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Abstract: Exosomes are a subpopulation of extravascular vesicles with a diameter of 30–150 nm. They
are cellular-communication mediators, often reaching very distant organism tissues. Information is
transferred by exosomal cargo, composed of a wide variety of macromolecules such as nucleic acids,
proteins, and lipids. Exosomes possess natural specific cell targeting properties that are desirable
in designing targeted macromolecules (DNA and RNA) and drug delivery systems (doxorubicin,
paclitaxel, and taxol). In this context, exosomes can be defined as bio-derived drug transporting and
protecting devices for the treatment of bacterial (toxoplasmosis and salmonellosis), viral (AIDS and
hepatitis B), and cancer (lung, pancreatic, colon, brain, and breast) diseases. Extensive research proves
that exosomes’ natural cargo can double-act, both increasing and decreasing the disease severity. In
this case, the exosomes need to be prepared, namely, their origin and their cargo need to be screened
and known. Thus, appropriate methods for intact and price-effective exosome isolation are needed
with further exosome properties description. Among many utilized isolation methods, the most
common are ultracentrifugation, polymer-based precipitation, and affinity precipitation-isolation
systems, but novel microfluidic methods compromising high efficacy and purity are being developed.
In this review, we state the current knowledge and trends in exosome-based drug delivery systems.

Keywords: exosomes; drug delivery systems; targeted drug delivery; exosomes properties; exosomes
composition; exosomes loading; exosomes isolation methods; exosomes cancer treatment

1. Introduction

Exosomes can serve as a drug delivery platform for macromolecules (DNA, RNA,
proteins, and lipids) and drugs in hastily developing pharmaceutical units. Currently, they
are under extensive research to adjust their properties to overcome specific drug delivery
obstacles [1,2].

For over the last two decades, exosomes have been isolated from many cell types
including normal and cancer cells, and their impact on other cells has been studied. It is
a well-known fact that their main properties come from the cargo that can vary between
distinct cells. These cargoes are cell-derived particles, namely nucleic acids, proteins, and
lipids, which can influence other cells’ metabolism and functionality [3,4]. Due to the
similarity of exosomes to artificial lipid microvesicles, researchers started to incorporate
drugs, macromolecules, and other substances, which, for clarity, are altogether stated as
drugs in this article [5,6]. This attitude resulted in an improvement in therapy efficiency
employing increased cell-drug response, a decrease in necessary drug concentration, and
an unwanted systemic organism response. The possibility of additional targeted delivery
is another advantage of exosomes [7]. Some researchers proposed advanced combined
delivery strategies that improve therapeutics efficiency by additional cell expression pattern
manipulation with macromolecules such as RNA or DNA [8–10].

In this review, we present current strategies for preparing exosomal drug delivery
systems including all necessary steps and examples of exosomes used as drug delivery
vehicles.
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2. Exosomes and Their Release Routes

Exosomes are recognized as a source of various nucleic acids and proteins, acting
as local and body-wide signalization and regulation systems. Exosomes (30–150 nm in
diameter) are the smallest subpopulation of extravascular vesicles, which also comprise
microvesicles (50 nm–1 µm) and apoptotic bodies (50 nm–5 µm) [3,4].

The source of the exosomes is in the endosomal system. In the beginning, the so-called
early endosomes form as a result of inward membrane budding, and they are subjected to
sorting, facing their final destination. The early endosomes can fuse with endocytic vesicles,
thus leading their cargo toward recycling, degradation, or secretion. If their cargo is meant
to be recycled, they form recycling endosomes [11]. Other early endosomes maturate into
late endosomes. During their maturation to late endosomes, the inward budding of the
vesicle membrane occurs, resulting in multivesicular bodies (MVBs) creation, containing
numerous intraluminal vesicles (ILVs) [6]. At this stage, the MVB can either fuse with the
lysosome—with onward degradation of ILVs—or fuse with a plasma membrane, resulting
in the release of ILVs to the extracellular space (Figure 1). These released ILVs are called
exosomes and contain many proteins, nucleic acids, lipids, and polysaccharides derived
from the cell interior [12]. Another release mechanism is due to the outward budding
of the plasma membrane, resulting in the formation of so-called shedding microvesicles
or exosomes [12].

Figure 1. Scheme of the exosomes formation, release, and internalization by cells.

