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Abstract: Structural damage inspection is a key structural engineering technique that strives for en‑
suring structural safety. In this regard, one of the major intelligent approaches is the inverse analysis
of structural damage using evolutionary computation. By considering the recent advances in this
field, an efficient hybrid objective function that combines the global modal kinetic and modal strain
energies is introduced. The newly developed objective function aims to extract maximum dynamic
information from the structure and overcome noisy conditions. Moreover, the original methods
are usually vulnerable to the associated high multimodality and uncertainty of the inverse problem.
Therefore, the oppositional learning (OL) for population initialization and convergence acceleration
is first adopted. Thereafter, the unified particle swarm algorithm (UPSO) mechanism is combined
with another newly developed algorithm, the gradient‑based optimizer (GBO). The new algorithm,
called the oppositional unified particle swarm gradient‑based optimizer (OL‑UPSGBO), with the
convergence acceleration feature of (OL), enhances balanced exploration‑exploitation of UPSO, and
the local escaping operator of GBO is designed to specifically deal with the complex inverse analysis
of structural damage problems. To authenticate the performance of the OL‑UPSGBO, the complex
benchmark set of CEC 2017 is adopted to compare the OL‑UPSGBOwith several original metaheuris‑
tics. Furthermore, the developed approach for structural damage identification is tested using sev‑
eral damage scenarios in a multi‑story frame structure. Results show that the developed approach
shows superior performance and robust behavior when tackling the inverse analysis of structural
damage.

Keywords: inverse analysis; structural damage identification; modal kinetic energy; modal strain
energy; evolutionary algorithms; soft computing

1. Introduction and Literature Review
Structural health monitoring (SHM) has gained great significance in the last decade

due to well‑founded signal processing developments, vibration engineering, computati‑
onal intelligence, etc. Moreover, the SHM methods have gained more attention by the re‑
search community due to its role in guaranteeing structure safety and severability [1,2].
Efficient SHM systems permit precocious detection of structural damage through non‑
destructive testing, data analysis, and modal feature analysis in order to prevent struc‑
tural failure [3,4]. Major SHM methods [5] include, but are not limited to, inverse analy‑
sis, model updating, machine learning, probabilistic and deterministic approaches, meta‑
heuristics, etc. Nevertheless, due to the high uncertainty, as well as environmental and
loading effects, associated with damage inspection, it is impossible to achieve a “one fits
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all”method for all SHMapplications; in addition to the various different types of civil struc‑
tures being tested, such as frames, beams, bridges, buildings, dams, etc., ormechanic struc‑
tures, such as rotary machines, aeronautical structures, trains, vehicles, etc. [6–8]. Modern
damage detection techniques mainly rely on date‑driven methods which focus on detect‑
ing the existence of damage and identifying the relative location of it. Other modern ap‑
proaches depend on model‑based inverse problems, for which the FE model updating is
implemented. FE model updating is conducted to identify damage location and severity
bymeans of finding the correlation between numerical and experimental modal responses.
Thereafter, the FE model is altered to match the real situation of the structure. This ap‑
proach will be the main focus of this work.

Vibration modal characteristics are main structural parameters that are utilized for
the inverse analysis of structural damage [9,10]. Such characteristics are mainly catego‑
rized into modal frequencies, modal shapes, curvature modal shapes, strain energy, flex‑
ibility, kinetic energy, etc. In this regard, researchers often implement single or multiple
modal features in their attempts to develop efficient and robust paradigms able to tackle
themodel‑based damage diagnosis problem. The basic idea of solving the inverse problem
of model‑based damage identification is to construct an optimization problem, in which
the error between the measured responses and analytical responses is taken from the FE
model [11,12]. Therefore, by using the modal features [13], the objective function of the
inverse problem is developed. An overview of modal‑features‑based objective functions
available in the literature is provided in the following section.

The inverse analysis of structural damage identification problems involves two impor‑
tant aspects. The first aspect to be addressed is the formulation of the objective function,
which measures the difference between the responses of the FE model of the initial state
of the structure and the real responses corresponding to the current situation of the struc‑
ture experiencing damage [5,14–16]. Modal strain energy (MSEn) is one of the most useful
modal features that can be used to formulate the objective function. It has proved to be
more accurate in detecting minor damage than other modal features, such as natural fre‑
quencies and mode shapes [17,18]. Therefore, the MSEn is utilized as a damage index to
detect and localize structural damage. Several studies have employed MSEn damage indi‑
cators in bridge structures [19], plates [20], trusses and frames [21], beams [22], etc. Most
studies have reported the effective damage identification capabilities of MSEn when ap‑
plied on different structures, even under conditions that lack complete data or have noisy
responses. The second aspect to be addressed, modal kinetic energy (MKEn), is another
effective modal characteristic that can be used as an informative indictor of structural dam‑
age. Very few research studies have implemented the MKEn for damage identification.
For example, Dinh‑Cong et al. [23] proposed amulti‑stage damage detection of truss struc‑
tures, in which the MKEn is firstly implemented to discover possible damage locations,
and then a model updating approach using hybrid flexibility and mode shapes objective
function with the symbiotic organisms search for accurate damage identification. In their
other work, Dinh‑Cong et al. [24] implemented MKEn‑based sensitivity for the successful
damage identification in composite beams. Joseph et al. [25,26] also used the sensitivity
of MKEn for damage identification in 2D simple supported beams. Pooya et al. [27] de‑
veloped a new damage identification index based on the relative differences of MSEn and
MKEn, particularly for beam‑like structures. Additionally, Torkzadeh et al. [28] developed
a two‑stage damage identification approach in which the MKEn is first used for initial as‑
sessment of structural damage, whereas the MSEn is later used to formulate an objective
function that was solved by PSO algorithm. Results showed successful damage identifi‑
cation in truss structures. Xu et al. [29] proposed a cross modal sensitivity of MSEn and
MKEn for damage identification in beam and offshore platform structures. Another re‑
search work was conducted by Shahri and Ghorbani‑Tanha [30], in which the sensitivity
of MKEn was utilized for damage identification in simple supported beams. From the
aforementioned literature review, it can be concluded that the MKEn is a useful damage
indicator that can be used for the inverse problem of SHM. Nevertheless, it has rarely been
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used in research. Moreover, it has not been explicitly used as the main objective function
within the inverse problem of structural damage identification, and has only been used as
a damage indicator for localizing possible damage in structures. Therefore, it is very use‑
ful to use theMKEn and integrate it withMSEn to formulate an efficient objective function
that can extract maximum damage information from structures.

In order to solve the inverse analysis of structural damage identification, soft comput‑
ing techniques have been widely used [31]. In particular, the recent advances in evolution‑
ary computation have boosted soft computing techniques into more practical applications,
due to their robust foundation and high computational abilities. Evolutionary computa‑
tion involves various algorithms that mimic several nature processes, such as evolution‑
ary theory [32], physics‑based phenomena [33], herding and breeding behaviors of crea‑
tures [34,35], swarm‑based behavior [36], etc. Such algorithms are highly recommended
for solving inverse problems; i.e., the problem of inverse analysis of structural damage.
Several representative research studies have been reported. For example, Ghannadi and
Kourehli [37] tested the efficiency of slime mold optimization for structural damage iden‑
tification in various case studies. In other studies, conducted by the same authors, the
gray wolf optimizer (GWO) was successfully utilized for similar case studies [38], as well
as the multi‑verse optimizer (MVO) [39]. Gomes and Giovani [40] developed a two‑stage
damage identification method using the sunflower optimization algorithm for application
to plate structures. Moreover, Pereira et al. [41,42] studied the efficiency of the Lichten‑
berg optimization algorithm for structural damage identification in plate structures. Khatir
et al. [43] compared several algorithms for the purposes of damage identification in truss
structures. In other studies, conducted by the same research group, several evolution‑
ary algorithms were used, such as the hybrid evolutionary‑neural network approach [44],
the modified PSO algorithm in [45], and the improved velocity strategy PSO in [46], etc.
Kaveh et al. [47] developed the plasma generation algorithm for damage detection in truss
structures. Similarly, other research studies have been conducted by Kaveh et al. [48,49]
for the same purpose. Other new research studies were observed in [50–52]. Among the
novel evolutionary computation methods, the gradient‑based optimizer (GBO) is a newly
introduced MH for solving numerical optimization problems [53]. It mainly involves the
stochastic conversion of gradient theory into a population‑based optimization algorithm.
The main mathematical proposal of GBO is to modify the Newtonian gradient method us‑
ing an evolutionary paradigmwith the innovative local‑escaping mechanism for overcom‑
ing complex optimization problems. Therefore, it is important to explore the performance
of GBO to solve the inverse analysis of structural damage problems in addition to boost‑
ing its search mechanism to make it more suitable to overcome complex computational
tasks associated with the inverse analysis of assessment of structural damage. Hence, the
GBO is improved by using two search mechanisms. First, oppositional‑based learning
(OL), which is a powerful optimization assistant tool that evaluates the oppositional of a
considered solution and compares the two solutions in order to choose a better one. This
efficient tool can help to accelerate the convergence of the algorithm and explore more
search areas, which suits problems with multimodality and multiple local optima, such as
the problem of structural damage assessment. In addition, the local search mechanism of
a powerful PSO variant, the unified PSO (UPSO), can also be incorporated with the main
computational framework of GBO to boost the local search ability of GBO and provide ac‑
celerated performance to deal with the high computational problem of the inverse analysis
of structural damage. Therefore, another major contribution of this article is to design, test,
and verify a new optimization algorithm called the oppositional unified particle swarm
gradient‑based optimizer (OL‑UPSGBO), which is specifically designed to overcome the
complex optimization problem of the inverse analysis of structural damage.

The main contributions of this study can be summarized as: (i) a new hybrid objec‑
tive function that mainly depends on modal kinetic and strain energies for the problem
of inverse analysis of structural damage is introduced; (ii) a new optimization algorithm
called the OL‑UPSGBO, which incorporates the OL, the UPSO, and the GBO, is devel‑
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oped; (iii) the new algorithm is first tested and verified using the most challenging bench‑
mark function set, which is the Congress of Evolutionary Algorithms (CEC‑2017) and it is
compared and verified against some recently developed evolutionary algorithms; (iv) the
framework of structural damage assessment is introduced and case studies are presented
using incomplete and noisy modal responses.

The rest of this study is divided into the following sections: (i) Section 2 presents the
theoretical background of the problem of inverse analysis of structural damage, as well
as the development of the new hybrid objective function; (ii) the novel OL‑UPSGBO is
introduced in Section 3 and verification experiments are presented; (iii) the total structural
damage identification framework and case studies, as well as the results of the case studies
including the overall challenges, achievements, and recommendations are discussed in
Section 4; (iv) the concluding remarks and future scope are presented in Section 5.

