adaptive learning coefficients are determined as,

λ(t) = ξ‖ep‖+ (1− ξ)‖Ω(t)‖, (40)

where is ξ a predefined constant, which can be set to 0.5 according to [17].
To reduce the computational complexity, the quasi-Hessian matrix and the gradient

vector are computed as:

H(t) =
p

∑
p=1

hp(t), (41)

Ω(t) =
P

∑
p=1

gp(t), (42)

where the sub quasi-Hessian matrix and the sub gradient vector are calculated as:

hp(t) = jp
T(t)jp(t), (43)

gp(t) = jp
T(t)ep(t), (44)

where the error vector ep(t) can be obtained from Equation (13), and the Jacobi matrix jp(t)
can be calculated as:

jp =
[

∂ep
∂c11

, ∂ep
∂c12

, . . . , ∂ep
∂c1N

, . . . , ∂ep
∂clN

, ∂ep
∂σ1

, . . . , ∂ep
∂σl

, ∂ep
∂ω1

, . . . , ∂ep
∂ωl

]
, (45)

where l is the number of rule layer, and N is the dimension of the input sample. Using the
differential chain rule, the elements of the rows of the Jacobi matrix in Equation (45) can be
rewritten as:

∂ep

∂clN
= −

∂ŷp

∂clN
= −

2ωlθl(xp)(xpN − clN)

σl
(46)

∂ep

∂σl
= −

∂ŷp

∂σl
= −

2ωlθl(xp)‖xp − cl‖2

σ3
l

(47)

∂ep

∂ωl
= −

∂ŷp

∂ωl
= −θl(xp) (48)

Algorithm 1 summarizes the specific implementation process of the network, including
structural self-organization and parameter adjustment. Its flowchart is shown in Figure 6.
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Algorithm 1: Pseudocodes for constructing SOFNN-CA network

Input: The input data in the training set are generally four inputs.
Output: Single output datum in training set.

1. Set a parameter for the number of clusters: ma_addth, e_min, den_th, and S_th
2. Using k-means clustering Formula (2) to initialize the network center
3. for p = 1 to n do
4. Calculate the error of the sample according to (13)
5. Update the parameters of the current network according to (38)
6. for k = 1 to n do
7. Calculate the error of the sample according to (13)
8. Calculate the RMSE according to (14)
9. end
10. if mod(p,5) = 0
11. if RMSE(k) > RMSE(k-1) and md_ind < md_addth
12. Add a new neuron according to (16)
13. end
14. Calculate neuron impact intensity and density potential energy according to (18), (21)
15. if AS < e_min
16. Updata width according to (20)
17. end
18. if den_pot > den_th
19. Updata width according to (23)
20. end
21. Calculate the Similarity index according to (27)–(31)
22. if S > S_th
23. Merge related neurons according to (34)–(37)
24. end
25. end
26. end
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3.3. Convergence Analysis

In order to ensure proper operation in industrial applications, this section gives the
convergence analysis of SOFNN-CA, which is mainly divided into a structure fixation
phase and a structure dynamic-adjustment phase.

Assume that at moment t, the current error e(t) is:

e(t) = ŷt − yt. (49)

Define the Lyapunov function as:

V(Θ(t)) =
1
2

eT(t)e(t), (50)

Theorem 1. There are fixed r neurons in the rule layer of SOFNN-CA. The parameters of
SOFNN-CA are updated by (38), if

‖∆Θ(t)‖ ≤ min
{
‖∆Θ(t− 1)‖, ‖Ω(∆Θ(t− 1))‖

‖Ψ(∆Θ(t− 1))‖

}
, (51)

then the convergence of SOFNN-CA can be maintained, and there is e(t)→0 as t→+∞.

3.3.1. Under a Fixed Structure

With Equation (38) updating the parameters, the deviation of the Lyapunov function
at this point is

∆V(Θ(t)) = V(Θ(t + 1))−V(Θ(t))
= ∇ET(Θ(t))∆Θ(t) + 1

2 ∆ΘT(t)∇2E(Θ(t))∆Θ(t),
(52)

where∇ET(Θ(t)) and∇2ET(Θ(t)) are the gradient vector and the second-order derivative
matrix, respectively. According to Equation (52), the variation of the Lyapunov function
can be rewritten as

∆V(Θ(t)) = −1
2

∆ΘT(t)∇2E(Θ(t))∆Θ(t). (53)

When Equation (51) is satisfied, since ∇2ET(Θ(t)) is positive definite, we can obtain
∆V(Θ(t)) < 0. Therefore,

lim
t→+∞

e(t) = 0. (54)

So the SOFNN-CA is theoretically convergent.