3. Methods for Exosomes Characterization

Characterization of the exosomes structure in terms of drug delivery systems (DDSs)
is crucial because it sets the further properties of DDS, e.g., cells/tissues affinity, stress
response, absorption routes, and drug release. The International Society for Extracellular
Vesicles in 2014 and 2018 (MISEV2018) presented guidelines for basic requirements that
all exosomes including studies and exosomes preparation should meet [13]. Parameters
such as amount, size, morphology, membrane composition, and proteins including re-
ceptors must be considered while developing exosome-based DDS. These parameters are
characterized by techniques divided into optical, non-optical, and microfluidics [6].

Currently, the most widely utilized methods for exosomes characterization are op-
tical, namely dynamic light scattering (DLS), multi-angle light scattering (MALS), and
nanoparticle tracking analysis (NTA) [14,15]. These methods allow for high-resolution
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measurement of size, (DLS 0.5–200 nm; MALS 10–500 nm; NTA 10–1000 nm), size distribu-
tion, and concentration. The combination of DLS and MALS greatly increases the range
(0.5–500 nm) and precision of measurements. Thus, it leads to the detection of three
subsequent exosomes populations, described as small (Exo-S), large (Exo-L), and non-
membranous exomeres [16]. In the NTA method also, the inclusion of fluorescent dyes
enhances the resolution and allows the characterization of the surface immunophenotype
by the use of fluorescence labeling [17,18]. Optical methods are the most popular but
the downsides are low sensitivity, high reagent consumption, and the requirement for
specialized equipment.

Non-optical methods include scanning electron microscopy (SEM), transmission elec-
tron microscopy (TEM), cryo-electron microscopy (Cryo-EM), atomic force microscopy
(AFM), immunodetection methods (ELISA), Fourier transform infrared spectroscopy (FTIR),
tunable resistive pulse sensing (TRPS), and the single-particle interferometric reflectance
imaging sensor (SP-IRIS) [19–21]. SEM, TEM, and AFM methods are routinely utilized for
direct membrane structure and morphology determination, while ELISA assays provide
detection and quantification of various structural particles, mostly proteins and receptors,
e.g., for exosome markers presence confirmation [20,22–26]. FTIR spectroscopy and atten-
uated total reflection-FTIR (ATR-FTIR) are proposed for exosomes quality quantification
and the overall estimation of lipid and protein content [20]. With TRPS, the simultane-
ous measurement of size, concentration, and zeta potential is possible. This method is
rapidly growing in the field of exosomes research [21]. A single-particle interferometric
reflectance imaging sensor (SP-IRIS) is also used for exosomes quantification but can also
be utilized for the detection of specific markers and the determination of exosomes subpop-
ulation [26,27]. Non-optical methods also include the use of specialized equipment and
the need for laborious sample preparation but provide high-quality surface, structure, and
composition data.

Further development of exosomes investigation methods leads to the use of mi-
crofluidics methods in exosomes research. These methods provide high-quality, high-
specificity data with subsequent low reagent consumption and high throughput [6,28,29].
Microfluidics-based methods are methods modified to suit the nanoscale for proper exo-
somes determination. These methods require specialized, prefabricated microchips, gen-
erally designed and prepared exclusively for a specific application in exosomes research.
Microfluidics chips are generally fabricated out of a glass base and polydimethylsilox-
ane (PDMS) membrane and contain a lot of microchannels whose size is suited for the
analyzed sample. The main difference is the inside surface of the chip, which can be func-
tionalized in various ways, e.g., by coating, multi-layer depositing, electrodepositing, and
etching [30–33]. For different microfluidic characterization methods, different types of
microchips are fabricated, including immunochips, magnetic, and electrochemical
chips [31,34,35]. Thus far, for exosomes research, fluorescence correlation microscopy
(FCM), surface plasmon resonance (SPR), nuclear magnetic resonance (NMR and mi-
croNMR) methods, and atomic force microscopy (AFM) were used [6,29,36,37]. These
methods are based on antibody-mediated detection and further quantification of exosomes
and exosomal proteins either stained by fluorescence dyes (FCM), chip-membrane-bound
and SPR imaged, using the NMR, or scanning mica-adhered exosomes (AFM) [6,37,38].
These methods are attracting increasing attention but still require further development
and validation. Other authors report the use of liquid chromatography tandem mass
spectrometry (LC-MS/MS) and flow cytometry for further proteins identification and
exosomes characterization [26]. Exosomes and their proteins can also be detected with
colorimetry (labeled antibodies/ELISA), direct fluorescence staining (DiO dye), changes
in electrochemical properties, and optical special effects methods [29,35,38,39]. For re-
sults assessment, there is also a need for additional equipment, such as a plate-reader or
fluorescence microscope [30].

