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Abstract: This paper provides an overview of the different deep convolutional neural network
(DCNNs) architectures that have been investigated in the past years for the generation of synthetic
computed tomography (CT) or pseudo-CT from magnetic resonance (MR). The U-net, the Atrous-net
and the Residual-net architectures were analyzed, implemented and compared. Each network was
implemented using 2D filters and 3D filters with 2D slices and 3D patches respectively as inputs.
Two datasets were used for training and evaluation. The first one is composed by pairs of 3D T1-
weighted MR and Low-dose CT images from the head of 19 healthy women. The second database
contains dual echo Dixon-VIBE MR images and CT images from the pelvis of 13 colorectal and
6 prostate cancer patients. Bone structures in the target anatomy were key in choosing the right deep
learning approach. This work provides a deep explanation of the architectures in order to know
which DCNN fits better each medical application. According to this study, the 3D U-net architecture
would be the best option to generate head pseudo-CTs while the 2D Residual-net provides the most
accurate results for the pelvis anatomy.

Keywords: computed tomography; deep learning; magnetic resonance imaging; neural network;
pseudo-CT

1. Introduction

Computed tomography (CT) provides the photon attenuation information that is
required in positron emission tomography (PET). Therefore, CT has been used for PET
attenuation correction (AC) and for external beam radiation therapy (EBRT) planning since
the appearance of the first PET/CT in 1997 [1]. In recent years, the number of combined
PET/MR scanners has increased among medical centres [2]. Thus, the interest in replacing
the CT scanners with magnetic resonance (MR) imaging has raised since MR provides
greater tissue contrast as well as other complementary information such as perfusion
or diffusion. Additionally, MR decreases the use of ionizing radiation, specially in the
AC for PET imaging. MR Early developments made use of fat and water separation or
other specific MR sequences (i.e., UTE, ZTE) to estimate AC maps [3,4]. However, the AC
maps estimated using MR imaging have wide discrepancies with the AC maps calculated
using the CT [5,6]. The last decade has seen a renewed interest in MR-only workflows
for PET imaging and radiotherapy. This way, several works have proposed the synthesis
of CT volumes from MR images (pseudo-CT) using computer vision techniques. The
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first approaches used traditional image processing and machine learning strategies, such
as segmentation-based methods [7–11], atlas-based methods [12–17] or learning-based
methods [18–20]. These approaches present several disadvantages, such as the need of
an accurate spatial normalization to a template space, the assumption of mostly normal
anatomy, or the problem of accommodating a large amount of training data. These problems
have been solved in the last few years with the advent of new techniques based on Deep
Convolutional Neural Networks (DCNN). The use of DCNNs has also improved the quality
of the results while reducing the time for pseudo-CT synthesis.

According to our knowledge, the first approach that adopted deep learning to generate
a pseudo-CT from an MR scan was presented by [21]. This work proposed a DCNN
that used a U-net architecture [22] performing 2D convolutions. The network received
axial slices from a T1-weighted volume of the head as input, and tried to generate the
corresponding slices from a registered CT scan. Their architecture incorporated unpooling
layers in the up-sampling steps of the U-net and Mean Absolute Error (MAE) as loss
function. Their results were compared to an atlas based method [23], obtaining favorable
results in accuracy and computational time (close to real-time). In contrast, the work of [24]
explored a similar architecture to segment air, bone, and soft tissue instead of generating
the continuous pseudo-CT. They used a set of 3D T1-weighted head volumes as well. In
this case, they incorporated a nearest-neighborhood interpolation in the up-sampling steps
of the U-net. Additionally, as they were classifying instead of regressing, they employed a
multi-class cross-entropy loss metric, which is usually easier to optimize than the L1 or L2
error. The deep learning approach performed better than a Dixon-based approach and took
less than 0.5 min to generate the pseudo-CT segmentation. Several works made use of more
sophisticated network architectures and training pipelines. The work by [25] proposed a
3D neural network with dilated convolutions to avoid the use of pooling operations. They
also explored the advantages of residual connections [26] and auto-context refinement [27].
For training, they employed an adversarial network that tried to differentiate between real
CTs and pseudo-CTs [28]. They used 3D patches from T1 volumes from head and pelvis as
input, and compared their results against traditional methods such as atlas registration,
sparse representation and Random Forest with auto-context. Their method outperformed
all of these traditional methods. A similar approach was proposed by [29], who trained
a 2D DCNN that incorporated the residual blocks from Resnet [26] and an adversarial
strategy [28] for training. More recent works used MR Dixon images as input to the
network, which are the images typically acquired for AC in commercial PET-MR scanners.
Dixon sequences include 4 images: water, fat, in phase and out-of-phase. In addition, the
work by [30] provides better bone depiction than Dixon images by adding a Zero-echo
time MRI volume. They used a 3D U-net architecture with transposed convolutions as
up-sampling layer. In contrast, the work by [31] proposed a 2D U-net architecture with
transposed convolutions as up-sampling layer using only Dixon images. In this case, Dixon-
Vibe images from the Pelvis were utilised as input to the network in order to generate the
corresponding pseudo-CT. Therefore, the input to the network was composed by 4 channels
corresponding to the 4 volumes of the Dixon image. This proposal generated a whole
pseudo-CT volume in around 1 min. All these approaches suggested different network
architectures that were trained with different pipelines and using either 3D patches or 2D
slices as input. Unfortunately, it is hard to assess which approach would perform better in
different situations, as they were tested in different anatomies, with different sequences
and over different subjects due to the lack of a common database to compare their results.

This paper provides an overview of the different DCNN architectures investigated in
the past years for the generation of pseudo-CTs. In order to do this, a simple pipeline with
the MAE as training loss function is proposed. The addition of a more sophisticated loss,
adversarial refinement or a post-processing should improve the results of all architectures
in a similar way for all considered cases. Every architecture reviewed in this paper is tested
with 2D and 3D schemes. On one hand, the 2D versions of the networks use 2D MR slices as
input and employed 2D convolution filters. Thus, the pseudo-CT generated by this scheme
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is composed by slices. On the other hand, the 3D schemes consist in 3D patches from
the MR volumes used as input and 3D convolution filters in the convolution layers. This
scheme generates a pseudo-CT composed by 3D patches. Additionally, different ways of
combining these patches were explored to generate the pseudo-CT through the 3D schemes.
For the evaluation of the different architectures and schemes, two datasets were employed.
The first one contains 3D-T1 MRI volumes of the head, paired with their corresponding
CT scans. The second database contains Dixon-VIBE volumes of the pelvis, paired with
their corresponding CT scans. With these two datasets we aim to explore how the networks
perform with different MR sequences and anatomical distributions.