2. Theory of the Inverse Analysis of Structural Damage
2.1. The Model‑Based Inverse Method for Structural Damage Identification

Inverse problems in structural mechanics are well‑known frameworks for structural
damage identification. The underlying assumption can be described as being when dam‑
age occurs in a structure and its features are output responses. This can be represented as
foutput = ( f1, f2, . . . fm), in which response functions are selected for particular purposes
and an optimization problem is formulated; where m is the number of possible extracted
features form the structure. The optimization problem should be developed with corre‑
sponding features to reflect the changes in the structure in comparison with the original in‑
tact structure. The updated damage parameters related to n elements α = (α1, α2, . . . , αn),
which represent the damage occurred in the structural elements, are the parameters of the
function of the input foutput = (α1, α2, . . . , αn). The target of the optimization problem is
to confirm whether the parameter vector α matches the current situation of the structure
or not. So, when we update the model, the final outcomes obtained from finite element
analysis are consistent with the known real foutput of the damaged structure. Tracking the
values of α requires an appropriate objective function and that its characteristics are linked
to the updating parameters α = (α1, α2, . . . , αn). Hence, the objective function is a vital
factor for tracking the correct vector α = (α1, α2, . . . , αn). As was observed in the litera‑
ture review section, several features have been developed in the field of structural damage
identification, and it is impossible to choose a “one fits all” objective function. Moreover,
the inverse problem is a multi‑stage mathematical problem in which the link between α
and foutput is indirect and contains a multiplication of large vectors and matrices, which
makes the exact physical description difficult to comprehend. Additionally, the use of
stochastics algorithms to solve the inverse problem makes the overall process a black box.
In the next section, this work will introduce a novel combined objective function, which
is designed to incorporate three modal features that are able to extract the most possible
damage information from the structure.

2.2. Proof of the Principle of Damage Identification (Sensitivity Analysis)
As has been shown in the literature review, there are very few studies that implement

MKEn for inverse analysis of structural damage; MSEn is more widely used as a main
structural damage detection indicator, due to its direct link to the stiffness matrix of the
structure. Nevertheless, due to the concept of energy conversion, both MKEn and MSEn
mutually transform between each other, which makes them both highly sensitive to the
occurrence of structural damage, particularly when stiffness alterations due to damage
exist. In this regard, the derivation of MKEn and MSEn change ratios are presented in
order to formulate the objective function necessary for the inverse problem of structural
damage identification [9–12,24,30].

The sensitivity analysis is first conducted on the MKEn to proof its sensitivity for
damage when the change is made in Young’s modulus of elasticity to explain the rate of
change in MKEn when implementing a minor perturbation in the system.
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In structural dynamics, the free vibration of the FE model of the structure with Nm
degrees of freedom, the following equation can be written as:

[K]{ϕi} = ωi[M]{ϕi}, (1)

where [K] and [M] are the Nm × Nm global stiffness and mass matrices of the structure, re‑
spectively; {ϕi} and ωi aremode shape andmodal frequencies of the ith mode of vibration,
respectively.

According to continuous damagemechanics, and due to various internal and external
conditions surrounding the structure, damage occurs and in turn alters the free vibration
equation, which can be expressed by a scalar variable αj = (α1, α2, . . . , αn) corresponding
to n number of elements and αj ∈ [0, 1]. As the damage might occur in some elements,
then, by discretizing the model, the global stiffness and mass matrices can be formulated
by the scalar multiplication of the elemental matrices and damage parameters; hence, the
global stiffness and mass matrices after damage can be written as:

[K]D =
n

∑
j=1

αj[K]j, (2)

and
[M]D =

n

∑
j=1

αj[M]j, (3)

where the superscript D refers to the damage of the structure; [K]j and [M]j are the element
stiffness and mass matrices of the jth element of the structure; n is the total number of
elements.

From the theory of modal energy, the global MKEn of the intact structure and the
MKEnD of the damaged structure can be derived from the mode shapes and the stiffness
matrix of the structure as:

MKEn =
1
2

ωi{ϕi}Tr[M]j{ϕi}, (4)

and
MKEnD =

1
2

ωD
i

{
ϕD

i

}Tr[
MD

]
j

{
ϕD

i

}
. (5)

where the superscript Tr refers to the transpose. As noted in [24], when damage occurs in a
structure, the ratio of change of MKEn in each element can serve as a damage indicator, as:

MKEnRij =
∆MKEnij

MKEnij
=

MKEnD
ij − MKEnij

MKEnij
. (6)

The sensitivity of MKEn, with respect to a damage parameter p, which can be any
physical parameter such as Young’s modulus, mass density, etc. [24,30], can be written as:

∂MKEnij

∂p
=

1
2

(
∂ωi
∂p

{ϕi}Tr[M]j{ϕi}+ ωi{ϕi}Tr ∂[M]j
∂p

{ϕi}+ 2ωi[M]j
∂{ϕi}

∂p

)
. (7)

It is assumed that damage has only occurred due to the reduction of Young’smodulus
(i.e., reduction in stiffness). Therefore, it is assumed that no mass change has occurred in
the structure, and Equation (7) can be written as:

∂MKEnij

∂p
=
[
2ωi[M]j

1
2{ϕi}Tr[M]j{ϕi}

]{ ∂{ϕi}
∂p
∂ωi
∂p

}
. (8)
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The second vector, which is the first order derivative of the modal parameters, is de‑
rived and can be further studied in references [24,30] as:

∂{ϕi}
∂p
∂ωi
∂p

 =

[
[K]− ωi[M] −[M]{ϕi}
−{ϕi}Tr[M] 0

] −
(

∂[K]
∂pi

− ωi
∂[M]

∂p

)
{ϕi}

1
2{ϕi}Tr ∂[M]

∂p {ϕi}

. (9)

By substitution of Equation (9) into Equation (10), the MKE sensitivity of jth element
for ith mode of vibration will be as:

∂MKEnij

∂p
= {ϕi}Tr[ωi[M]j

1
2 [M]j{ϕi}

]
[KU/D]

−1[Fp
]
{ϕi}. (10)

In which

KU/D =

[
[K]− ωi[M] −[M]{ϕi}

−{ϕi}Tr[M] 0

]
, (11)

and

Fp =

−
(

∂[K]
∂pj

− ωi
∂[M]

∂p

)
1
2{ϕi}Tr ∂[M]

∂p

, (12)

where the subscript U/D refers to the undamped system with distinct and well‑spaced
natural frequency. The parameter pi is the physical parameter that is used to calculate
the elemental mass and stiffness matrices. By assuming that for the ith element there
is a corresponding parameter pi which can be considered to be the Young’s modulus of
elasticity ormass density, or any other parameter of interest. Inmost of the vibration‑based
damage identification approaches, it is assumed that the mass matrix of the structure will
not change due to the occurrence of damage. Hence, the parameter pi is assumed to be
the Young’s modulus of elasticity. This assumption involves only the stiffness changes of
the system and limits the mass change of the structure to zero. Therefore, the sensitivity
matrix of MKEn with respect to parameter Ei is written as:

∂MKEnij

∂Ej
= {ϕi}Tr[ωi[M]j

1
2 [M]j{ϕi}

]
[KU/D]

−1
[

FEj

]
{ϕi}, (13)

where Fp =

[
− ∂[K]

∂p
0

]
.

Using the first order Taylor series expansion, the ratio of change of MKEn can be
written as:

∆MKEnij =
n

∑
j=1

∂MKEnij

∂Ei
∆Ej, (14)

and the ratio of change of [K] can be written as:

[∆K] =
n

∑
j=1

∂[K]
∂Ej

∆Ei, (15)

To calculate the matrix variation [∆K], which describes the global stiffness matrix
change between the intact and healthy structure, the global stiffness matrix should be cal‑
culated using the assembly of the elemental stiffness matrix that indicates damage in each
element. Hence, the [∆K] can be calculated as:

[∆K] = [K]− [K]D =
n

∑
j=1

αj[K]j,
(
0 ≤ αj ≤ 1

)
. (16)
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The alpha parameter in the above equation indicates the severity of damage. The zero
value indicates no damage, and the value of one indicates a full damage corresponding to
the jth element.

By multiplying Equation (10) by the ∆Ej and summing up for all Ej, it yields:

∆MKEnij = {ϕi}Tr[ωi[M]j
1
2 [M]j{ϕi}

]
[KU/D]

−1

− n
∑

j=1
αj[K]j

0

{ϕi}, (17)

Equation (17) can be simplified to:

∆MKEnij =
n

∑
j=1

αj{ϕi}Tr[s]j{ϕi}, (18)

where
[s]j =

[
ωi[M]j

1
2 [M]j{ϕi}

]
[KU/D]

−1
[
−[K]j

0

]
. (19)

Finally, by using Equation (6), MKEnR sensitivity matrix [S∗]i, can be obtained by

[s∗]k =
1

1
2 ωi{ϕi}Tr[M]j{ϕi}

[
ωi[M]j

1
2 [M]j{ϕi}

]
[KU/D]

−1
[
−[K]k

0

]
. (20)

Hence, Equation (17) can be simplified as:

[s∗]{α} = {∆R}, (21)

where
∆Rij = MKEnRij, and

S∗
kij =

n
∑

j=1
αj

1
1
2 ωi{ϕi}Tr [M]j{ϕi}

[
ωi[M]j

1
2 [M]j{ϕi}

]
[KU/D]

−1
[
−[K]k

0

]
. (22)

In the abovementioned description, the MKEnR sensitivity of the jth element to spe‑
cific change in kth member’s Young’s modulus of elasticity for the ith mode of vibration
has been achieved. Additionally, ∆Rij is the MKEnR in the jth element for the ith mode of
vibration. For further information, references [24,30] can be referred to.

Based on the above mathematical derivation, it is clear that the modal kinetic energy
is sensitive to damage occurrence, even when only the Young’s modulus is responsible for
the damage phenomenon in the structure with an absence of mass change.

Similar to the aforementioned mathematical derivations related to the sensitivity of
the MKEn modal feature to damage, a similar analysis should be conducted for the MSEn
modal feature. Again, from the theory of modal energy, the global MSEn of the intact
structure and the MSEnD of the damaged structure can be derived from the mode shapes
and the stiffness matrix of the structure as:

MSEn =
1
2
{ϕi}Tr[K]{ϕi}, (23)

and
MSEnD =

1
2

{
ϕD

i

}Tr[
KD
]{

ϕD
i

}
, (24)

As pointed out in [20,21], when damage occurs in a structure the ratio of change of
MSEn in each element can serve as a damage indicator, as:

MSEnRij =
∆MSEnij

MSEnij
=

MSEnD
ij − MSEnij

MSEnij
. (25)
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The derivative of Equation (4) in respect to p is:

∂MSEnij

∂p
=

1
2

(
∂{ϕi}Tr

∂p
[K]j{ϕi}+ {ϕi}Tr ∂[K]j

∂p
{ϕi}+ {ϕi}Tr[K]j

∂{ϕi}
∂p

)
. (26)

Because [
∂{ϕi}Tr

∂p
[MK]j{ϕi}

]Tr

= {ϕi}Tr[K]j
∂{ϕi}

∂p
, (27)

Noting that
[

∂{ϕi}Tr

∂p [MK]j{ϕi}
]
is a scalar and its transpose is equal to its same value,

it can be written as:

∂MSEnij

∂p
= {ϕi}Tr[K]j

∂{ϕi}
∂p

+
1
2
{ϕi}Tr ∂[K]j

∂p
{ϕi}. (28)

In which can be further written as:

∂MSEnij

∂p
=
[
{ϕi}Tr[K]j 0

]{ ∂{ϕi}
∂p
∂ωi
∂p

}
+

1
2
{ϕi}Tr ∂[K]j

∂p
{ϕi}. (29)

Similar to MKEn sensitivity derivation, the expression of eigenvalue and eigenvector
sensitivity [20,21] can be used by inserting Equation (9) into Equation (28) as:

∂MSEnij

∂p
= {ϕi}Tr [[K]j 0

]
[KU/D]

−1[Fp
]
{ϕi}+

1
2
{ϕi}Tr ∂[K]j

∂p
{ϕi}. (30)