Flow field fractionation (FFF) is both a characterization (in conjunction with detectors,
e.g., UV) and isolation technique based on differences in flow speed of different size
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particles on microchips. Smaller particles will move faster, while larger ones will be more
restrained and travel slower [40,41]. This method is used for assessing amount and size in a
superior manner to NTA in the case of distinguishing subtle populations of exosomes [42].

4. Exosomes Isolation Methods

Currently, there are many available exosomes isolation methods (Table 1). The oldest
and most commonly used exosome isolation method is ultracentrifugation stated by many
as a gold standard. Other techniques are mostly based on size exclusion or antibody-
mediated isolation of labeled exosomes. Every isolation method differs in terms of purity,
amount, efficiency, and throughput. The most common disadvantages are inconsistency
and damage or alteration in the structure of exosomes [6,43].

Table 1. Exosome isolation methods.

Method Advantage Disadvantage

Si
ze

-b
as

ed
m

et
ho

ds

Ultra-
centrifugation Large pools processing, high purity Long, low efficiency (5–25%), poor repeatability,

vesicle-damaging

Ultrafiltration Fast, simple, no special equipment
requirement

Damaging larger vesicles due to force passing the
filter, clogging the filter causes a decrease in

efficiency

Size-exclusion
chromatography

Label-free, high purity, and
efficiency

Cost of gel and dedicated column,
time-consuming post-isolation analysis

Acoustic fluid
separation Fast, label-free, contactless High sample volume, an evaporating issue at long

processing time

Deterministic
lateral

displacement
separation

Label-free, easy to use Low purity, clogging

Flow field
fractionation Fast, high purity, high efficiency Needs pre-assay purification, analytical scale only

La
be

li
ng

-b
as

ed
m

et
ho

ds Immunological High purity and specificity, easy to
use, time-saving contactless

Expensive reagents, non-physiological
environment, antibody/magnetic labeling

Pr
ec

ip
it

at
io

n-
ba

se
d

Polymer-based
precipitation

separation
Size-scalable, easy to use Low specificity, expensive

El
ec

tr
o-

pr
op

er
ti

es
-b

as
ed

Dielectrophoretic
Separation

Contactless, label-free, time-saving,
high throughput

Low purity, the necessity of high-temperature
processing

Ultracentrifugation is based on the size (weight) of particles and their sedimentation
under centrifugal force (100,000–110,000× g). The previous removal of cellular debris and
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unwanted particles can be obtained by a few steps of slower-speed centrifugation named
differential centrifugation. It can be used for large pool processing. This method can also
be conducted in a sucrose gradient (1.13–1.19 g/mL) or cushions for higher enrichment,
yield, and purity increase [44,45].

Ultrafiltration methods include the utilization of filters with decreasing pore size;
thus, larger particles will be excluded from the filtrate. It can be used in combination
with centrifugation to accelerate exosomes purification by the initial removal of large
particles such as cell debris. The pore clogging risk makes this method unfavorable for
large pool processing [46,47].

Size-exclusion chromatography is based on the size of gel pores and the size of
exosomes. Particles larger than the gel pore size will be eluted in the first place; inversely,
particles smaller than the gel pore size will be restrained. Isolation is commenced in a
native environment and overall very high purity and yield are obtained. In combination
with ultrafiltration, this method provides lesser protein contamination with a superior
exosome recovery rate. The downside is the cost of the gel [48].

Polymer-based precipitation separation methods utilize super-hydrophilic polymers
to enhance the precipitation of small-size particles such as exosomes. Polyethylene glycol
is commonly used in concentrations varying between 8 and 15%. With the use of this
method, the solution containing exosomes is overnight-incubated with polymer and further
centrifugated at about 10,000× g. Commercial kits are also available [6].

Immunological separation methods utilize labeling of the exosomes with antibodies
subjected to selected protein markers located in the exosomal membrane. These labeled
exosomes can be further easily handled and purified, e.g., with microchips or magnetic
beads [49,50]. After magnetic separation, exosomes are purified and magnetic beads
are dissolved and removed. With this simple and quick method, high-purity extracts
can be obtained but exosomes lacking surface markers recognized by magnetic-labeled
antibodies will not be isolated, which may lead to poor exosome pool representation [51].
This method is time-saving and straightforward with high-purity output but involves
expensive reagents.