This paper is divided into 4 sections. The Sections 2.1 and 2.2 gives an overview of
the datasets and the image pre-processing. The Section 2.3 describes the architectures and
depicts the training pipeline for 2D and 3D inputs and filters. The Section 3 shows the
results of the different architectures as a function of the datasets and the schemes. Finally, a
discussion about the findings and conclusions are presented.

2. Materials and Methods
2.1. Databases

In this work, two datasets were used to train and test the different architectures that
are reviewed. The first one (Figure 1) contained MR and CT head pairs from 19 healthy
women (34.96 ± 5.23 y/o). MR images were acquired on a GE Signa HDxt 3.0-T MR
scanner, and imaging was performed using a 3D T1-weighted sequence with a repetition
time of 10.024 ms, echo time of 4.56 ms, inversion time of 600 ms, 1 excitation acquisition
matrix of 288× 288, isotropic 1 mm resolution, and a flip angle of 12◦. Low-dose CT images
were acquired on a Siemens Somatom Sensation 16 CT scanner with a matrix of 512× 512,
resolution of 0.48× 0.48 mm, slice thickness of 0.75 mm, pitch of 0.7 mm, acquisition angle
of 0◦, voltage of 120 kV, and radiation intensity of 200 mA.

Figure 1. Head Data set example.

The second database (Figure 2) contained MR and CT images from the pelvis of
13 colorectal and 6 prostate cancer patients (61.42 ± 10.63 y/o, mean BMI 22.3 ± 2.88,
12 males/8 females). Additionally, images from follow-up visits for 9 of the colorectal
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cancer patients were also included in this study. MR and CT scans were performed on
the same day with an average delay of 66 min. CT images were acquired on a Discovery
PET/CT 710 scanner (GE Healthcare) with a matrix of 512× 512, resolution of 1.37× 1.37
mm, slice thickness of 3.75 mm, pitch of 0.94 mm, acquisition angle of 0, voltage of 120 kV,
and radiation intensity of 150 mA. MR data were acquired on a Biograph mMR scanner
(Siemens Healthineers, Erlangen, Germany). The sequence was a dual echo Dixon-VIBE,
which is the standard image for attenuation correction purposes. Dixon-Vibe acquisitions
are composed by 4 sets of images: water, fat, in-phase and out-of-phase.

Figure 2. Pelvis Data set example.

2.2. Preprocessing

The head database was preprocessed using 3D Slicer built-in modules [32,33]. The
preprocessing pipeline included bias correction using the N4 algorithm, rigid registration to
align the MR-CT patient pairs as well as to align all the patients in the same orientation, and
histogram matching of the grayscale values. Finally, volumes were cropped to 256× 256
slices in the axial direction since it is easier to have a dimension which is a power of 2 in
deep learning applications. This occurs due to the network operations, which half and
double the spatial dimensions of the input. Figure 1 depicts examples of the volumes in
this database.

The preprocesing pipeline of the pelvis dataset was composed by a bias correction
performed using the N4 module in 3D Slicer followed by an intra-subject rigid and non-
rigid registration using SPM8. This step is required because the pelvis is a non-rigid region
and the positioning of the subject was different for the CT and MR acquisitions. The
volumes were resliced and cropped to a fixed FOV of 50× 50× 50 cm with 2× 2× 1 mm
of voxel size to ensure matrix and voxel homogeneity among subjects. This step allows
to prepare the images to be suitable for the DCNN by reslicing the data to 256 voxels
in the axial direction. Figure 2 shows an example of the Dixon-VIBE sequence and the
corresponding CT.

2.3. Architectures

Three architectures inspired in previous works were trained and tested: Atrous-
Net [25], U-Net [31] and Residual-Net [29]. These networks received MR volumes as input
and generate their corresponding pseudo-CT. In the case of the head database, the input was
a one-channel MR T1-weighted volume. In the pelvis database, the input was a four-channel
MR Dixon-VIBE volume containing the water, fat, in-phase and out-of-phase volumes.
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Each architecture described in the following subsections was implemented in two
schemes: (i) using 2D convolution filters, and (ii) using 3D convolution filters. The main
difference between both versions is the shape and size of the input and the number of
parameters in the network. Inputs in the 2D version were axial slices of 256× 256 voxels
with 1 or 4 channels depending on which database was used. Inputs in the 3D versions
were 32× 32× 32 patches with 1 or 4 channels as well depending on the database. The
resulting outputs of the two versions have the same shape and size as the inputs, either a
slice or a 3D patch. The reason of this size difference arises from memory limitations in the
GPU used for training the networks. The 3D convolutions populate much more memory
and, therefore, the input size must be reduced to a patch.

2.3.1. Atrous Net

The Atrous-Net is inspired by the work by [25]. Dilated convolutions—also called
atrous convolutions—are convolutional operations that are performed on non-contiguous
voxels instead of being performed on adjacent voxels. The distance between voxels in a
convolution is called dilation. Therefore, spatial information can be better preserved each
time a filter is applied. This way, the Atrous net performs a succession of convolutions
without pooling to avoid the reduction of the spatial resolution of the feature maps. It uses
dilated convolutions in order to achieve enough receptive field to compute complex features.
Dilated convolutions have been used with quite successful results in other works [34,35].
These convolutions are used as an alternative to the pooling operation to calculate multi-
scale features without reducing the shape of the input. In this work, dilation 1 was used
for the first and last layer and dilation 2 was implemented for all other layers. After
every convolution, a batch normalization and a Rectified Linear Unit (ReLU) as non-linear
activation are applied. Figure 3 shows a scheme of the architecture and the number of
filters used in every convolution. This network performs 10 convolution operations and
has 3.2 and 10.6 million parameters in the 2D and 3D implementations, respectively.

Figure 3. Atrous-Net architecture. The scheme shows the CNN architecture including the atrous
convolutions. The network receives either the four Dixon-VIBE MR sequences of the pelvis or the
T1-weighted image of the brain as input. Then, it outputs a pelvis or a head pseudo-CT, respectively.