For simplicity, and similar to Equation (18), after considering the Young’s modulus
change, in addition to neglecting themass change, by using the damage parameter α, Equa‑
tion (30) is rewritten as:

∆MSEnij =
n

∑
j=1

αj{ϕi}Tr [K∗]{ϕi}, (31)

where
[K∗] =

[
[K]j 0

]
[KU/D]

−1[Fp
]
+

1
2
[K]k. (32)

Finally, by using Equation (25), the MSEnR sensitivity matrix [K∗]i can be obtained
by:

[K∗]k =
1

1
2{ϕi}Tr[M]j{ϕi}

[[
[K]j 0

]
[KU/D]

−1[Fp
]
+

1
2
[K]k

]
. (33)

Hence, Equation (17) can be simplified as:

[K∗]{α} = {∆R}, (34)

where

∆Rij = MSEnRij, and

K∗
kij =

n
∑

j=1
αj

1
1
2 {ϕi}Tr [M]j{ϕi}

[[
[K]j 0

]
[KU/D]

−1[Fp
]
+ 1

2 [K]k
]
. (35)

In the abovementioned description, the MREnR sensitivity of the jth element to spe‑
cific change in kth member’s Young’s modulus of elasticity for the ith mode of vibration
has been obtained. Additionally, ∆Rij is the MKEnR in the jth element for the ith mode
of vibration. This proves the concept of damage identification using Equation (25). For
further information, references [20,21] can be referred to.
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2.3. Formulation of the Objective Function
The aforementioned deterministic mathematical approach that studies the sensitivity

of modal features is vulnerable to incomplete data and noisy measurements, where any
simple variation of modal parameters might lead to wrong identification. Therefore, a
stochastic optimization method should be employed. Moreover, it is well‑known that the
structural damage identification problem is an ill‑posed problem with a damage param‑
eters region that may have multiple local optima. In this case, the traditional optimizers
could be stuck in the localminima, whichmay deliverwrong damage identification results.
Hence, it is essential to develop robust and powerful objective functions and algorithms,
which could tackle the complex damage identification problem. Therefore, the use of more
than one modal property contributes to improve the overall damage identification, where
each property helps to discover more underlying damage information. Thus, the MSEn
subobjective can be first developed based on Equations (23), (25), and (27) as:

F1 = min

(
N

∑
i=1

MSEnD
i − MSEni

MSEni

)
. (36)

Secondly, the global MKEn of the intact structure and the MKEnD of the damaged
structure can be derived using the modal frequencies, mode shapes, and global mass ma‑
trix of the structure, and, based on Equations (4)–(6), the MKEn sub‑objective function can
be written as:

F2 = min

(
N

∑
i=1

MKEnD
i − MKEni

MKEni

)
. (37)

Using the abovementioned damage indicator, the effect of large values of modal fre‑
quencies related to higher modes of vibration can be reduced, which makes the damage
identification process faster.

In order to further improve damage deductibility when dealing with incomplete data
and noisy conditions, the effect of mode shapes can be separated from the global mass and
stiffness matrices. Therefore, another sub‑objective, which takes advantage of the modal
assurance criterion (MAC) of the mode shapes, can be written as:

F3 = min(1 − mean(diag(MAC))), (38)

where, diag represents the diagonal elements of MAC matrix that measures the correlation
between the analytical and experimental mode shapes; the MAC matrix can be written as:

MACi =

∣∣ϕD
i

Tr.ϕi
∣∣2∣∣ϕT

i .ϕi
∣∣∣∣ϕD

i
Tr.ϕD

i

∣∣ . (39)

The MAC matrix [5] is composed of diagonal and off‑diagonal elements. When mea‑
suring the correlation between two mode shapes, two correlated mode shapes should re‑
sult in aMACmatrix having diagonal elements of 1, and off‑diagonal elements of less than
0.1 (typically zeros). This feature is used in this sub‑objective to update the FEmodel based
on minimizing the difference between the value of one and the mean diagonal elements of
the MAC matrix. When the difference is zero, there is a complete correlation between the
two mode shapes; i.e., the FE model matches the current condition of the structure.

Based on Equations (36)–(38), the overall objective function of the considered opti‑
mization problem can be written as:

minF = min
(

N
∑

i=1

(
MSEnD

i −MSEni
MSEni

)
+

N
∑

i=1

(
MKEnD

i −MKEni
MKEni

)
+(1 − mean(diag(MAC)))

)
.

(40)
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As observed in the literature [6–32], most simulated damage scenarios aremodeled as
a reduction of stiffness. The reduction of stiffness can explain most commonly occurring
structural damage types, such as corrosion, cracks, defects, erosion, structural element
links, bolt loosening, etc. Usually, mass‑related structural damage is not studied as it is
mostly associatedwith loss ofmaterial or structural elements, which can be easily observed
without a damage identification algorithm. Furthermore, as we start with the stiffness and
mass matrices of the intact structure, we do not have the current condition of damaged
structure matrices. Any change in stiffness will change all the modal parameters and the
system matrices. Therefore, the reduction of stiffness has been used by most researchers
to simulate structural damage.

The existing structural damage is often represented by a reduction in Young’s mod‑
ulus of elasticity, which is linearly linked to the stiffness of the structure. This might not
correspond to all categories of damage, but can be referred to most common structure
degradation, namely cracks, loosening of structural links, environmental corrosion, etc.
Therefore, for computational purposes, the damage can be simulated as stiffness reduc‑
tion or a reduction in modulus of elasticity at any element, and can be written as:

∆Ej = Ej − αjEj, (41)

where ∆Ej is the damage severity and Ej is the modulus of elasticity of the intact struc‑
ture; αj j is the damage factor that represents the reduction in Ej for each damaged element,
which is directly used as the decision parameters of the inverse problem of structural dam‑
age identification. Here, if αj = 1, there is no damage in the selected element; whereas, if
αj = 0, there is a complete absence of stiffness, i.e., full damage.

3. The Theory of the Proposed OL‑UPSGBO Algorithm
3.1. Oppositional‑Based Learning (OL)

When solving complex optimization problems which hide multimodality features or
include several local optima, manymetaheuristics tend to have slower convergence behav‑
ior or be stuck in local search areas. Recently, the OL framework has been used for over‑
coming the aforementioned difficulties and boosting the speed of convergence towards
the optimal region. The main idea behind the OL is to compare the initial guess solution
to its oppositional solution [54,55]. For one solution in the single‑dimension space, the
OL calculates the opposite solution using a random probability, and chooses the superior
candidate solution between the initial and opposite agents, as in Figure 1. As a result, the
convergence speed of the metaheuristic can be enhanced and variability in the population
can be highly improved. This search enhancement can be applied both in the initializa‑
tion stage and later in the main loop of the metaheuristic, or in both stages. The overall
mathematical equation of OL strategy can be written as follows:

Xij(t + 1) =

{
∆j + rand()×

(
∆j − Xij(t)

)
, i f

(
Xij(t) < ∆j

)
,

∆j − rand()×
(
Xij(t)− ∆j

)
, i f

(
Xij(t) ≥ ∆j

)
,

(42)

and
∆j =

(
XL

j + XU
j

)
/2, (43)

where Xij(t + 1) is the oppositional solution corresponding to jth dimension of the ith
solution in the tth iteration; XL

j and XU
j are the lower and upper bounds; ∆j is the center

of the distance between the upper and lower bounds of the jth dimension. The variable
rand() is a uniform random number.
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3.2. The UPSO
The UPSO was originally proposed by Parsopoulos and Vrahatis [36] in order to pro‑

vide a balance between exploration and exploitation schemes; specifically, to balance the
cognitive and social paradigms of the original constriction PSO. It is well‑known that the
PSO is composed of twomain schemes, namely the global neighborhood‑based scheme, in
which the whole swarm is guided by the swarm superior particle, and the local
neighborhood‑based scheme, which relies on the use of smaller swarms guided by the lo‑
cal superior particle. According to the constriction scheme developed by Clerc and Kenne‑
dy [56], the particle X updates its position using the following equations as:

Vi(t + 1) = Ω[Vi(t) + c1r1(Pi(t)− Xi(t)) + c2r2(Psi(t)− Xi(t))],

Xi(t + 1) = Xi(t) + Vi+1(t + 1),
(44)

where Vi(t) is the ith velocity at tth iteration; Ω is the constriction coefficient; c coefficients
are constants which indicate the cognitive and social factors; r variables are two random
numbers ∈ [0, 1]; PG is the global superior particle; Psi is the local superior particle perfor‑
mance; Ω, c1, and c2 can be determined from [36].

The UPSO was originally introduced to find a balance between the global and local
schemes, or the exploration and exploitation of the original behavior of PSO. Let Gi(t + 1)
and Li(t + 1) be the particle Xi velocity related to global and local schemes, respectively,
it can then be written as:

Gi(t + 1) = Ω[Vi(t) + c1r1(Pi(t)− Xi(t)) + c2r2(Ps(t)− Xi(t))],

Li(t + 1) = Ω[Vi(t) + c1r′1(Pi(t)− Xi(t)) + c2r′2(Psi (t)− Xi(t))],
(45)

where s is the index of the superior particle of the whole swarm (global variant); and si
is the index of the superior particle in the neighborhood of Xi (local variant). The UPSO
mathematical framework is defined as:

Ui(t + 1) = (1 − µ)Li(t + 1) + µGi(t + 1),

Xi(t + 1) = Xi(t) + Ui(t + 1),
(46)

where µ is a constant factor number ∈ [0, 1], called the unification factor, that balances
both local and global schemes of UPSO. When µ = 1, the UPSO behaves same as the orig‑
inal global PSO, whereas µ = 0, the UPSO behaves same as the original local PSO. The
various values of the unification factor correspond to various combinations of exploration‑
exploitation paradigms of UPSO. Nevertheless, it was recommended by Tsai [57] that
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µ = 0.5, and can provide the best balance in UPSO behavior and will be considered in
this study.

3.3. The GBO Algorithm
The GBO algorithm [53] was originally proposed to modify the Newtonian principle

of gradient‑based optimization and integrate it with the theory of population‑based opti‑
mization to form a power algorithm able to solve complex problems. The GBO has three
stages, namely the initialization stage, the gradient search rule (GSR) stage, and the local
escaping stage. The GBO stages are summarized as follows.

3.3.1. The Initialization Stage
Similar to other ECs, the GBO needs to randomly create a group of initial candidate

solutions. The initial set of solution vectors has N × D dimensions, where N is the num‑
ber of candidate vectors and D is the dimension of the problem. The initialization can be
performed using the following equation as:

vn = vmin + rand(0, 1)× (vmax − vmin), (47)

where vmin and vmax are the bound constraints of the decision variable v, and rand(0, 1) is
a randomly generated number ∈ [0, 1].

3.3.2. The GSR Stage
After the initialization of the population, the search for an optimal solution begins by

maintaining and balancing the exploration and exploitation around the optimal solution.
For this purpose, a stochastic parameter, called ρ1, can be calculated as:

ρ1 = α × (2 × rand − 1), (48)

where the operator α can be calculated as:

α =

∣∣∣∣β × sin
(

3π

2
+ sin

(
β × 3π

2

))∣∣∣∣, (49)

and the operator β can be realized as:

β = βmin

1 + (βmax − 1)

(
1 −

(
i

imax

)3
)2
, (50)

where [βmin, βmax] = [0.2, 1.2], i is the current generation number and imax is the total
number of generations. The variations of α in a decreasing and increasing way during the
algorithm’s execution contribute to changing the value of ρ1 in a sinusoidal fashion, which
gives better variability of exploration and exploitation in the search space. Hence, the GSR
can be calculated as follows:

GSR = randn × ρ1 ×
2 × ∆ν × νn

(νworst − νbest + ϵ)
, (51)

where ∆ν is defined based on the variation between νbest and νi
r1 that is a randomly selected

solution vector iteration. i, νworst, and νbest are the current best and worst solution vectors,
νn is the current solution vector, and ϵ is a constant.