3.3.2. Structural Dynamic Adjustment Phase

When the neuron increase mechanism is satisfied, a new neuron is added, at which
point the new neuron is inserted into the regular layer. The MF layer neurons are increased
from r to r+1, the approximation error of the neuron is er+1(t), and the width update

formula in Equation (16) wj+1 =
ej(t)

hj+1(t)
is moved into Equation (55):

er+1(t) = yp(t)−
r+1
∑

j=1
wj(t)hj(t)

= yp(t)−
(

r
∑

j=1
wj(t)hj(t) + wr+1(t)hr+1(t)

)
= ej(t)−

ej(t)
hj+1(t)

hj+1(t)

= 0.

(55)

Equation (55) shows that with the increase in time, when new neurons are inserted
into the hidden layer, the setting of the weight parameter compensates for the output error
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of the network, and the adjusted error will not increase, which ensures the convergence of
the system and can improve the training speed of the algorithm to a certain extent.

If the merging mechanism of neurons is satisfied, similar neurons will be merged.
At this time, the number of MF layer neurons is r − 1, and the output error of the neural
network is er−1(t), using Equation (36) to obtain:

êr−1(t) = yp(t)−
r
∑

j=1,j 6=w
wj(t)hj(t)

= yp(t)−
(

r
∑

j=1,j 6=q,w
wj(t)hj(t) + wq(t)hq(t)

)

= yp(t)−
(

r
∑

j=1,j 6=q,w
wj(t)hj(t) + 1

2 wq(t)hq(t)+ 1
2 ww(t)hq(t)

)
= er−1(t) +

(
1
2 wq(t)hq(t) + ww(t)hw(t)− 1

2 ww(t)hq(t)
)

< 2er−1(t)

(56)

Since, after the merge operation, the error will not be greater than twice the original
error, which varies within a reasonable range, and, as the iterative process progresses, the
merged neuron no longer occurs, e(t)→0, the convergence of SOFNN-CA can be guaranteed.

4. Simulation Analysis

First, the proposed SOFNN-CA network is evaluated by chaotic system and dynamic
nonlinear system identifications, and then the tested network is applied to two real predic-
tion problems to provide an overall assessment of the network performance.

All simulations were written in MATLAB R2016b and run on a PC with a clock speed
of 2.10 GHZ and 8 GB of memory in a Microsoft Windows 7 environment, and the root-
mean-square error (RMSE) and average percentage error (APE) are introduced in this
study [35],

APE(t) =
1
P

P

∑
p=1

|yp
d(t)− yp(t)|
|yp

d(t)|
× 100%, (57)

where P is the number of test data.

4.1. Mackey–Glass Time-Series Forecasting

In the first benchmark test, we examine SOFNN-CA using chaotic Mackey–Glass
time-series prediction [36]. This time series is generated by the differential delay equation:

x(t + 1) = (1− a)x(t) +
bx(t− τ)

1 + x10(t− τ)
(58)

where a = 0.1, b = 0.2, τ = 17, and x(0) = 1.2 in the initial condition, according to the
description in the literature [25], and the prediction model can be described as follows:

x(t + Ĥ) = f (x(t), x(t− 6), x(t− 12), x(t− 18)) (59)

The 500 data pairs from t = 1 to 500 are selected as the training data set, and the
remaining data pairs within the interval [501, 1000] are used as the test data set. In this
experiment, we take k-means algorithm to generate six clusters, on which self-organized
learning is performed. The parameters of the network are obtained by an empirical
method, and the growth threshold ma_addth is set to 0.6, the width adjustment thresholds
e_min and den_th are set to 0.2 and 10, respectively, and the merging threshold S_th is
7. The simulation results are shown in Figures 7 and 8. The comparison algorithms use
the same training and test samples listed in Table 1, and the results are the means of
multiple tests.
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Table 1. Comparison results of different methods for predicting Mackey–Glass Time-Series.

Method Rule Neurons Testing RMSE Testing APE CPU Times (s)

SOFNN-CA 5 0.0058 0.0055 6.62
SOFNN-ALA [20] 6 0.0066 0.0058 7.24
SOFNN-AGA [10] 6 0.0119 0.0076 21.20
SOFNN-ACA [14] 7 0.0201 0.0076 27.33
SOFNN-GA [19] 7 0.0132 0.0094 168.35

FNN-EBP [37] 8 0.0142 0.0131 37.05

Figure 7 shows the change of neurons as the number of iterations increases. The num-
ber of neurons first increases to 11 and then gradually decreases to 5, resulting from a
self-organizing mechanism that learns the features of new samples and then merges similar
neurons. From the curve of training the RMSE in Figure 8a, it can be seen that there are
some peaks in the RMSE of SOFNN-CA, which are caused by merging neurons. Figure 8b
shows that the method is effective. Furthermore, Table 1 lists the performance comparison
details of SOFNN-CA and its competitors. It can be seen that the proposed SOFNN-CA
obtained the best tested RMSE (0.0058) and the best tested APE (0.0055). Due to the neu-
ronal merging mechanism, SOFNN-CA has the most compact network structure, and its
performance is better than SOFNN-ALA, SOFNN-AGA, and SOFNN-ACA. Owing to the
inherent drawbacks of the adopted EBP-based parameter optimization algorithm, although
SOFNN-AGA, SOFNN-ACA, and FNN-EBP can achieve better test results, the training time
is longer because more iterations are required to achieve the required accuracy. SOFNN-GA
has the longest training time using the genetic algorithm. The results in Table 1 show that
the SOFNN-CA proposed in this paper can obtain high prediction performance with a
compact network structure.
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4.2. Identification of Nonlinear Systems