2.3.2. U-Net

The U-net architecture is a well-known network that has been used in several pseudo-
CT synthesis works [21,24,30,31]. The U-net architecture is composed by an encoding step
in which several convolutions and pooling operations are applied to extract a hierarchy of
increasingly complex and meaningful features. Then, the features are reconstructed in a
decoding step using up-sampling operations and convolutions to estimate the final output.
In this work, the transposed convolution—also called fractionally strided convolution, was
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implemented as up-sampling operation. The transposed convolution allows the learning
of parameters to perform the up-sampling, and has been previously used for pseudo-CT
generation [31]. In this work, the encoding step is formed by 14 convolutions and 4 max-
pooling operations. In addition, the filters are doubled after every pooling except the last
one due to GPU memory restrictions. In the decoding side, 4 transposed convolutions
and 10 convolutions are performed, with filters halved after every transposed convolution.
An important part of the U-net is the connection between the encoding and decoding
phases, which is known as skip connection. After every max-pooling operation the output
is concatenated with the input of the transposed convolution in the decoding side that has
the same feature size. These connections allow the decoding step to have information from
different scales and feature complexity. After every convolution, a batch normalization
and a ReLU activation are performed. The whole network performs 30 convolutions and
contains 36.4 and 10.9 million parameters in the 2D and 3D implementations, respectively.
Figure 4 depicts a scheme of this architecture.

Figure 4. U-Net architecture. The scheme shows the CNN architecture including the encoder and the
decoder blocks that are linked by skip connections. The encoding part presents strided operations
while the decoding part is composed by transposed convolutions. The network receives either the
four Dixon-VIBE MR sequences of the pelvis or the T1-weighted image of the brain as input. Then, it
outputs a pelvis or a head pseudo-CT, respectively.

2.3.3. Residual Network

The residual network is inspired in the work by [29]. The Residual network is com-
posed by an initial convolution with a 5 × 5 kernel and two convolutions with stride 2 to
reduce the input size. The filters are doubled after these strided convolutions and 9 residual
blocks are applied. Finally, two transposed convolutions are performed to obtain a size
equivalent to the input. The residual block is composed by several convolutions with a
shortcut that adds the input of the block to the output of the last convolution in the block.
Adding layers to the network usually leads to a degradation in the output. Nevertheless,
the use of residual blocks allows for an increase in the number of layers (i.e., the depth
of the network) without degradation [26]. The residual block used in this work is shown
in Figure 5. In all convolutions, a batch normalization is applied followed by the ReLU
activation function. The network has 33 convolutions composed by 16.7 and 50.7 million
parameters in the 2D and 3D implementations, respectively.
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Figure 5. Residual-Net architecture. The scheme shows the CNN architecture including the residual
blocks in between the encoding and the decoding steps. The network receives either the four Dixon-
VIBE MR sequences of the pelvis or the T1-weighted image of the brain as input. Then, it outputs a
pelvis or a head pseudo-CT, respectively.

2.4. Common Details and Training

In order to maintain a common setup between architectures, 32 filters were used in the
first convolution of every architecture. After that, depending on the specific architecture,
the number of filters were doubled or halved. The mini-batch used in all architectures
was 16. The optimizer chosen for training was the Adam optimizer [36] with a learning
rate of 10−3, a β1 of 0.9, a β2 of 0.999 and an ε of 10−8. Adam was chosen because it is
relatively easy to configure for various problems and models. The mean absolute error
(MAE) between the output of the network and the ground truth CT was calculated as loss
function Moreover, the weights in the network were initialized using the method described
by [37] for the ReLU activation. All networks were trained until the loss is stabilised and
no validation set was used because no over-fitting was found in previous experiments.

All the code used in this project was developed using the Tensorflow library. Train-
ing and testing was performed on an Nvidia GeForce RTX 2080 Ti GPU, with 11 GB of
GDDR6 RAM.

2D training details: The 2D networks were trained using axial slices of shape 256× 256
voxels. Slices were randomly rotated as data augmentation technique. All the slices of all
subjects in the training set were randomly shuffled during training, which in total add up
to 4081 slices for the head dataset and 7700 slices for the pelvis dataset. To synthesize the
final pseudo-CT for a subject, each slice was processed in axial order by the network. Then,
the resulting pseudo-CT slices were stacked into a volume.

3D training details: The 3D networks were trained using 3D patches of 32× 32× 32 voxels.
To generate the training dataset, all possible patches that contain CT voxels were extracted
using a stride of 8, which makes a total of 33,093 patches for the head and 70,554 patches
for the pelvis dataset. For data augmentation, the patches were randomly rotated in the
coronal and sagittal planes. During training, these 3D patches were randomly extracted
from the MR and CT volumes. To obtain the pseudo-CT volume, all the patches were
merged into a final volume. In this work, three different merging strategies were tested:

• The first merging approach is the simplest and it consists on extracting cubes in
a sliding window of stride 32 (same as the patch size). Then, its corresponding
pseudo-CT 3D patch is calculated and it is fitted into its corresponding position in the
output volume.

• The second approach uses stride 16 (half patch size). It averages the overlapping
voxels between patches when they are introduced in the output volume.

• The third one also consists in using stride 16, but only the center 16× 16× 16 cube of
the pseudo-CT 3D patch is assigned to the output volume.
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The effect of these strategies in the pseudo-CT volumes are detailed in the Section 3.
Experiment details: A subject level cross-validation set-up was used to train and test all

architectures with the proposed data sets. Both data sets comprised a total of 19 MR-CT
subjects pairs. Thus, a 7 fold configuration was chosen, with 3 subjects in the test set and the
remaining 16 for training. In the case of the pelvis dataset, several subjects had follow-up
acquisitions. So it was ensured that all the volumes from a subject were taken out from
training if that subject was in the test set.

Metrics: The results of every network were calculated using the outputs generated
by the cross-validation. As neglecting bone, soft-tissue and fat are the main issues when
synthesizing a pseudo-CT [38], we computed the results in two regions of interest: (i) the
whole anatomy of the subject (including all tissues) and (ii) only the bone. To this end,
a mask for soft tissue (between −100 and 100 HU), fat (lower than −100 HU) and bone
(greater than 100 HU) was obtained by thresholding the Houndsfield Units (HU) in the
ground truth CT. The measures calculated to compare the performance of the networks
and schemes are the following:

• Mean Average Error (MAE):

MAE =
∑n

i=1 |yi − xi|
n

(1)

• Peak Signal-to-Noise ratio (PSNR):

PSNR = 20 · log10
MAX√

MSE
(2)

MSE =
∑n

i=1(yi − xi)
2

n
(3)

• Pearson Correlation Coefficient:

PearsonCoe f =
∑n

i=1(xi −mx) · (yi −my)

∑n
i=1(xi −mx)2 ·∑n

i=1(yi −my)2 (4)

In Equations (1)–(4), y represents the ground truth CT voxel value and x the generated
pseudo-CT voxel value. In Equation (2) the max value depicts the range of possible values
for the measured signal . In our case the HU units range goes from −1024 to 3072, therefore
the max range value is 4096. In the Pearson correlation coefficient, my and mx represent the
mean of the voxel values in the ground truth CT and in the pseudo-CT, respectively.