In order to ensure that the ∆v is not fixed during the running of the algorithm and to
boost the exploration, another parameter δ is calculated, as in Equation (54).

∆ν = rand(: N)× |step|, (52)
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where

step =

(
νbest − νt

r1
)
+ δ

2
, (53)

and

δ = 2 × rand ×
(∣∣∣∣∣νt

r1 + νt
r2 + νt

r3 + νt
r4

4
− νt

n

∣∣∣∣∣
)

, (54)

where rand is a random vector with N dimensions, parameters r1, r2, r3, and r4 are four
different randomly selected integers ∈ [1, N], and step is the step size.

Another term is added to further promote the abilities of GBO and provide better
exploration, which is the direction movement (DM); this takes advantage of the νbest and
moves the current position νn towards (vbest − vn) and can be defined as:

MD = randn × ρ2 × (νbest − νn), (55)

where randn is a random number ∈ [0, 1], and ρ2 a stochastic parameter aids to give ev‑
ery solution vector unequal step, the parameter ρ2 is another important stochastic param‑
eter similar to ρ1 as two leading stochastic influencers of GBO. The parameter η can be
expressed as:

ρ2 = α × (2 × rand − 1), (56)

Finally, based on the GSR and DM, Equations (51) and (55) are used to update the
current vector (vi

n) as follows:

ν1i
n = νi

n − GSR + DM, (57)

where ν1i
n is the new solution vector after updating νi

n. Moreover, Equation (30) can be
further reformed as follows:

ν1i
n = νi

n − randn × ρ1 ×
2 × ∆ν × νi

n(
upi

n − uqi
n + ϵ

) + randn × ρ2 ×
(

νbest − νi
n

)
(58)

where upi
n and uqi

n are equal to un + ∆v and un − ∆v, un is the average vector between the
current vector vn and zn+1 vector, which is calculated as:

zn+1 = νn − randn × ρ1 ×
2 × ∆ν × νn

(νworst − νbest + ϵ)
, (59)

Another stochastic position updating ν2i
n can be adopted by replacing νbest and vn

in Equation (58) with two randomly selected vectors, vi
r1 and vi

r2; the new vector can be
calculated as follows:

ν2i
n = νi

n − randn × ρ1 ×
2 × ∆ν × νi

n(
upi

n − uqi
n + ϵ

) + randn × ρ2 ×
(

vi
r1 − vi

r2

)
. (60)

Themain contribution of Equation (58) is to govern the exploration procedure of GBO;
whereas, the primarymechanism of Equation (60) serves to perform the exploitation frame‑
work. Therefore, based on the vectors v1n and v2n, the leading mathematical term of GBO
that updates the position of νi

n can be expressed as:

νi+1
n = ra ×

(
rb × ν1i

n + (1 − rb)× ν2i
n

)
+ (1 − ra)× ν3i

n, (61)

where
ν3i

n = νn − ρ1 ×
(

ν2i
n − ν1i

n

)
, (62)

and ra and rb are two random variables ∈ [0, 1].
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3.3.3. The Local Escaping Stage
To improve the main search mechanism of GBO and adapt its behavior to solve more

complex optimization problems, the local escaping paradigm (LEP) was introduced in [53].
The LEP aims to guide the current solution vector to escape from the local search area
and prevent the GBO from giving local optimum solutions. The LEP adopts two main
equations, as follows:

νLEP =



νi+1
n + σ1 × (γ1 × νbest − γ2 × νr)

+σ2 × ρ1 × γ3 ×
(

ν2i
n − ν1i

n

)
)/2

+σ2 × ρ1γ2 ×
(
νi

r1 − νi
r2
)
)/2, if rand < 0.5,

νbest + σ1 × (γ1 × νbest − γ2 × νr)

+σ2 × ρ1 × γ3 ×
(

ν2i
n − ν1i

n

)
)/2

+σ2 × ρ1 × γ2 ×
(
νi

r1 − νi
r2
)
)/2, otherwise,

(63)

where σ1 and σ2 are Gaussian uniform distribution random number ∈ [−1, 1], νr is a ran‑
domly selected solution vector, and γ1, γ2, and γ3 are random numbers that can be calcu‑
lated as:

[γ1
γ2
γ3

]
=



{
2 × rand if u1 < 0.5

1 else,{
rand if u1 < 0.5

1 else,{
rand if u1 < 0.5

1 else,

(64)

where rand is a random variable ∈ [0 − 1], and u1 is a probability rate.
To generate the random solution vector νr in Equation (63), the following expression

is employed:

νr =

{
νmin + r × (νmax − νmin ) i f rand < 0.5,

νra else ,
(65)

where νra is a randomly chosen vector from the population, and rand is a probability rate.
TheGBOflowchart is shown in Figure 2 and the overallmathematical visualization of GBO
can be observed in Figure 3.
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3.4. The Proposed OL‑UPSGBO Algorithm
In order to provide an enhanced optimization algorithm that is able to tackle the in‑

verse analysis of structural damage problems, the OL‑UPSGBO is proposed. The new OL‑
UPSGBOputs to use the aforementioned search paradigms, which serve to boost the search
performance and overcome the complex features of the inverse problem, in which there is
no direct link between the search agents and the objective function. Within the framework
of OL‑UPSGBO, the algorithm takes advantage of the OL procedure in both the initializa‑
tion of the population of the search agents, as well as inside the iterative phase. The main
iterative evolutionary procedure first exploits the UPSO algorithm procedure to select the
global, local, and best performed search agents and improve them in each iteration. Later,
the GBO utilizes the improved elite search agents to perform the main optimization task.
Thereafter, the OL improves the convergence of the algorithm within the iterative phase.
The overall schematic diagram of the developed OL‑UPSGBO algorithm can be observed
in Figure 4.
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3.5. Benchmarking of the OL‑UPSGBO Algorithm
To benchmark the performance of the proposed OL‑UPSGBO algorithm, the IEEE

CEC 2017 test suite is utilized [58,59]. The CEC 2017 benchmark objective function set is
one of the most complex bound constraint benchmark functions. It contains 30 objective
functions in which functions [F1 − F2] are unimodal, [F3 − F9] are multimodal, [F11 − F20]
are hybrid, and [F21 − F30] are composite functions. The essential functions on which CEC
2017 test suite is built are shown in Table 1, as well as in [58,59].
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Table 1. The CEC 2017 test suite [58,59].

Function Type No. Function Optimum

Unimodal
F1 Shifted and Rotated Bent Cigar Function 100

F2 NA NA

F3 Shifted and Rotated Zakharov Function 300

Multimodal

F4 Shifted and Rotated Rosenbrock’s Function 400

F5 Shifted and Rotated Rastrigin’s Function 500

F6 Shifted and Rotated Expanded Scaffer’s f6 Function 600

F7 Shifted and Rotated Lunacek Bi_Rastrigin Function 700

F8 Shifted and Rotated Non‑Continuous Rastrigin’s Function 800

F9 Shifted and Rotated Levy Function 900

F10 Shifted and Rotated Schwefel’s Function 1000

Hybrid

F11 Hybrid Function 1 (N = 3) 1100

F12 Hybrid Function 2 (N = 3) 1200

F13 Hybrid Function 3 (N = 3) 1300

F14 Hybrid Function 4 (N = 4) 1400

F15 Hybrid Function 5 (N = 4) 1500

F16 Hybrid Function 6 (N = 4) 1600

F17 Hybrid Function 6 (N = 5) 1700

F18 Hybrid Function 6 (N = 5) 1800

F19 Hybrid Function 6 (N = 5) 1900

F20 Hybrid Function 6 (N = 6) 2000

Composite

F21 Composition Function 1 (N = 3) 2100

F22 Composition Function 2 (N = 3) 2200

F23 Composition Function 3 (N = 4) 2300

F24 Composition Function 4 (N = 4) 2400

F25 Composition Function 5 (N = 5) 2500

F26 Composition Function 6 (N = 5) 2600

F27 Composition Function 7 (N = 6) 2700

F28 Composition Function 8 (N = 6) 2800

F29 Composition Function 9 (N = 3) 2900

F30 Composition Function 10 (N = 3) 3000

Bearing inmind the explicit complexity of the CEC 2017 test suite and the nature of the
hybrid and composite functions, the OL‑UPSGBO is tested using a dimension of 30 search
agents. According to the CEC recommendations, the overall number of evaluations is set
at 200,000 evaluations. Each algorithm execution is conducted 20 times for each function.
Using this framework, the proposed OL‑UPSGBO is compared to five other MHs: the orig‑
inal the GrayWolf Optimizer (GWO) [60], theWhale Optimization Algorithm (WOA) [61],
theMulti‑verse Optimizer (MVO) [62], the Sine Cosine Algorithm (SCA) [63], the GBO [53],
the Arithmetic Optimization Algorithm (AOA) [64], the Equilibrium Optimizer (EO) [65],
and the Aquilla Optimizer (AO) [66]. The stochastic parameters of each MH are set as
the original recommended settings suggested by each paper, as in Table 2. The paramet‑
ric statistical comparison is made using the mean, best, worst, and standard deviation
(STD). All the outcomes of executing the algorithm mentioned above are presented in
Table 3 for the unimodal and multi‑modal, hybrid, and composite functions, respectively.
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Moreover, the Friedman test and Wilcoxon test were conducted as two non‑parametric
statistical tests. The average ranking and total ranking based on the Friedman test can be
observed in the last two rows of Table 3, which show that the proposed OLUPSGBO has
the best rank among the tested algorithms. Furthermore, to further graphically illustrate
the Friedman test ranks, the total ranks can be seen in Figure 5. The Wilcoxon test was
also conducted and p‑value results of the test can be tabulated in Table 4. It is clear that the
OLUPSUBOalgorithm is statistically significant to other algorithms corresponding tomost
studied functions with a p‑value <0.05. Nevertheless, it is common to have statistical sim‑
ilarities between the algorithms for fewer cases. The overall results demonstrate that the
proposedOL‑UPSGBO algorithm has great performancewhen comparedwith the studied
algorithms and the component algorithms for higher dimensions using the CEC 2017 test
suite. In addition, the convergence curves of some tested algorithms can be observed in
Figure 6. By studying the test results, it is evident that the OL‑UPSGBO algorithm is statis‑
tically significant for most of CEC 2017 test functions; hence, the proposed OL‑UPSGBO
algorithm can be highly implemented for solving modern complex optimization problems
and practical engineering optimization problems, such as the inverse analysis of structural
damage problem.

Table 2. Stochastic parameter settings for the compared algorithms.

Algorithm Parameters

GWO Default stochastic parameter descending from 2 to 0.

WOA Default stochastic parameter one descending from 2 to 0.
Default stochastic parameter two descending from 2 to 0.

SCA Default stochastic parameter descending from 2 to 0.