In this example, the proposed SOFNN-CA is applied to identify dynamic systems
with the following input delays [14]:

y(t + 1) = 0.72y(t) + 0.025y(t− 1)u1(t− 1) + 0.01u2
1(t− 2) + 0.2u1(t− 3). (60)

The initial state is y(1) = y(2) = y(3) = y(4) = 0, and u(t) = 1.05× sin (t/45).
Four variables y(t), y(t− 1), u1(t− 1), and u1(t− 2) are selected as input samples, and e is
the output samples, with a total of 1000 sets of data for training.The number of neurons after
initialization using the k-means algorithm is six, and the thresholds are md-addth = 0.15,
e-min = 0.2, den-th = 5, and S-th = 8, and the expected error e is 0.0001. After the training
process, the following signal u(t) is used to test the performance of the proposed SOFNN-
CA, in which there are 1000 sets of training samples. The comparison algorithms use
the same training and test samples listed in Table 2, and the results are the means of
multiple tests.

u(t) =


sin (πt/25) t < 250
1.0 250 ≤ t < 500
−1.0 500 ≤ t < 750
0.3 sin (πt/25) + 0.1 sin (πt/32) + 0.6 sin (πt/10) 750 ≤ y < 1000

. (61)

Table 2. Comparison results of different methods for identifying nonlinear system.

Method Rule Neurons Testing RMSE Testing APE CPU Times (s)

SOFNN-CA 8 0.0171 0.0490 5.11
SOFNN-ALA [20] 6 0.0297 0.0954 3.73
SOFNN-AGA [10] 6 0.0090 0.0464 13.10
RSEFNN-LF [38] 4 1 0.0280 1 0.0652 1 35.31 1

FWNN [39] 5 1 0.0201 1 0.0904 1 37.72 1

1 The results are listed in the original papers.

The test results are shown in Figure 9.
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Figure 9d shows the test error of the neural network, which varies slightly with
different input functions. Since the input data is a dynamically changing function, the error
is larger in the function segmentation region than in other regions.

It is shown in Table 2 that SOFNN-CA outperforms SOFNN-ALA in test accuracy,
but increases in the number of neurons and training time. Due to the adaptive gradient
descent algorithm, SOFNN-AGA requires more iterations under the same error standard as
SOFNN-CA, and the training time is longer, while the training accuracy is almost the same.

Compared to RSEFNN-LF and FWNN algorithms, RSEFNN-LF uses an auto-evolutionary
method to generate fuzzy rules online and uses the gradient descent algorithm to update
the parameters, which builds a small number of neurons but is inferior to the SOFNN-CA
algorithm in accuracy and training time. FWNN added a wavelet function to the subsequent
part of the rule, which achieved better experimental results, but the performance was
slightly worse than SOFNN-CA. Therefore, the present algorithm has good performance in
the dynamic recognition of nonlinear systems compared with the other existing algorithms.

4.3. Combined Cycle Power-Plant Power-Output Forecast

The above two tests are tested based on generic benchmark experiments, and in this
experiment, we use data from a combined-cycle power plant [40] for testing. The data
were obtained from the UCI machine learning dataset with temperature (T), ambient
pressure (AP), relative humidity (RH), and exhaust vacuum (EV) as the input variables
and electrical energy output (EEO) as the output variable. After removing the missing
values, 850 samples are selected from the dataset, of which the first 800 samples are used
for training, and the remaining 50 are used for testing. Since the input and output data
have a wide range of values, they need to be normalized. The parameters of SOFNN-CA in
this example are empirically set as follows: md-addth is 0.2, e-min is 0.2, den-th is 10, and
S-th is 8. The training results are shown in Figure 10.
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As shown in Figure 10a, the number of neurons is six in the initial condition, and
SOFNN-CA increases and merges neurons under the action of a self-organization mech-
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anism, to finally obtain a compact network structure of three neurons. The k-means
initialization algorithm, as shown in Figure 10b, generated six clusters with different colors.
The final test results are shown in Figure 10e, with errors in the [−10 10] interval.