Additionally, to validate the statistical differences among the architectures and schemes,
we decided to perform various statistical test over the cross-validation results. To decide
which test would be the most appropriate, we tested if the results of the cross-validation
tended to be Gaussian or not using a Shapiro test and a D’Agostino’s test. The results
tended to be normal, thus we decided to perform several ANOVA test and Student’s
t-test for paired data with a statistically significant difference defined as p < 0.05 to verify
whether certain network or scheme results were significantly different or not.

3. Results

Firstly, the results will be presented for each dataset, considering all tissues, soft-tissue,
fat and bone. Each table depicts the MAE, PSNR and Pearson Coefficient results for 2D and
3D convolutions using each network architecture. For the 3D convolutions, the results for
each reconstruction using stride 32 (3D-32), stride 16 with averaging (hl3D-16av) and stride
16 using the inner cube (3D-16) are depicted. Tables 15 and 30 show the time needed to
synthesize a whole volume from each data set. Secondly, the results from each architecture
will be reviewed separately. Finally, the results from the 3D networks using the different
reconstruction strategies are presented.
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3.1. Head Dataset Results

The results for all tissues using the head dataset are depicted in Tables 1–3; the results
using only the bone voxels are detailed in Tables 4–6; the results using only the fat voxels
are detailed in Tables 7–9; and the results using only the soft-tissue voxels are detailed in
Tables 10–12. The best performing 2D network for the head dataset was the Residual-net.
The results presented a MAE of 99.83 HU, a PSNR of 24.83 and a Pearson Coefficient of
0.931 in all tissues, and a MAE of 326.33 HU, a PSNR of 19.04 and a Pearson Coefficient
of 0.826 in bone voxels. The ANOVA test revealed a statistically significant effect of the
2D architectures for MAE results (all tissues: F2,36 = 91.1, p < 0.001; bone: F2,36 = 74.2,
p < 0.001) and PSNR results (all tissues: F2,36= 99.3, p < 0.001; bone: F2,36= 85.6, p < 0.001).
A paired t-test was used to compare the Residual-net to the other networks reporting
also statistically significant differences in the MAE and in the PSNR (Table 13). Using 2D
convolutions, the Atrous-net and the U-net performed 5% and 18% worse than the residual-
net, respectively. Moreover, the U-net network was clearly behind the other networks using
2D convolutions. Nevertheless, the U-net in 3D-16 obtained a MAE of 89.54 HU, a PSNR of
25.69 and a Pearson Coefficient of 0.943 in all tissues, and a MAE of 289.10 HU, a PSNR
of 20.05 and a Pearson Coefficient of 0.861 in bone voxels, which were the best results for
the head dataset. The ANOVA test also reported a statistically significant effect of the 3D
networks for the MAE (all tissues: F2,36 = 63.2, p < 0.001; bone F2,36 = 189.8, p < 0.001)
and the PSNR (all tissues: F2,36 = 10.5, p < 0.001; bone: F2,36 = 83.1, p < 0.001). The post
hoc paired t-test that is depicted in Table 14 also reported statistically significant differences
in the MAE and PSNR after comparing each architecture. Summarizing, the results using
3D convolutions from the U-net were 17% and 10% better than those of the Atrous-net
and Residual-net, respectively. Visual result examples of head pseudo-CTs are depicted in
Figures 6 and 7. Table 15 shows the time needed to synthesize a whole head volume using
the different architectures.

Figure 6. Head results using 2D networks.
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Figure 7. Head results using 3D-16 networks.

Table 1. Head dataset with U-net. Mean Absolute Error, PSNR and Pearson coefficient on the head
data set obtained using U-net with different convolutions and reconstructions.

MAE PSNR Pearson

2D 117.21 ± 9.49 23.26 ± 0.596 0.898 ± 0.011

3D-32 93.45 ± 7.96 25.40 ± 0.675 0.939 ± 0.010

3D-16av 90.06 ± 7.65 25.77 ± 0.706 0.944 ± 0.010

3D-16 89.54 ± 7.79 25.69 ± 0.703 0.943 ± 0.009

Table 2. Head dataset with Atrous-Net. Mean Absolute Error, PSNR and Pearson coefficient on the
head data set obtained using Atrous network with different convolutions and reconstructions.

MAE PSNR Pearson

2D 105.16 ± 8.92 24.51 ± 0.615 0.924 ± 0.009

3D-32 110.89 ± 7.56 24.12 ± 0.546 0.917 ± 0.009

3D-16av 104.98 ± 7.28 25.77 ± 0.706 0.926 ± 0.009

3D-16 104.03 ± 6.98 24.65 ± 0.555 0.927 ± 0.009

Table 3. Head dataset with Residual-Net. Mean Absolute Error, PSNR and Pearson coefficient on the
head data set obtained using Residual net with different convolutions and reconstructions.

MAE PSNR Pearson

2D 99.83 ± 8.06 24.83 ± 0.613 0.931 ± 0.009

3D-32 104.57 ± 8.40 24.52 ± 0.681 0.925 ± 0.013

3D-16av 97.88 ± 7.84 25.15 ± 0.626 0.935 ± 0.009

3D-16 98.14 ± 7.99 24.69 ± 1.280 0.927 ± 0.025
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Table 4. Head dataset Bone with U-net. Mean Absolute Error, PSNR and Pearson coefficient within
the bone on the head data set obtained using U-net with different convolutions and reconstructions.

MAE PSNR Pearson

2D 382.64 ± 23.85 17.48 ± 0.577 0.757 ± 0.021

3D-32 326.33 ± 15.47 19.71 ± 0.362 0.849 ± 0.014

3D-16av 289.64 ± 15.57 20.08 ± 0.382 0.860 ± 0.013

3D-16 289.10 ± 15.64 20.05 ± 0.384 0.861 ± 0.013

Table 5. Head dataset Bone with Atrous-Net. Mean Absolute Error, PSNR and Pearson coefficient
within the bone on the head data set obtained using Atrous net with different convolutions and
reconstructions.

MAE PSNR Pearson

2D 352.15 ± 19.96 18.58 ± 0.441 0.811 ± 0.014

3D-32 358.74 ± 15.96 18.39 ± 0.385 0.798 ± 0.017

3D-16av 338.81 ± 17.81 18.86 ± 0.410 0.816 ± 0.016

3D-16 336.32 ± 15.35 18.93 ± 0.359 0.821 ± 0.015

Table 6. Head dataset Bone with Residual-Net. Mean Absolute Error, PSNR and Pearson coefficient
within the bone on the head data set obtained using Residual net with different convolutions and
reconstructions.