MVO Traveling distance rate (default)
Wormhole existence probability (default)

AOA

Default stochastic parameters:
MOP_Max = 1;
MOP_Min = 0.2;

Alpha = 5;
Mu = 0.499;

EO

Default stochastic parameters:
a1 = 5;
a2 = 1;

GP = 0.5;

AO
Default stochastic parameters:

alpha = 0.1;
delta = 0.1;

OL‑UPSGBO
βmin = 0.2 (default)

βmax = 1.2 2 (default)
ξ = 0.5 (default)
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Table 3. The benchmarking of the OL‑UPSGBO algorithm for the CEC 2017.

Function Property GWO WOA MVO SCA GBO AOA EO AO OLPSGBO

F1

Ave 1.1 × 109 2.6 × 106 3.7 × 108 1.6 × 1010 1.9 × 103 2.0 × 108 5.6 × 103 3.0 × 102 1.5 × 102

Min 5.5 × 108 7.2 × 105 2.8 × 108 1.0 × 1010 3.2 × 102 9.4 × 103 1.2 × 102 1.1 × 102 1.0 × 102

Max 2.7 × 109 5.3 × 106 4.2 × 108 2.1 × 1010 5.1 × 103 8.2 × 108 1.7 × 104 9.2 × 102 2.9 × 102

STD 6.5 × 108 1.2 × 106 4.5 × 107 2.8 × 109 1.9 × 103 3.0 × 108 5.3 × 103 2.5 × 102 7.4 × 101

Rank 8 5 7 9 3 6 4 2 1

F2 NA NA NA NA NA NA NA NA NA NA

F3

Ave 2.9 × 104 2.0 × 105 1.8 × 103 4.5 × 104 3.0 × 102 7.8 × 104 7.3 × 102 3.0 × 104 3.0 × 102

Min 8.3 × 103 9.9 × 104 1.6 × 103 4.0 × 104 3.0 × 102 6.0 × 104 4.0 × 102 2.1 × 104 3.0 × 102

Max 3.9 × 104 3.5 × 105 2.0 × 103 5.6 × 104 3.0 × 102 8.8 × 104 1.4 × 103 3.5 × 104 3.0 × 102

STD 9.0 × 103 7.6 × 104 1.4 × 102 5.3 × 104 2.3 × 10−2 9.5 × 103 3.3 × 102 4.9 × 103 1.3 × 10−3

Rank 8 5 7 9 3 6 4 2 1

F4

Ave 5.8 × 102 5.6 × 102 5.2 × 102 1.6 × 103 4.5 × 102 1.0 × 104 5.0 × 102 5.5 × 102 4.0 × 102

Min 5.4 × 102 4.8 × 102 5.0 × 102 1.2 × 103 4.0 × 102 5.6 × 103 4.7 × 102 5.2 × 102 4.0 × 102

Max 6.3 × 102 6.5 × 102 5.3 × 102 2.3 × 103 4.8 × 102 1.3 × 104 5.2 × 102 6.1 × 102 4.0 × 102

STD 3.4 × 101 4.6 × 101 1.2 × 101 3.5 × 102 3.1 × 101 2.6 × 103 1.6 × 101 2.9 × 101 2.1 × 102

Rank 8 5 7 9 3 6 4 2 1

F5

Ave 5.7 × 102 7.9 × 102 7.0 × 102 8.0 × 102 6.7 × 102 8.2 × 102 5.6 × 102 6.7 × 102 6.3 × 102

Min 5.6 × 102 7.1 × 102 6.7 × 102 7.7 × 102 6.2 × 102 7.5 × 102 5.3 × 102 6.4 × 102 5.8 × 102

Max 6.0 × 102 9.5 × 102 7.3 × 102 8.2 × 102 7.1 × 102 8.6 × 102 6.0 × 102 7.0 × 102 6.6 × 102

STD 1.4 × 101 7.1 × 101 2.1 × 101 1.7 × 101 2.4 × 101 3.4 × 101 2.0 × 101 2.0 × 101 2.9 × 101

Rank 2 7 6 8 5 9 1 4 3

F6

Ave 6.1 × 102 6.7 × 102 6.2 × 102 6.6 × 102 6.2 × 102 6.7 × 102 6.0 × 102 6.5 × 102 6.1 × 102

Min 6.1 × 102 6.6 × 102 6.1 × 102 6.5 × 102 6.1 × 102 6.5 × 102 6.0 × 102 6.4 × 102 6.0 × 102

Max 6.2 × 102 6.8 × 102 6.3 × 102 6.7 × 102 6.2 × 102 6.7 × 102 6.0 × 102 6.5 × 102 6.2 × 102

STD 2.0 × 101 7.1 × 101 7.3 × 101 6.0 × 101 4.9 × 101 6.4 × 101 8.0 × 10−2 5.4 × 101 6.0 × 101

Rank 3 9 4 7 5 8 1 6 2

F7

Ave 9.3 × 102 1.3 × 103 9.8 × 102 1.1 × 103 9.3 × 102 1.3 × 103 8.0 × 102 1.0 × 103 8.8 × 102

Min 9.1 × 102 1.1 × 103 9.4 × 102 1.1 × 103 8.9 × 102 1.2 × 103 7.6 × 102 9.4 × 102 8.2 × 102

Max 9.6 × 102 1.5 × 103 1.0 × 102 1.2 × 103 9.8 × 102 1.4 × 103 8.3 × 102 1.1 × 103 9.2 × 102

STD 1.6 × 101 1.1 × 102 2.4 × 101 2.4 × 101 3.3 × 101 4.8 × 101 2.0 × 101 5.1 × 101 3.0 × 101

Rank 4 8 5 7 3 9 1 6 2

F8

Ave 9.4 × 102 1.0 × 103 1.0 × 103 1.1 × 103 9.3 × 102 1.1 × 103 8.7 × 102 9.3 × 102 9.1 × 102

Min 9.1 × 102 9.6 × 102 9.7 × 102 1.0 × 103 8.9 × 102 1.0 × 103 8.4 × 102 8.9 × 102 8.8 × 102

Max 9.6 × 102 1.1 × 103 1.1 × 103 1.1 × 103 9.8 × 102 1.1 × 103 9.0 × 102 9.6 × 102 9.3 × 102

STD 1.4 × 101 6.3 × 101 4.0 × 101 1.6 × 101 3.3 × 101 3.4 × 101 1.9 × 101 2.3 × 101 1.8 × 101

Rank 5 6 7 9 4 8 1 3 2

F9

Ave 1.7 × 103 7.5 × 103 1.3 × 103 5.6 × 103 2.0 × 103 5.8 × 103 9.0 × 102 5.2 × 103 1.6 × 103

Min 1.2 × 103 5.1 × 103 1.0 × 103 4.4 × 103 1.4 × 103 4.5 × 103 9.0 × 102 3.5 × 103 1.2 × 103

Max 2.4 × 103 1.0 × 104 2.5 × 103 6.5 × 103 3.3 × 103 7.2 × 103 9.1 × 102 7.1 × 103 2.1 × 103

STD 3.5 × 102 1.8 × 103 4.7 × 102 6.8 × 102 6.2 × 102 8.0 × 102 4.5 × 101 1.1 × 103 3.1 × 102

Rank 5 6 7 9 4 8 1 3 2
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Table 3. Cont.

Function Property GWO WOA MVO SCA GBO AOA EO AO OLPSGBO

F10

Ave 5.9 × 103 6.4 × 103 7.2 × 103 8.2 × 103 5.1 × 103 6.8 × 103 4.6 × 103 4.9 × 103 4.5 × 103

Min 4.7 × 103 5.3 × 103 6.6 × 103 7.4 × 103 4.5 × 103 6.0 × 103 3.3 × 103 4.0 × 103 3.8 × 103

Max 6.5 × 103 8.4 × 103 8.1 × 103 8.7 × 103 7.0 × 103 7.7 × 103 5.8 × 103 5.7 × 103 5.2 × 103

STD 5.4 × 102 1.0 × 103 4.8 × 102 4.0 × 102 7.5 × 102 5.7 × 102 8.6 × 102 5.4 × 102 4.1 × 102

Rank 5 6 7 9 4 8 1 3 2

F11

Ave 1.5 × 103 1.5 × 103 1.4 × 103 2.4 × 103 1.2 × 103 4.4 × 103 1.4 × 103 1.4 × 103 1.2 × 103

Min 1.3 × 103 1.3 × 103 1.3 × 103 2.0 × 103 1.2 × 103 1.8 × 103 1.3 × 103 1.3 × 103 1.2 × 103

Max 2.1 × 103 1.7 × 103 1.5 × 103 2.9 × 103 1.3 × 103 8.6 × 103 1.4 × 103 1.5 × 103 1.2 × 103

STD 2.7 × 102 1.5 × 102 4.9 × 101 3.3 × 102 2.7 × 101 2.3 × 103 6.5 × 101 6.3 × 101 1.1 × 101

Rank 7 6 5 8 2 9 3 4 1

F12

Ave 9.6 × 107 4.1 × 107 4.7 × 107 1.5 × 109 2.9 × 104 9.2 × 109 7.5 × 105 1.5 × 107 2.9 × 104

Min 5.5 × 107 9.3 × 106 3.4 × 107 7.6 × 108 1.3 × 104 4.0 × 109 3.0 × 105 3.0 × 106 1.3 × 104

Max 1.8 × 108 1.4 × 108 7.0 × 107 2.2 × 109 4.2 × 104 1.2 × 1010 2.0 × 106 2.6 × 107 4.3 × 104

STD 4.1 × 107 3.8 × 107 1.2 × 107 5.0 × 108 1.0 × 104 2.6 × 109 5.1 × 105 6.9 × 106 1.1 × 104

Rank 7 6 5 8 2 9 3 4 1

F13

Ave 2.5 × 107 1.1 × 105 1.7 × 107 6.4 × 108 1.0 × 104 9.3 × 107 4.3 × 104 3.2 × 105 7.6 × 103

Min 1.2 × 107 4.3 × 104 8.0 × 106 3.8 × 108 3.0 × 103 2.4 × 104 9.4 × 103 7.6 × 104 2.5 × 103

Max 5.2 × 107 2.5 × 105 2.1 × 107 9.5 × 108 1.8 × 104 6.1 × 108 1.0 × 105 5.4 × 105 1.5 × 104

STD 1.2 × 107 6.4 × 104 5.0 × 106 2.0 × 108 6.3 × 103 1.9 × 108 2.8 × 104 1.3 × 105 4.5 × 103

Rank 7 4 6 9 2 8 3 5 1

F14

Ave 8.0 × 104 4.7 × 105 1.9 × 104 2.1 × 105 1.8 × 103 7.1 × 104 6.2 × 104 2.9 × 105 1.7 × 103

Min 1.6 × 104 1.6 × 104 4.2 × 103 4.6 × 104 1.6 × 103 1.7 × 104 2.4 × 104 3.7 × 104 1.6 × 103

Max 2.5 × 105 2.0 × 106 3.2 × 104 5.6 × 105 3.2 × 103 1.4 × 105 1.0 × 105 8.3 × 105 1.7 × 103

STD 7.0 × 104 6.1 × 105 7.9 × 103 1.9 × 105 5.0 × 102 3.9 × 104 2.6 × 104 2.3 × 105 4.9 × 101

Rank 6 9 3 7 2 5 4 8 1

F15

Ave 4.9 × 105 9.5 × 104 1.8 × 106 2.0 × 107 1.2 × 104 2.1 × 104 2.3 × 104 7.6 × 104 2.5 × 103

Min 1.4 × 105 1.7 × 104 9.3 × 105 1.9 × 106 1.9 × 103 1.6 × 104 7.5 × 103 3.1 × 104 1.6 × 103