The performance comparison between SOFNN-CA and the other algorithms is shown
in Table 3. The proposed SOFNN-CA implements the simplest network structure (3 fuzzy
rules) and the best test RMSE (3.6034). Among all the competitors, SOFNN-HPS adopts
a hierarchical pruning self-organization method and has a good test RMSE (3.7469), but
the number of neurons is twice that of SOFNN-CA due to the low efficiency of neuronal
merging. DG-FNN and D-FNN have more fuzzy rules and a higher training accuracy,
but the test accuracy becomes low, and the over-fitting phenomenon exists. Due to more
parameters needing to be set, the test RMSE of GD-FNN is higher than that of D-FNN.

Table 3. Comparison of different methods under M-G experiment.

Method Rule Neurons Training RMSE Testing RMSE CPU Times (s)

SOFNN-CA 3 4.1616 3.6034 11.26
SOFNN-HPS [8] 7 4.0718 3.7469 -

GEBF-OSFNN [41] 9 1 4.2483 1 3.8327 1 -
GD-FNN [11] 15 1 3.8945 1 4.8510 1 -
D-FNN [12] 19 1 3.7485 1 4.2545 1 -

1 The results are listed in the original papers.

Compared with GEBF-OSFNN, the proposed SOFNN-CA can obtain better perfor-
mance regarding the number of rules and test accuracy. This indicates that the proposed
self-organization scheme can effectively merge similar fuzzy rules and achieve high gener-
alization of neural networks.

4.4. Prediction of Benzene Levels in Air

In this example, we use the air quality dataset from UCI [42,43]. This dataset contains
responses from gas multisensor devices deployed at urban road sites in Italy with high
levels of Class I pollutants and contains 1232 sets of hourly averaged response instances
from five metal oxide chemical sensor arrays embedded in air quality chemical multisensor
devices. After processing the missing values, we obtained 800 data, using 750 of them for
training and 50 of them for testing. The input samples are carbon monoxide (CO), Non-
Metanic Hydrocarbons (NMHC), Total Nitrogen Oxides (Nox) content, and air temperature
(T) in the air, and the output is benzene (C6H6) content. The parameters of SOFNN-CA are
set as follows: md-addth is 0.2, e-min is 0.2, den-th is 12, and S-th is 12. The experimental
results are shown in Figure 11.

As can be seen from Figure 10a, the initial neurons generated by the clustering algo-
rithm are set to three, and the number of neurons changes more obviously and stabilizes
at the end. Figure 11b shows the RMSE of the training process, while Figure 11c shows
the prediction results; it can be seen that the prediction accuracy is high, and the error is
between [−3 3].

As shown in Table 4, with only three neurons, SOFNN-CA reaches the best test
performance, and the RMSE is 1.0280. At the same time, the test error is smaller than
the training error, indicating that the network has a strong generalization ability, and the
neuron activation intensity index and density index helped to improve the generalization
ability of the network. SOFNN-ALA has a smaller training error during training, but its
generalization is weaker because the test error of the network is larger than the training
error. ATO-RBF uses an error correction algorithm to increase the number of neurons, so
more neurons must be added in order to reduce the error. Therefore, the network is larger,
and its test error is 1.4900 higher than those of SOFNN-CA and SOFNN-ALA. It can be
seen that the algorithm proposed in this paper has a better performance index. In the
experiment of the prediction of benzene content in the air, the prediction can be achieved
with high accuracy, and the practical problems can be solved effectively.
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error plot.

Table 4. Comparison of different methods in benzene-content prediction.

Method Rule Neurons Training RMSE Testing RMSE CPU Times (s)

SOFNN-CA 3 1.2709 1.0280 16.8202
SOFNN-ALA [20] 5 1.1822 1.2481 15.7461

ATO-RBF [44] 18 1.7643 1.4900 -

5. Conclusions

The object of this paper is to improve the real-time ability and generalization of non-
linear system modeling. SOFNN-CA is initialized by the k-means algorithm in the offline
learning phase, which provides the training center parameters for the self-organization
phase. In addition, we propose the MD index, neuron-based DPI, and AS index, which
have low computational complexity and can achieve a fast and efficient self-organization
mechanism. The parameter update adopts the improved adaptive LM algorithm, which has
the advantages of fast convergence and a strong search capability, improving the learning
speed. SOFNN-CA is tested by two benchmark problems and two real-world problems.
The experimental results show that its prediction performance is greatly improved over
the prediction performances of its competitors, where the network structure is more trans-
parent, the training time is shorter, and the test performance is superior. SOFNN-CA can
be applied to the online modeling of dataflow-based nonlinear systems, where the offline
learning stage can be used to extract information from incomplete data.

The shortcoming of this study is that the adaptive setting of the parameter thresholds
cannot be implemented, so the next steps of the study are to implement SOFNN-CA for the
adaptive adjustment of thresholds, apply it to the prediction of ammonia nitrogen content
in sewage treatment plants, and realize practical industrial tests.
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