MAE PSNR Pearson

2D 326.33 ± 17.94 19.04 ± 0.428 0.826 ± 0.012

3D-32 342.42 ± 16.72 18.74 ± 0.591 0.810 ± 0.023

3D-16av 316.70 ± 15.90 19.50 ± 0.378 0.837 ± 0.013

3D-16 317.12 ± 16.29 19.25 ± 0.452 0.833 ± 0.015

Table 7. Head dataset Fat with U-net. Mean Absolute Error, PSNR and Pearson coefficient within the
fat on the head data set obtained using U-net with different convolutions and reconstructions.

MAE PSNR Pearson

2D 186.28 ± 23.86 21.17 ± 1.51 0.544 ± 0.075

3D-32 160.85 ± 28.58 23.38 ± 1.47 0.685 ± 0.079

3D-16av 153.23 ± 31.25 23.51 ± 1.67 0.695 ± 0.083

3D-16 153.31 ± 29.41 23.54 ± 1.559 0.694 ± 0.079
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Table 8. Head dataset Fat with Atrous-Net. Mean Absolute Error, PSNR and Pearson coefficient
within the fat on the head data set obtained using Atrous network with different convolutions and
reconstructions.

MAE PSNR Pearson

2D 173.62 ± 29.88 22.57 ± 1.56 0.650 ± 0.079

3D-32 176.96 ± 43.70 22.13 ± 1.77 0.630 ± 0.087

3D-16av 173.45 ± 42.72 22.61 ± 1.70 0.654 ± 0.080

3D-16 172.99 ± 45.22 22.88 ± 1.821 0.662 ± 0.083

Table 9. Head dataset Fat with Residual-Net. Mean Absolute Error, PSNR and Pearson coefficient
within the fat on the head data set obtained using Residual net with different convolutions and
reconstructions.

MAE PSNR Pearson

2D 157.11 ± 24.30 22.85 ± 1.59 0.662 ± 0.078

3D-32 168.65 ± 24.25 22.35 ± 1.432 0.646 ± 0.072

3D-16av 158.88 ± 25.08 22.94 ± 1.539 0.666 ± 0.075

3D-16 159.20 ± 24.66 22.72 ± 1.404 0.659 ± 0.069

Table 10. Head dataset Soft-tissue with U-net. Mean Absolute Error, PSNR and Pearson coefficient
within the soft-tissue on the head data set obtained using U-net with different convolutions and
reconstructions.

MAE PSNR Pearson

2D 29.43 ± 4.08 33.66 ± 1.70 0.326 ± 0.046

3D-32 23.78 ± 3.47 35.16 ± 1.288 0.346 ± 0.050

3D-16av 22.21 ± 3.70 35.58 ± 1.144 0.337 ± 0.040

3D-16 22.67 ± 3.24 35.12 ± 1.143 0.342 ± 0.044

Table 11. Head dataset Soft-tissue with Atrous-Net. Mean Absolute Error, PSNR and Pearson
coefficient within the soft-tissue on the head data set obtained using Atrous net with different
convolutions and reconstructions.

MAE PSNR Pearson

2D 27.94 ± 3.98 33.75 ± 1.124 0.329 ± 0.045

3D-32 30.36 ± 4.07 33.10 ± 1.482 0.296 ± 0.074

3D-16av 27.96 ± 3.79 33.04 ± 1.407 0.334 ± 0.078

3D-16 27.79 ± 4.08 32.66 ± 1.708 0.332 ± 0.090
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Table 12. Head dataset Soft-tissue with Residual-Net. Mean Absolute Error, PSNR and Pearson coef-
ficient within the bone on the head data set obtained using Residual net with different convolutions
and reconstructions.

MAE PSNR Pearson

2D 27.18 ± 3.47 33.65 ± 1.093 0.338 ± 0.047

3D-32 29.19 ± 4.72 33.30 ± 1.148 0.328 ± 0.037

3D-16av 27.61 ± 4.41 33.86 ± 1.21 0.350 ± 0.042

3D-16 27.69 ± 3.69 33.38 ± 1.063 0.341 ± 0.040

Table 13. MAE and PSNR p-values for 2D Head. p-values of paired Student’s t-test for MAE and
PSNR results with 2D architectures with the head dataset.

PSNR\MAE Residual-Net Atrous-Net U-Net

Residual-Net - <0.001 <0.001

Atrous-Net <0.001 - <0.001

U-Net <0.001 <0.001 -

Table 14. MAE and PSNR p-values for 3D Head. p-values of paired Student’s t-test for MAE and
PSNR results with 3D architectures with the head dataset.

PSNR\MAE Residual-Net Atrous-Net U-Net

Residual-Net - < 0.001 < 0.001

Atrous-Net 0.87 - < 0.001

U-Net < 0.01 < 0.001 -

Table 15. Synthesis Times for Head. Average time in seconds to synthesize a whole volume from the
Head data set using 2D networks and 3D networks reconstructing with stride 16 and 32.

2D 3D16 3D32

Atrous-Net 6.2 (s) 58.9 (s) 10.7 (s)

U-Net 4.9 (s) 75.3 (s) 7.8 (s)

Residual-Net 5.0 (s) 65.1 (s) 7.2 (s)

3.2. Pelvis Dataset Results

The results for all tissues using the pelvis dataset are depicted in Tables 16–18; the
results using only the bone voxels are detailed in Tables 19–21; the results using only the
fat voxels are detailed in Tables 22–24; and the results using only the soft-tissue voxels
are detailed in Tables 25–27. In the pelvis dataset all networks performed very similar
when all tissues were considered. However, 3D networks obtained slightly worse results
when assessing bone alone and very similar results for all tissues. The best network in the
bone dataset was the 2D Residual network that obtained a MAE of 201.56 HU, a PSNR
of 23.20 and a Pearson Coefficient of 0.476 in the bone. Additionally, the error in bone
with all networks increased when the 3D scheme was used. The ANOVA test for the 2D
results reported a statistically significant effect of the networks in all tissues and bone MAE
(all tissues: F2,56 = 6.7, p < 0.005; bone: F2,56 = 8.5, p < 0.001) and PSNR (all tissues:
F2,56 = 8.5, p < 0.001, bone: F2,56 = 5.3, p < 0.01). According to 3D results, the ANOVA



Appl. Sci. 2022, 12, 11600 14 of 24

test did not expose statistically significant differences when using different architectures on
all tissue MAE (all tissues: F2,56 = 2.3, p = 0.10; bone: F2,56 = 6.2, p < 0.005) and PSNR
(all tissues: F2,56 = 1.4, p = 0.25; bone: F2,56 = 4.3, p < 0.05). Post hoc Student’s t-test
is depicted in Tables 28 and 29. It reveals that the Residual-net and Atrous-net did not
provide statistically significant differences. Visual result examples of pelvis pseudo-CTs are
depicted in Figures 8 and 9. Table 30 shows the time needed to synthesize a whole pelvis
volume using the different architectures.