Max 1.1 × 106 1.9 × 105 2.6 × 106 4.4 × 107 4.0 × 104 4.4 × 104 5.9 × 104 1.5 × 105 5.3 × 103

STD 2.7 × 105 5.0 × 104 6.3 × 105 1.2 × 107 1.3 × 104 8.9 × 103 1.7 × 104 3.8 × 104 1.3 × 103

Rank 7 6 8 9 2 3 4 5 1

F16

Ave 2.6 × 103 3.3 × 103 2.9 × 103 3.8 × 103 2.7 × 103 3.9 × 103 2.6 × 103 3.1 × 103 2.4 × 103

Min 2.3 × 103 2.5 × 103 2.4 × 103 3.5 × 103 2.4 × 103 3.0 × 103 2.0 × 103 2.6 × 103 2.1 × 103

Max 2.8 × 103 3.8 × 103 3.3 × 103 4.0 × 103 3.1 × 103 4.8 × 103 3.2 × 103 4.0 × 103 2.6 × 103

STD 1.9 × 102 4.3 × 102 2.6 × 102 1.6 × 102 2.5 × 102 5.2 × 102 3.7 × 102 4.1 × 102 1.9 × 102

Rank 3 7 5 8 4 9 2 6 1

F17

Ave 2.0 × 103 2.5 × 103 2.1 × 103 2.5 × 103 2.3 × 103 2.7 × 103 2.2 × 103 2.3 × 103 2.1 × 103

Min 1.9 × 103 2.1 × 103 2.0 × 103 2.3 × 103 2.0 × 103 2.5 × 103 2.0 × 103 1.8 × 103 1.9 × 103

Max 2.1 × 103 2.9 × 103 2.3 × 103 2.7 × 103 2.7 × 103 3.2 × 103 2.3 × 103 2.6 × 103 2.3 × 103

STD 7.7 × 101 2.4 × 102 1.0 × 102 1.7 × 102 2.5 × 102 2.6 × 102 9.6 × 101 2.4 × 102 1.6 × 102

Rank 1 8 3 6 5 9 4 7 2
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Table 3. Cont.

Function Property GWO WOA MVO SCA GBO AOA EO AO OLPSGBO

F18

Ave 1.3 × 106 2.8 × 106 3.3 × 105 5.1 × 106 3.3 × 104 1.1 × 106 4.0 × 105 1.6 × 106 1.7 × 104

Min 9.8 × 104 2.7 × 105 1.8 × 105 2.8 × 106 1.1 × 104 1.6 × 105 1.5 × 105 2.2 × 105 2.7 × 103

Max 7.2 × 106 9.7 × 106 4.6 × 105 8.3 × 106 9.4 × 104 2.6 × 106 7.7 × 105 5.6 × 106 3.3 × 104

STD 2.1 × 106 3.1 × 106 1.1 × 105 1.7 × 106 2.9 × 104 6.7 × 105 1.9 × 105 2.0 × 106 1.1 × 104

Rank 5 8 3 9 2 6 4 7 1

F19

Ave 1.5 × 106 2.8 × 106 2.4 × 106 3.8 × 107 6.4 × 103 2.7 × 103 3.2 × 104 8.0 × 105 2.3 × 103

Min 3.0 × 105 2.9 × 105 1.2 × 106 1.1 × 107 2.0 × 103 2.5 × 103 3.2 × 103 8.7 × 104 2.0 × 103

Max 4.5 × 106 7.4 × 106 6.2 × 106 8.6 × 107 2.3 × 104 2.9 × 103 6.6 × 104 1.8 × 106 3.0 × 103

STD 1.2 × 106 2.2 × 106 1.4 × 106 2.4 × 107 6.1 × 103 1.3 × 102 2.5 × 104 6.1 × 105 2.6 × 102

Rank 6 8 7 9 3 2 4 5 1

F20

Ave 2.4 × 103 2.8 × 103 2.5 × 103 2.7 × 103 2.4 × 103 2.7 × 103 2.4 × 103 2.5 × 103 2.3 × 103

Min 2.2 × 103 2.4 × 103 2.2 × 103 2.5 × 103 2.2 × 103 2.5 × 103 2.3 × 103 2.2 × 103 2.2 × 103

Max 2.7 × 103 3.0 × 103 2.9 × 103 2.9 × 103 2.5 × 103 2.9 × 103 2.8 × 103 2.8 × 103 2.5 × 103

STD 1.3 × 102 1.9 × 102 1.9 × 102 1.3 × 102 1.2 × 102 1.1 × 102 2.0 × 102 1.8 × 102 1.2 × 102

Rank 3 9 6 8 2 7 4 5 1

F21

Ave 2.4 × 103 2.5 × 103 2.5 × 103 2.6 × 103 2.4 × 103 2.6 × 103 2.4 × 103 2.5 × 103 2.4 × 103

Min 2.4 × 103 2.5 × 103 2.4 × 103 2.5 × 103 2.4 × 103 2.6 × 103 2.4 × 103 2.4 × 103 2.4 × 103

Max 2.5 × 103 2.7 × 103 2.5 × 103 2.6 × 103 2.5 × 103 2.6 × 103 2.5 × 103 2.5 × 103 2.5 × 103

STD 2.7 × 101 6.3 × 101 2.7 × 101 1.6 × 101 3.0 × 101 2.7 × 101 4.0 × 101 3.9 × 101 4.1 × 101

Rank 4 7 6 8 3 9 1 5 2

F22

Ave 4.3 × 103 6.0 × 103 6.8 × 103 9.1 × 103 3.2 × 103 8.5 × 103 6.1 × 103 2.8 × 103 2.3 × 103

Min 2.5 × 103 2.3 × 103 2.4 × 103 4.0 × 103 2.3 × 103 6.7 × 103 2.3 × 103 2.3 × 103 2.3 × 103

Max 7.5 × 103 8.5 × 103 9.7 × 103 1.0 × 104 8.0 × 103 9.3 × 103 7.9 × 103 6.6 × 103 2.3 × 103

STD 2.2 × 103 2.5 × 103 3.1 × 103 1.8 × 103 2.0 × 103 7.3 × 102 2.1 × 103 1.4 × 103 3.0 × 101

Rank 4 5 7 9 3 8 6 2 1

F23

Ave 2.8 × 103 3.1 × 103 2.9 × 103 3.0 × 103 2.8 × 103 3.4 × 103 2.9 × 103 2.8 × 103 2.8 × 103

Min 2.8 × 103 2.9 × 103 2.8 × 103 2.9 × 103 2.7 × 103 3.3 × 103 2.7 × 103 2.8 × 103 2.8 × 103

Max 2.9 × 103 3.3 × 103 3.0 × 103 3.0 × 103 2.8 × 103 3.6 × 103 4.0 × 103 2.9 × 103 2.8 × 103

STD 1.7 × 101 1.4 × 103 4.9 × 101 3.4 × 101 2.8 × 101 8.4 × 101 3.9 × 103 4.0 × 101 1.3 × 101

Rank 3 8 5 7 2 9 6 4 1

F24

Ave 3.0 × 103 3.2 × 103 3.0 × 103 3.2 × 103 3.0 × 103 3.7 × 103 3.0 × 103 3.1 × 103 2.9 × 103

Min 3.0 × 103 3.1 × 103 3.0 × 103 3.1 × 103 2.9 × 103 3.6 × 103 2.9 × 103 2.9 × 103 2.9 × 103

Max 3.0 × 103 3.5 × 103 3.0 × 103 3.2 × 103 3.0 × 103 4.0 × 103 3.9 × 103 3.3 × 103 3.0 × 103

STD 8.4 × 101 1.5 × 102 2.4 × 101 3.4 × 101 2.7 × 101 1.4 × 102 3.2 × 102 9.9 × 101 3.2 × 101

Rank 4 7 3 8 2 9 5 6 1

F25

Ave 3.0 × 103 2.9 × 103 2.9 × 103 3.2 × 103 2.9 × 103 4.5 × 103 2.9 × 103 2.9 × 103 2.9 × 103

Min 2.9 × 103 2.9 × 103 2.9 × 103 3.1 × 103 2.9 × 103 4.1 × 103 2.9 × 103 2.9 × 103 2.9 × 103

Max 3.0 × 103 2.9 × 103 2.9 × 103 3.3 × 103 2.9 × 103 5.4 × 103 2.9 × 103 2.9 × 103 2.9 × 103

STD 3.0 × 101 1.5 × 101 1.0 × 101 6.0 × 101 9.8 × 101 3.8 × 102 1.5 × 101 1.8 × 101 9.0 × 101

Rank 7 6 5 8 3 9 2 4 1
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Table 3. Cont.

Function Property GWO WOA MVO SCA GBO AOA EO AO OLPSGBO

F26

Ave 5.4 × 103 7.8 × 103 5.2 × 103 6.8 × 103 4.8 × 103 9.5 × 103 4.9 × 103 3.7 × 103 4.6 × 103

Min 5.0 × 103 6.2 × 103 3.0 × 103 5.0 × 103 2.8 × 103 8.0 × 103 4.0 × 103 2.9 × 103 2.8 × 103

Max 5.7 × 103 8.8 × 103 6.0 × 103 7.7 × 103 5.7 × 103 1.1 ×
1004 6.2 × 103 5.3 × 103 5.8 × 103

STD 2.0 × 102 9.2 × 102 1.1 × 103 7.4 × 102 1.0 × 103 7.7 × 102 7.3 × 102 7.5 × 102 1.3 × 103

Rank 6 8 5 7 3 9 4 1 2

F27

Ave 3.3 × 103 3.3 × 103 3.2 × 103 3.4 × 103 3.2 × 103 4.2 × 103 3.2 × 103 3.3 × 103 3.2 × 103

Min 3.2 × 103 3.3 × 103 3.2 × 103 3.3 × 103 3.2 × 103 3.9 × 103 3.2 × 103 3.2 × 103 3.2 × 103

Max 3.3 × 103 3.5 × 103 3.2 × 103 3.4 × 103 3.3 × 103 4.6 × 103 3.3 × 103 3.3 × 103 3.3 × 103

STD 1.7 × 101 7.6 × 101 1.0 × 101 2.6 × 101 2.2 × 101 2.2 × 102 2.2 × 101 2.6 × 101 1.6 × 101

Rank 5 7 1 8 4 9 3 6 2

F28

Ave 3.4 × 103 3.3 × 103 3.3 × 103 4.0 × 103 3.2 × 103 6.3 × 103 5.4 × 103 3.3 × 103 3.1 × 103

Min 3.3 × 103 3.3 × 103 3.2 × 103 3.8 × 103 3.1 × 103 5.5 × 103 3.2 × 103 3.3 × 103 3.1 × 103

Max 3.4 × 103 3.3 × 103 3.3 × 103 4.3 × 103 3.2 × 103 7.5 × 103 6.4 × 103 3.4 × 103 3.1 × 103

STD 3.3 × 101 1.8 × 101 2.1 × 101 1.6 × 102 6.1 × 101 6.7 × 102 1.5 × 103 3.8 × 101 2.6 × 10−9

Rank 6 3 5 7 2 9 8 4 1

F29

Ave 3.9 × 103 5.0 × 103 3.9 × 103 4.7 × 103 3.9 × 103 6.3 × 103 4.0 × 103 4.3 × 103 3.8 × 103

Min 3.6 × 103 4.2 × 103 3.7 × 103 4.3 × 103 3.6 × 103 5.5 × 103 3.8 × 103 3.8 × 103 3.5 × 103

Max 4.2 × 103 5.9 × 103 4.2 × 103 5.1 × 103 4.3 × 103 7.5 × 103 4.2 × 103 4.8 × 103 3.9 × 103

STD 1.6 × 102 5.2 × 102 1.6 × 102 2.1 × 102 2.2 × 102 6.7 × 102 1.4 × 102 3.7 × 102 1.4 × 102

Rank 4 8 3 7 2 9 5 6 1

F30

Ave 8.0 × 106 1.0 × 107 4.1 × 106 1.2 × 108 7.7 × 103 3.1 × 107 1.4 × 105 7.2 × 106 6.1 × 103

Min 3.9 × 106 1.6 × 106 2.2 × 106 6.1 × 106 5.4 × 103 5.3 × 106 5.6 × 103 3.4 × 106 5.5 × 103

Max 1.3 × 107 3.3 × 107 9.6 × 106 2.1 × 108 1.4 × 104 9.0 × 107 7.3 × 105 1.2 × 107 6.5 × 103

STD 3.1 × 106 8.9 × 106 2.1 × 106 5.2 × 107 3.4 × 103 2.4 × 107 2.2 × 105 2.9 × 106 3.5 × 102

Rank 6 7 4 9 2 8 3 5 1

Friedman average
rank 4.9655 6.8966 4.931 7.8621 2.9655 7.7931 3.2414 4.8276 1.3793

Friedman total rank 144 200 143 228 86 226 94 140 40

Table 4. The Wilcoxon nonparametric statistical test (p‑value).