Figure 8. Pelvis results using 2D networks.

Figure 9. Pelvis results using 3D-16 networks.
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Table 16. Pelvis dataset with U-Net. Mean Absolute Error, PSNR and Pearson coefficient from U-net
using different convolutions and reconstructions in the Pelvis data set.

MAE PSNR Pearson

2D 52.46 ± 6.42 31.31 ± 1.169 0.683 ± 0.045

3D-32 51.25 ± 6.66 31.33 ± 1.281 0.682 ± 0.058

3D-16av 50.76 ± 6.45 31.56 ± 1.220 0.700 ± 0.050

3D-16 51.14 ± 7.20 31.38 ± 1.308 0.688 ± 0.056

Table 17. Pelvis dataset with Atrous-net. Mean Absolute Error, PSNR and Pearson coefficient from
Atrous-net using different convolutions and reconstructions in the Pelvis data set.

MAE PSNR Pearson

2D 51.81 ± 6.99 31.39 ± 1.272 0.690 ± 0.056

3D-32 51.69 ± 7.06 31.41 ± 1.279 0.687 ± 0.055

3D-16av 50.62 ± 6.95 31.59 ± 1.300 0.705 ± 0.053

3D-16 51.37 ± 7.49 31.48 ± 1.350 0.691 ± 0.065

Table 18. Pelvis dataset with Residual-net. Mean Absolute Error, PSNR and Pearson coefficient from
Residual-net using different convolutions and reconstructions in the Pelvis data set.

MAE PSNR Pearson

2D 51.41 ± 6.81 31.55 ± 1.323 0.703 ± 0.050

3D-32 51.35 ± 6.47 31.38 ± 1.208 0.689 ± 0.046

3D-16av 50.59 ± 6.41 31.55 ± 1.246 0.705 ± 0.047

3D-16 50.73 ± 6.75 31.47 ± 1.330 0.696 ± 0.052

Table 19. Pelvis dataset Bone with U-net. Mean Absolute Error, PSNR and Pearson coefficient from
U-net using different convolutions and reconstructions in the Pelvis data set within the bone.

MAE PSNR Pearson

2D 203.73 ± 33.59 22.98 ± 1.607 0.471 ± 0.094

3D-32 214.23 ± 32.44 22.67 ± 1.430 0.440 ± 0.089

3D-16av 209.20 ± 32.01 22.88 ± 1.437 0.462 ± 0.090

3D-16 208.90 ± 32.73 22.79 ± 1.503 0.446 ± 0.092
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Table 20. Pelvis dataset Bone with Atrous-net. Mean Absolute Error, PSNR and Pearson coefficient
from Atrous-net using different convolutions and reconstructions in the Pelvis data set within
the bone.

MAE PSNR Pearson

2D 210.51 ± 31.19 22.89 ± 1.391 0.465 ± 0.089

3D-32 220.55 ± 33.40 22.53 ± 1.371 0.419 ± 0.082

3D-16av 214.21 ± 34.11 22.72 ± 1.446 0.445 ± 0.084

3D-16 211.11 ± 34.19 22.81 ± 1.490 0.428 ± 0.086

Table 21. Pelvis dataset Bone with Residual-net. Mean Absolute Error, PSNR and Pearson coefficient
from Residual-net using different convolutions and reconstructions in the Pelvis data set within
the bone.

MAE PSNR Pearson

2D 201.56 ± 31.31 23.20 ± 1.433 0.476 ± 0.084

3D-32 227.98 ± 32.49 22.29 ± 1.296 0.426 ± 0.082

3D-16av 222.40 ± 32.61 22.48 ± 1.329 0.453 ± 0.083

3D-16 217.19 ± 32.75 22.56 ± 1.420 0.443 ± 0.085

Table 22. Pelvis dataset Fat with U-Net. Mean Absolute Error, PSNR and Pearson coefficient from
U-net using different convolutions and reconstructions in the Pelvis data set within the fat.

MAE PSNR Pearson

2D 55.86 ± 23.03 31.02 ± 2.537 0.0108 ± 0.149

3D-32 55.05 ± 22.61 31.20 ± 2.432 −0.042 ± 0.134

3D-16av 54.91 ± 22.51 31.25 ± 2.429 −0.035 ± 0.145

3D-16 54.55 ± 22.32 31.24 ± 2.419 −0.030 ± 0.163

Table 23. Pelvis dataset Fat with Atrous-net. Mean Absolute Error, PSNR and Pearson coefficient
from Atrous-net using different convolutions and reconstructions in the Pelvis data set within the fat.

MAE PSNR Pearson

2D 56.67 ± 22.83 31.18 ± 2.54 −0.128 ± 0.087

3D-32 56.50 ± 25.06 31.87 ± 2.588 −0.184 ± 0.093

3D-16av 55.51 ± 24.36 30.92 ± 2.585 −0.199 ± 0.108

3D-16 56.21 ±25.44 30.79 ± 2.718 −0.204 ± 0.127
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Table 24. Pelvis dataset Fat with Residual-net. Mean Absolute Error, PSNR and Pearson coefficient
from Residual-net using different convolutions and reconstructions in the Pelvis data set within
the fat.

MAE PSNR Pearson

2D 55.78 ± 20.32 30.520 ± 2.405 0.009 ± 0.133

3D-32 57.78 ± 23.070 30.86 ± 2.490 −0.128 ± 0.088

3D-16av 57.51 ± 23.25 30.96 ± 2.50 −0.127 ± 0.102

3D-16 57.19 ± 23.09 30.93 ± 2.50 −0.121 ± 0.104

Table 25. Pelvis dataset Soft-tissue with U-net. Mean Absolute Error, PSNR and Pearson coeffi-
cient from U-net using different convolutions and reconstructions in the Pelvis data set within the
soft tissue.

MAE PSNR Pearson

2D 35.24 ± 3.15 38.41 ± 1.006 0.632 ± 0.0455

3D-32 35.71 ± 3.74 37.20 ± 1.25 0.614 ± 0.067

3D-16av 35.04 ± 3.54 37.47 ± 1.17 0.628 ± 0.062

3D-16 35.88 ± 3.77 37.03 ± 1.253 0.613 ± 0.064

Table 26. Pelvis dataset Soft-tissue with Atrous-net. Mean Absolute Error, PSNR and Pearson
coefficient from Atrous-net using different convolutions and reconstructions in the Pelvis data set
within the soft tissue.

MAE PSNR Pearson

2D 35.19 ± 2.85 37.20 ± 0.916 0.627 ± 0.045

3D-32 35.73 ± 3.17 37.04 ± 0.969 0.609 ± 0.065

3D-16av 34.781 ± 3.00 37.42 ± 0.921 0.628 ± 0.060

3D-16 35.11 ± 3.92 36.73 ± 1.207 0.600 ± 0.075

Table 27. Pelvis dataset Soft-tissue with Residual-net. Mean Absolute Error, PSNR and Pearson
coefficient from Residual-net using different convolutions and reconstructions in the Pelvis data set
within the soft tissue.

MAE PSNR Pearson

2D 36.40 ± 3.45 36.01 ± 1.05 0.584 ± 0.047

3D-32 36.28 ± 3.56 36.78 ± 1.090 0.589 ± 0.067

3D-16av 35.26 ± 3.39 37.21 ± 1.069 0.611 ± 0.063

3D-16 35.78 ± 3.79 37.58 ± 1.164 0.607 ± 0.070
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Table 28. MAE and PSNR p-values for 2D Pelvis. p-values of paired Student’s t-test for MAE and
PSNR results with 2D architectures with the pelvis dataset.

PSNR\MAE Residual-Net Atrous-Net U-Net

Residual-Net - 0.22 <0.01

Atrous-Net <0.005 - <0.05

U-Net <0.001 0.25 -

Table 29. MAE and PSNR p-values for 3D Pelvis. p-values of paired Student’s t-test for MAE and
PSNR results with 3D architectures with the pelvis dataset.

PSNR\MAE Residual-Net Atrous-Net U-Net

Residual-Net - 0.059 0.23

Atrous-Net 0.92 - 0.33

U-Net 0.15 0.17 -

Table 30. Synthesis Times for Pelvis. Average time in seconds to synthesize a whole volume from the
Pelvis Dataset using 2D networks and 3D networks reconstructing with stride 16 and 32.

2D 3D16 3D32

Atrous-Net 9.6 (s) 90.7 (s) 18.9 (s)

U-Net 7.1 (s) 62.5 (s) 14.4 (s)

Residual-Net 7.7 (s) 58.7 (s) 11.4 (s)

3.3. Network Architecture Results
3.3.1. Atrous-Net Results

The Atrous-net obtained a MAE of 105.16 HU in head bone and a MAE of 210.51 HU
in pelvis bone. In the head dataset, this result was 18% worse than the best result. In pelvis,
it was around 5% worse. The Atrous-net showed not statistically significant differences
in pelvis between 2D and 3D MAE (all tissues: F2,56 = 2.2, p = 0.15; bone: F2,56 = 0.0015,
p = 0.97) and PSNR (all tissues: F2,56 = 1.6, p = 0.21; bone: F2,56 = 0.9, p = 0.35).
However, for the head data set there were statistically significant differences in bone
depiction between 2D and 3D MAE (all tissues: F2,36 = 0.38, p = 0.54, bone: F2,36 = 19.2,
p < 0.001) and PSNR (all tissues: F2,36 = 3.7, p = 0.068; bone: F2,36 = 16.4, p < 0.001).

3.3.2. U-Net Results

The 3D U-net architecture obtained a MAE of 89.54 HU, a PSNR of 25.69 and a Pearson
Coefficient of 0.943 in the head dataset, which is the best result obtained for this dataset.
However, the 2D scheme obtained a poor result of 117.21 HU for MAE, 23.26 for PSNR and
0.898 for Pearson coefficient in the head, being far away from the other two networks using
2D filters. According to the pelvis dataset, the 3D U-net obtained the best result among
the 3D networks. Even so, it was around 1% worse than the best result for this dataset.
Focusing on the 3D results, the U-net always had the best performance in both datasets.
However, in the pelvis dataset, the U-net obtained a similar performance with statistically
significant differences between the 2D and 3D MAE (all tissues: F2,56 = 18.0, p < 0.001,
bone: F2,56 = 4.9, p < 0.05) but not for PSNR (all tissues: F2,56= 1.3, p = 0.26; bone:
F2,56 = 3.0, p = 0.09). In addition, the 2D scheme was slightly better for bone estimation.
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3.3.3. Residual-Net Results

The residual network that was obtained for the head dataset showed statistically sig-
nificant differences between the 2D and 3D schemes for bone MAE (all tissues: F2,36 = 0.65,
p = 0.42; bone: F2,36 = 17.4, p < 0.001). However, for bone PSNR (all tissues: F2,36 = 0.38,
p = 0.54), bone: F2,36 = 3.4, p = 0.082) there was not any statistically significant difference.
In the head dataset, the 3D-16av scheme showed the minor error for bone calculations.
Nevertheless, the U-net provided better results with lower errors. In the pelvis dataset,
the 2D Residual-net provided the best results for bone calculations: MAE = 201.56 HU,
PSNR = 23.20 and Pearson coefficient = 0.476.

3.4. 3D Reconstruction Results

Figures 10 and 11 show the results of the three merging strategies that have been tested:
stride 32, stride 16 with averaging of overlapping voxels and stride 16 considering the
inner cube. The average time to synthesize a volume is shown in Tables 15 and 30. The first
method—referred as “stride 32” in Figures 10 and 11—generated artifacts in the boundaries
of the cube and misalignment in the bone and air structures. Moreover, this approach
showed a greater error than the other two in the quantitative results. Nevertheless, this
method was quite fast, generating a volume in 8–19 s. The other two methods provided,
in average, a similar quantitative result, being the use of the inner cube slightly better.
However, the use of stride 16 increased the time to generate a pseudo-CT volume up to
58–90 s. According to the averaging strategy, some artifacts can be noticed in the boundaries
of the cubes after a visual inspection of the results.

Figure 10. Comparison between the reconstruction method proposed.

Figure 11. Comparison between the reconstruction method proposed.