Function GWO WOA MVO SCA GBO AOA EO AO

F1 0.001953125 0.001953125 0.001953125 0.001953125 0.001953125 0.001953125 0.001953125 0.193359375

F2 NA NA NA NA NA NA NA NA

F3 0.001953125 0.001953125 0.001953125 0.001953125 0.001953125 0.001953125 0.001953125 0.001953125

F4 0.001953125 0.001953125 0.001953125 0.001953125 0.0078125 0.001953125 0.001953125 0.001953125

F5 0.001953125 0.001953125 0.001953125 0.001953125 0.03125 0.001953125 0.001953125 0.013671875

F6 0.275390625 0.001953125 0.064453125 0.001953125 0.01953125 0.001953125 0.001953125 0.001953125

F7 0.001953125 0.001953125 0.001953125 0.001953125 0.0078125 0.001953125 0.001953125 0.001953125

F8 0.01953125 0.001953125 0.001953125 0.001953125 0.193359375 0.001953125 0.00390625 0.232421875

F9 0.4921875 0.001953125 0.130859375 0.001953125 0.193359375 0.001953125 0.001953125 0.001953125

F10 0.001953125 0.001953125 0.001953125 0.001953125 0.048828125 0.001953125 0.921875 0.193359375

F11 0.001953125 0.001953125 0.001953125 0.001953125 0.625 0.001953125 0.001953125 0.001953125
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Table 4. Cont.

Function GWO WOA MVO SCA GBO AOA EO AO

F12 0.001953125 0.001953125 0.001953125 0.001953125 0.845703125 0.001953125 0.001953125 0.001953125

F13 0.001953125 0.001953125 0.001953125 0.001953125 0.556640625 0.001953125 0.00390625 0.001953125

F14 0.001953125 0.001953125 0.001953125 0.001953125 0.625 0.001953125 0.001953125 0.001953125

F15 0.001953125 0.001953125 0.001953125 0.001953125 0.001953125 0.001953125 0.001953125 0.001953125

F16 0.064453125 0.001953125 0.00390625 0.001953125 0.01953125 0.001953125 0.130859375 0.001953125

F17 0.064453125 0.013671875 0.845703125 0.009765625 0.275390625 0.001953125 0.625 0.01953125

F18 0.001953125 0.001953125 0.001953125 0.001953125 0.375 0.001953125 0.001953125 0.001953125

F19 0.001953125 0.001953125 0.001953125 0.001953125 0.009765625 0.013671875 0.001953125 0.001953125

F20 1 0.00390625 0.01953125 0.001953125 0.921875 0.001953125 0.6953125 0.064453125

F21 0.064453125 0.001953125 0.001953125 0.001953125 0.6953125 0.001953125 0.42578125 0.037109375

F22 0.001953125 0.001953125 0.001953125 0.001953125 0.6875 0.001953125 0.001953125 0.001953125

F23 0.001953125 0.001953125 0.001953125 0.001953125 0.4921875 0.001953125 0.6953125 0.009765625

F24 0.001953125 0.001953125 0.048828125 0.001953125 0.048828125 0.001953125 0.625 0.01953125

F25 0.001953125 0.00390625 0.009765625 0.001953125 0.275390625 0.001953125 0.921875 0.048828125

F26 0.02734375 0.001953125 0.083984375 0.00390625 0.845703125 0.001953125 0.921875 0.064453125

F27 0.048828125 0.001953125 0.375 0.001953125 0.4921875 0.001953125 0.556640625 0.00390625

F28 0.001953125 0.001953125 0.001953125 0.001953125 0.232421875 0.001953125 0.001953125 0.001953125

F29 0.037109375 0.001953125 0.16015625 0.001953125 0.375 0.001953125 0.048828125 0.005859375

F30 0.001953125 0.001953125 0.001953125 0.001953125 0.322265625 0.001953125 0.00390625 0.001953125
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4. Inverse Analysis of Structural Damage Using the Developed Approach
Based on the theoretical background outlined in Section 2, this work utilizes the hy‑

brid objective function in Equation (40). Physically, the objective function utilizes the
MSEn and MKEn in order to derive the maximum dynamic characteristics related to the
damage situation of the structure. The MSEn subobjective serves to identify the damage
changes related to stiffness alterations of the structure and helps to identify linear dam‑
ages in general, as well as to detect the occurrence of structural cracks based on the cou‑
pled effect of mode shapes and stiffness. In addition, the MKEn can contribute by cou‑
pling the effects of both natural modes, as well as mode shapes, together with any change
in the mass matrix of the structure, which provides a prominent damage identifier and
achieves a better generalized framework for damage diagnosis. In addition, with the help
of modal assurance criterion, the mode shape‑based subobjective in Equation (40) is also
implemented in order to check the effect of damage on the mode shapes, regardless of
the system stiffness and mass matrices, which helps in case of noisy conditions. To verify
the performance of the proposed approach, the damage is considered to occur due to the
reduction of stiffness corresponding to some selected damage scenarios of structural ele‑
ments along the structure. The combination of the presented OL‑UPSGBO algorithm and
the new hybrid objective function, as well as their integration into the inverse analysis of
structural damage identification problems, can be observed in Figure 7, as well as in the
pseudo‑code, as follows.

A. Initialization stage
1. Develop the FE model of the structure using a commercial software or a self‑

coded model.
2. Set a population of search agents, which are the damage indicators related

to the overall structural or substructural elements, where each search agent
represents one configuration of the FE model of the structure.

3. Extract themodal features related to the intact and damaged structure, and cal‑
culate the MSEn‑, MKEn‑, and mode shape‑based sub‑objectives using Equa‑
tions (37)–(39). Thereafter, calculate the objective function using Equation
(40) for each corresponding FE model configuration related to each candidate
search agent.

4. Evaluate all the search agents using the developed objective function (as in
Equation (40)).

5. Initialize all the stochastic parameters of the OL‑UPSOGBO algorithm, as in
Table 1.

6. Define the initial best global and local solutions, worst global solution, and the
best performance of each search agent.

7. Apply the OL paradigm as in Equation (42).
B. Iterative stage

1. Start the UPSO framework by calculating the global and local velocities as in
Equation (45).

2. Update the population using Equation (46).
3. Update the best global and local solutions, worst global solution, and the best

performance of each search agent.
4. Start the GBO stage by employing Equation (61).
5. Apply the local escaping operator, as in Equation (63).
6. Apply the OL paradigm, as in Equation (42).
7. Update the best global and local solutions, worst global solution, and the best

performance of each search agent.
8. Break if termination criteria are satisfied.

C. Damage identification stage
1. After termination of the iterative process, the best performed search agent is

selected and registered.
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2. The best solution contains the damage parameters δj corresponding to each
element j.

3. Elicit the damage locations and calculate the damage severities using Equation
(41), and analyze the results.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 24 of 34 
 

B. Iterative stage 

1. Start the UPSO framework by calculating the global and local velocities as in 

Equation (45). 

2. Update the population using Equation (46). 

3. Update the best global and local solutions, worst global solution, and the best 

performance of each search agent. 

4. Start the GBO stage by employing Equation (61). 

5. Apply the local escaping operator, as in Equation (63). 

6. Apply the OL paradigm, as in Equation (42). 

7. Update the best global and local solutions, worst global solution, and the best 

performance of each search agent. 

8. Break if termination criteria are satisfied. 

C. Damage identification stage 

1. After termination of the iterative process, the best performed search agent is 

selected and registered. 

2. The best solution contains the damage parameters 𝛿𝑗 corresponding to each 

element 𝑗. 

3. Elicit the damage locations and calculate the damage severities using Equation 

(41), and analyze the results. 

 

Figure 7. The pseudocode of the inverse analysis of structural damage using the proposed method. 

To test the performance of the proposed approach for the inverse analysis of struc-

tural damage, the well-known American Society of Civil Engineering (ASCE) benchmark 

model is studied [67,68]. The frame model is widely utilized by the SHM society to study 

the robustness of damage identification approaches, as can be seen in [67,68]. The model 

is composed of four stories and 116 structural elements, as in Figure 8. To avoid the 

lengthy theoretical background, a complete explanation about the structural properties 

and physical parameters of the structure can be studied [67,68]. Hence, by utilizing the 

aforementioned structure, six damage scenarios are considered in this paper, which can 

Figure 7. The pseudocode of the inverse analysis of structural damage using the proposed method.

To test the performance of the proposed approach for the inverse analysis of structural
damage, thewell‑knownAmerican Society of Civil Engineering (ASCE) benchmarkmodel
is studied [67,68]. The frame model is widely utilized by the SHM society to study the ro‑
bustness of damage identification approaches, as can be seen in [67,68]. The model is com‑
posed of four stories and 116 structural elements, as in Figure 8. To avoid the lengthy the‑
oretical background, a complete explanation about the structural properties and physical
parameters of the structure can be studied [67,68]. Hence, by utilizing the aforementioned
structure, six damage scenarios are considered in this paper, which can provide the big
picture regarding the efficiency of the developed approach. The six scenarios were made
by reducing the structural stiffness of some selected brace elements by 25%. Such a small
damage severity can be challenging to detect and localize using traditional approaches, as
it has a small effect on structural responses. Additionally, themodal responses of one dam‑
age scenario, which is scenario 6, are subjected to two levels of Gaussian noise, specifically
3% and 5%. Furthermore, in this work, incomplete modal data which contains maximum
dynamic information, are considered to better simulate practical engineering. The six dam‑
age scenarios are written as in Table 5.

Table 5. Damage scenarios.

Damage Scenario Damage Locations Damage Severity

Scenario 1 Brace elements 83, and 114 25%
Scenario 2 Brace elements 26, and 55 25%
Scenario 3 Brace elements 52, and 109 25%
Scenario 4 Brace elements 24, 82, and 112 25%
Scenario 5 Brace elements 23, 51, and 111 25%
Scenario 6 Brace elements 22, 51, 80, and 109 25%



Appl. Sci. 2022, 12, 11689 26 of 35

Appl. Sci. 2022, 12, x FOR PEER REVIEW 25 of 34 
 

provide the big picture regarding the efficiency of the developed approach. The six sce-

narios were made by reducing the structural stiffness of some selected brace elements by 

25%. Such a small damage severity can be challenging to detect and localize using tradi-

tional approaches, as it has a small effect on structural responses. Additionally, the modal 

responses of one damage scenario, which is scenario 6, are subjected to two levels of 

Gaussian noise, specifically 3% and 5%. Furthermore, in this work, incomplete modal data 

which contains maximum dynamic information, are considered to better simulate practi-

cal engineering. The six damage scenarios are written as in Table 5. 

 

Figure 8. The American Society of Civil Engineering benchmark frame structure [67,68]. 

Table 5. Damage scenarios. 

Damage Scenario Damage Locations Damage Severity 

Scenario 1 Brace elements 83, and 114 25% 

Scenario 2 Brace elements 26, and 55 25% 

Scenario 3 Brace elements 52, and 109 25% 

Scenario 4 Brace elements 24, 82, and 112 25% 

Scenario 5 Brace elements 23, 51, and 111 25% 

Scenario 6 Brace elements 22, 51, 80, and 109 25% 

The proposed method has the remarkable merits of utilizing several search mecha-

nisms that are able to overcome the multimodal and complex optimization features of the 

problem of inverse analysis of structural damage with very few stochastic parameter set-

tings. Using the stochastic parameters in Table 2, several population sizes were first tested 

and a population size of 100 search agents was selected. The performance of the proposed 

OL-UPSGBO algorithm is compared with the component algorithms, namely the UPSO 

and the GBO. Each algorithm is run 10 times after considering the high computational 

time required to solve the inverse analysis of the structural damage problem. Two types 

of statistical tests are conducted, which are the parametric tests, using the mean, mini-

mum, maximum, and standard deviation of solutions, and the non-parametric test, using 

the well-known Wilcoxon Sign Rank Test [62]. The results of the inverse analysis of the 

structural damage problem are shown in Table 6. Moreover, the detailed damage identi-

fication results and the evolution of damage parameters of the considered elements re-

lated to damage scenarios 1, 2, 3, 4, 5, and 6 are shown in Figures 9–14. In addition, the 

noise immunity of the proposed approach can be seen in Figures 15 and 16, where the two 

Figure 8. The American Society of Civil Engineering benchmark frame structure [67,68].

The proposed method has the remarkable merits of utilizing several search mecha‑
nisms that are able to overcome the multimodal and complex optimization features of the
problem of inverse analysis of structural damage with very few stochastic parameter set‑
tings. Using the stochastic parameters in Table 2, several population sizes were first tested
and a population size of 100 search agents was selected. The performance of the proposed
OL‑UPSGBO algorithm is compared with the component algorithms, namely the UPSO
and the GBO. Each algorithm is run 10 times after considering the high computational
time required to solve the inverse analysis of the structural damage problem. Two types of
statistical tests are conducted, which are the parametric tests, using the mean, minimum,
maximum, and standard deviation of solutions, and the non‑parametric test, using the
well‑known Wilcoxon Sign Rank Test [62]. The results of the inverse analysis of the struc‑
tural damage problem are shown in Table 6. Moreover, the detailed damage identification
results and the evolution of damage parameters of the considered elements related to dam‑
age scenarios 1, 2, 3, 4, 5, and 6 are shown in Figures 9–14. In addition, the noise immunity
of the proposed approach can be seen in Figures 15 and 16, where the two noisy condi‑
tions of 3% and 5% Gaussian noise of scenario 6 are illustrated. By studying Table 6, it
is well‑observed that the proposed OL‑UPSGBO algorithm has shown great performance
when employed to solve the new hybrid objective function, with remarkable damage iden‑
tification abilities even under noisy conditions. The p‑value taken from the Wilcoxon test
is under the confidence level of 0.05, which proves the statistical significance of the OL‑
UPSGBO algorithm compared to the UPSO and GBO algorithms.

The reason why the proposed OL‑UPSGBO has shown an outstanding performance
is because themain global search paradigm of GBO is improved by using two searchmech‑
anisms, namely by oppositional‑based learning (OL), which is able to evaluate the opposi‑
tional of a considered solution and compares the two solutions in order to choose a better
one. This efficient tool helps to accelerate the convergence of the algorithm and explore
more search areas, which suits problems concerning multimodality and multiple local op‑
tima of the inverse problem of structural damage identification. In particular, the use of
OL in both initialization and iterative phases has a major effect on boosting the exploration
and exploitation of the algorithm. In addition, the local search mechanism of the powerful
UPSO has been incorporated with the main computational framework of the GBO. This
ensemble framework can boost the local search ability of GBO and provide a robust op‑
timizer to deal with the high computationally‑consuming and ill‑posed problem of the
inverse analysis of structural damage.
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Table 6. Inverse analysis of structural damage using the proposed method.

Damage Scenario Algorithm Mean Standard
Deviation Min Max Wilcoxon Sign

Rank (p‑Value)

Scenario 1

UPSO 5.7 × 10−4 5.7 × 10−4 6.5 × 10−6 1.2 × 10−3 3.9 × 10−3

GBO 6.3 × 10−3 2.3 × 10−4 6.1 × 10−3 6.5 × 10−3 9.0 × 10−3

OL‑UPSGBO 1.1 × 10−6 2.2 × 10−6 6.2 × 10−7 6.5 × 10−6

Scenario 2

UPSO 1.3 × 10−2 1.4 × 10−5 1.3 × 10−2 1.3 × 10−2 9.0 × 10−3

GBO 1.6 × 10−2 4.8 × 10−3 1.1 × 10−2 2.1 × 10−2 9.0 × 10−3

OL‑UPSGBO 9.3 × 10−8 1.1 × 10−7 4.9 × 10−7 2.8 × 10−7

Scenario 3

UPSO 5.3 × 10−3 1.1 × 10−4 5.2 × 10−3 5.4 × 10−3 9.0 × 10−3

GBO 6.8 × 10−2 5.4 × 10−4 6.8 × 10−2 6.9 × 10−2 3.9 × 10−3

OL‑UPSGBO 5.5 × 10−7 8.2 × 10−7 3.2 × 10−8 2.0 × 10−6

Scenario 4

UPSO 1.3 × 10−2 3.0 × 10−5 1.3 × 10−2 1.3 × 10−2 3.9 × 10−3

GBO 5.3 × 10−2 1.7 × 10−2 4.1 × 10−2 7.6 × 10−2 3.9 × 10−3

OL‑UPSGBO 3.9 × 10−6 4.6 × 10−6 8.8 × 10−8 1.2 × 10−5

Scenario 5

UPSO 3.5 × 10−2 3.7 × 10−4 3.5 × 10−2 3.5 × 10−2 3.9 × 10−3

GBO 2.8 × 10−2 1.9 × 10−3 2.7 × 10−2 3.3 × 10−2 9.1 × 10−3

OL‑UPSGBO 2.2 × 10−5 3.1 × 10−6 1.9 × 10−5 2.6 × 10−5

Scenario 6

UPSO 1.3 × 10−2 1.9 × 10−5 1.3 × 10−2 1.3 × 10−2 3.9 × 10−3

GBO 2.3 × 10−2 7.3 × 10−4 2.3 × 10−2 2.4 × 10−2 3.9 × 10−3

OL‑UPSGBO 1.6 × 10−6 1.9 × 10−6 1.9 × 10−8 5.2 × 10−6

Scenario 6 (3% noise)

UPSO 1.3 × 10−2 2.5 × 10−5 1.3 × 10−2 1.3 × 10−2 3.9 × 10−3

GBO 2.5 × 10−2 1.1 × 10−5 2.5 × 10−2 2.5 × 10−2 3.9 × 10−3

OL‑UPSGBO 4.0 × 10−4 7.5 × 10−7 4.0 × 10−4 4.0 × 10−4

Scenario 6 (5% noise)

UPSO 1.3 × 10−2 2.7 × 10−5 1.3 × 10−2 1.3 × 10−2 3.9 × 10−3

GBO 2.5 × 10−2 5.3 × 10−4 2.5 × 102 2.6 × 10−4 3.9 × 10−3

OL‑UPSGBO 5.8 × 10−4 4.0 × 10−6 5.8 × 10−4 5.9 × 10−4
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Even though the use ofmore than onemodal property contributes to improve the over‑
all damage identification, where each property helps to discover more underlying damage
information, the contribution of eachmodal property used in the objective function should
be studied. In order to further verify the developed approach and the robustness of the
proposed objective function, a comparison with component sub‑objectives is conducted
separately using each of the three sub‑objectives. In particular, the inverse analysis of
damage identification problems is conducted using the MSEn, MKEn, and mode shape
sub‑objectives in Equations (7), (10), and (11), respectively. The most challenging multi‑
damage scenario, scenario 6, is studied. The damage identification results using theMSEn,
MSEn, MKEn, and mode shape sub‑objectives can be observed in Figures 17–19, respec‑
tively. From Figure 17, it is obvious that the MSEn sub‑objective alone has helped to iden‑
tify the damage in elements 51 and 80 with several damage identification errors along the
structure. Additionally, in Figure 18, the MKEn sub‑objective has contributed to identi‑
fying damage in elements 25 and 51, with high values of errors in some other locations.
Lastly, the mode shape objective function has achieved damage identification in elements
80 and 109. It is clear that the overall three sub‑objectives have contributed to identifying
the overall damage in all elements and improved the damage severity determinationwhen
the case of multiple damage is studied.
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5. Conclusions
This study has discussed an efficient approach for solving the inverse analysis of struc‑

tural damage problem using a new framework based on a newmodal feature‑based objec‑
tive function, as well as a new evolutionary computation algorithm. The new hybrid objec‑
tive function was formulated based on the modal strain and modal kinetic energy terms,
which helps to contrast the maximummodal information from the structure under consid‑
eration. Moreover, in order to improve noise immunity and separate the modal responses
from system matrices, which helps to cover more damage types, the modal assurance cri‑
terion of mode shapes was utilized and added as a third term to the objective function. In
addition, to overcome the complex nature of the considered inverse problem, theOL frame‑
work for population initialization and convergence acceleration was first adopted. There‑
after, the UPSO elitism mechanism was merged with the efficient search mechanisms of
the GBO. The newly developed algorithmOL‑UPSGBO, with the characteristics of the con‑
vergence acceleration feature of OL, enhanced balanced exploration‑exploitation of UPSO,
and the local escaping operator of GBO was designed and tested. The OL‑UPSGBO was
tested using the CEC 2017, the most complex and well‑known benchmark objective func‑
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tion set containing unimodal, multimodal, hybrid, and composite objective functions, and
was compared to available state‑of‑the‑art algorithms in the literature. The benchmarking
results showed a remarkable performance of the proposed OL‑UPSGBO algorithm com‑
pared to other approaches. Furthermore, as the main aim of this study, the proposed
algorithm was implemented to solve the new hybrid objective function related to the in‑
verse problem of structural damage detection. The ASCE frame structure was studied and
several damage scenarios were tested. Compared to the component algorithms, the OL‑
UPSGBO algorithm showed a robust and stable computational performance, and remark‑
able damage deductibility for all damage scenarios even under noisy conditions. This can
be well‑observed by the parametric and non‑parametric statistical tests after executing the
damage identification framework. Hence, the developed approach can be highly recom‑
mended to solve the inverse analysis of structural damage problem.
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