4. Discussion

Before this study, several proposals for synthesizing pseudo-CT from MR data with
deep learning approaches have been published. They have demonstrated different advan-
tages of deep learning over the previous state of the art. The most important advantages of
deep learning approaches are: the capability of accommodating larger training datasets,
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a faster computation time when the network is deployed, the lack of the need for a regis-
tration to a common space once the model is trained, and a lower error in the generated
pseudo-CT. However, the lack of a common database among research groups makes hard to
assess which architecture or strategy would be the best to apply in the future. In this work,
different architectures using 2D and 3D approaches were tested on two different datasets.
This way, it is possible to extract conclusions when different networks are compared with
the same datasets. The datasets utilized in this study were composed of 3D T1-weighted
MR images of the head and Dixon-VIBE MR images of the pelvis.

According to the results of the current work, there is no preferred network for every
problem. Thus, the results depend on the specific anatomy defining the problem and the
MRI sequence that is used. As shown in Section 4. Results, if the anatomy is similar to
a head with complex bone structures and geometries, 2D schemes generate aliasing and
artifacts across bone structures. Instead, 3D schemes and reconstructions with stride 16
provide bones with smooth boundaries, which is translated into a significant reduction of
the error. Moreover, the best architecture to achieve the best detail in a head pseudo-CT
is the 3D U-net (89.54± 7.79). When using 3D architectures, the input of the network is
usually a 3D patch due to GPU memory limitations. 3D patches only depict a part of
the anatomy. Therefore, they provide limited contextual information. In this case, the
progressive spatial reduction and up-sampling of the feature maps are probably the best
option, as it occurs in the U-net.

In case the anatomy does not have complex structures across slices, 3D schemes are
not the best option. Moreover, if the input image has very similar areas -as in pelvis
acquisitions-, 3D patches will not satisfactory synthesize the pseudo-CT due to the lack of
contextual information. In this scenario, according to our results, it would be better to use a
2D scheme. Specifically, the residual network obtained the best results in 2D (51.41± 6.81),
which is consistent with the results in general computer vision, where 2D approaches are
used [26,39].

The dilated network did not stand out in any dataset but in the 2D scheme it per-
formed similarly to the residual network. Nevertheless, dilated convolutions have been
reported to give interesting results in segmentation in other areas of computer vision. Thus,
their accommodation in an architecture in the future could improve the quality of the
synthesized image.

In the pelvis dataset, the results were quite similar between networks, having dif-
ferences in a range of 5% in the bone. This could be due to the input data used in the
experiment: the Dixon-VIBE MRI. The Dixon-VIBE, as shown in Figure 2, does not de-
pict the bone well. Moreover, it is fairly probable that the information to generate the
pseudo-CT that it is contained in the image is low or moderate compared to T1 acquisitions
(see Figure 1). That is, the networks gave similar results because the information that
can be extracted from the input images is limited. However, Dixon-VIBE is the standard
acquisition in PET attenuation correction and it is usually easier to have access to this type
of acquisitions for the pelvis anatomy. Therefore, the type of network that is implemented
does not have a great impact on the results.

In this work, different ways of reconstructing pseudo-CT volumes from 3D patches
were evaluated as well. According to our results, the best option would consist in using
stride 16 and the inner cube of the patch. Compared to the averaging technique, the
quantitative results were similar but the visual results (Figures 12 and 13) showed less
artifacts and aliasing effect in the boundaries of the patches when the inner patch is used.
The only reason to use a direct merge of the patches using stride 32 would be real-time
applications in which a fast reconstruction of the volumes is needed. However, the stride
16 scheme took around one minute to complete a volume, which is fairly low compared to
acquisition times in MRI.
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Figure 12. Comparison in the sagittal and coronal direction for the head between the 2D and
3D schemes.

Figure 13. Comparison in the sagittal and coronal direction for the pelvis between the 2D and
3D schemes.

Finally, it is important to mention the main limitations of this study. Firstly, the
architectures that were implemented are not exactly the same as the original ones and they
lack some post-processing, such as the adversarial scheme. Moreover, it is hard to verify the
reproducibility and robustness of the methods compared to traditional approaches. Thus,
there exists a need of a specific training dataset for scans from different vendors or field
strengths [40]. Likewise, a common dataset would be useful to compare novel architectures
to the state-of-the-art methods. In addition, there exist some limitations during network
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training due to RAM (Random Access Memory) memory restrictions. A larger memory
would enable the algorithm to admit the whole volumes as input without the need of
using 2D slices or 3D patches. This way, the efficiency of the DCNN would increase and
better results could be obtained. Finally, using datasets with larger cohorts could also help
improve the quality of the resulting pseudo-CTs.

In summary, 3D networks would be the best option if a GPU with enough memory
to accommodate a whole 3D volume or at least a bigger 3D patch. A GPU with 11 GB of
memory was used for this study. Nevertheless, recently, Nvidia released a new GPU with
24 GB of RAM that could help in these tasks. In addition, building a network that adds up
the best qualities of the present networks is also encouraged. A U-net with residual blocks
and dilated convolutions in the middle could be a good starting point. This network could
exploit the progressive reduction of the feature maps and increase the value of the features
using residual and dilated convolutions.

5. Conclusions

Taking into account the anatomy from which the pseudo-CTs are synthesized is
extremely important to choose a specific deep learning architecture, as it has been demon-
strated in this work. The first conclusion that has been extracted from this work is the
importance of bone structures in the input volumes. The 3D scheme works better if the
bone presents complex structures across the slices. The loss of context information for the
use of 3D patches is compensated by a smoother bone depiction in the result. Instead,
if the bone does not vary across slices, such as in pelvic anatomies, it is better to use a
slice-by-slice strategy with 2D filters.

Moreover, the current results indicate that the 3D U-net gives better results than other
strategies, such as residuals or dilated convolutions. Therefore, a U-net would be the best
option to build a 3D architecture due to the progressive down-sampling and up-sampling
of the feature maps. In case a 2D input is used, the best option would be a network to
extract complex features, such as the residual network that is presented in this paper.

Therefore, according to these results, architectures that perform an aggressive sub-
sampling, using strided convolutions or pooling operations, are quite successful if the input
has a large enough field of view. Besides, the residuals work better with 2D inputs due to
the limitations in the GPU memory, which do not allow to have big enough networks to
extract highly processed features in 3D schemes.

Finally, the importance of the MRI sequence that is used as input in pelvis reconstruc-
tions must be remarked. The Dixon-Vibe MRI is the usual sequence acquired in the clinic.
However, it probably does not contain enough information for pseudo-CT generation,
given the similar results between the evaluated networks and schemes. Hence, in future
works it would be interesting to compare results with Dixon-VIBE, T1 or even the recent
zero-echo-time acquisitions using a DCNN.
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