In terms of affinity-isolation methods, there are also proposed lectins and synthetic
Vn (venceremin) peptides. Lectins will bind glycosylated proteins presented at the surface
of exosomes, leading to exosomes precipitation. Vn peptide isolation technology is based
on its high affinity to HSP-containing extracellular particles. However, this method may
also lead to the contamination of extracts by cells and other particles containing mentioned
markers on the membrane surface [44,52].

Methods mentioned below are conducted on a microchip and belong to microfluidic
methods of exosome isolation. Principles of microfluidics were discussed in the previous
part, but we need to mention that the same methods can be used for exosomes isolation
(immuno- and magnetic-binding, filtering) with relatively high efficiency (about 90%) [53].

FFF is currently a very rarely used but promising method of exosomes isolation. The
separation is driven by crossflow forces and is based on the particles’ molecular weight
or hydrodynamic diameter. It includes both high purity, high efficiency, and short-time
processing, but to date, the utilization of FFF in exosomes isolation is insignificant and
awaits further development [16,54–56].

The acoustic fluid separation technique utilizes an acoustic field to separate particles
depending on their size, density, and compressibility. Biological samples are not damaged
during this procedure and the separation itself is contactless, efficient, label-free, and
biocompatible. Nevertheless, further development and an increase in throughput are
still postulated [57].

Deterministic lateral displacement relies on the change in particle flow path dependent
on the particle size. This method is relatively simple but requires special equipment. The
most common problems are clogging and poor separation but extensive efforts are taken to
overcome these downsides [58]. On the other hand, small sample volumes are appropriate
for relatively fast isolation, which may be handy for the isolation of biological samples [59].
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The dielectrophoretic separation method employs the differences in location of different-
size particles in a nonuniform electric field. Exosomes will be attracted to high electric
regions while larger particles will be located in low electric regions. This method is fast
and can be used in high-throughput screening but needs heating, limiting its use [60,61].

5. Exosomes Natural Cargo and Structure

Exosomes are generally recognized as cell-to-cell signaling molecules containing
numerous proteins, nucleic acids, cytokines, transcription factors, and other cell-derived
particles (Figure 2). Exosomes may deliver information not only to the local environment
but also to greatly distanced cells and tissues. This may serve as a general signaling and
communication pathway, but may also take part in oncogenes spread and further tumor
progression and malignancy increase [62]. To this date, exosomes presence was confirmed
in body fluids such as amniotic liquid, blood serum, breast milk, epididymal fluid, saliva,
urine, effusions of ascites and pleural, bronchoalveolar lavage fluid, synovial fluid, and cell
culture supernatant in vitro [63–66]. Due to these facts, exosomes are proposed as novel
therapeutic and diagnostic (theranostics) devices [6]. The excreted exosomes also serve
as a way of unnecessary proteins and nucleic acids removal, e.g., during cell maturation
(reticulocytes) or excretory system (guts and tubules of the kidney) [67–69].

For proper usage of exosomes as a DDS, we first have to consider their natural cargo
and the routes of their formation. Then, the characteristics of exosomes affinity and cell
uptake should also be described. Exosomal cargo exhibit different purposes and functions,
thanks to exosomes being basic transporters presenting outstanding properties themselves.
This can be utilized in cell targeting and also as an additional enhancement of drugs.
To date, ExoCarta estimates about 10,000 proteins, 3500 mRNA, and over 1100 distinct
lipids found in exosomes. For the systematic review, many great databases arise such as
Vesiclepedia and ExoCarta where exosome isolation procedures and sources are described
along with identified cargo [70,71]. The most important proteins for DDS design are those
influencing exosomes transport and cell intake.

Proteins characteristic for exosomes are membrane-bound tetraspanins (CD9, CD63,
CD81, and CD82), as well as EpCAM and Rab5, used routinely for isolation. Other com-
monly recognized proteins are receptors (CD46 and CD55), heat shock proteins (HSP;
Hsc70, Hsp70, and Hsp90), proteins taking part in exosomes formation (Alix, TSG101), and
membrane proteins responsible for fusion and transport (GTPases, annexins, and flotillin;
ATP7A, ATP7B, MRP2, SLC1A4, SLC16A1, and CLIC1) [6,44]. Detection of these markers
with ELISA is used for confirmation of exosomes presence.

There are also reports about exosomes containing other particles such as cholesterol (B
lymphocytes derived), sphingolipids, phosphoglycerides, and ceramide. The presence of
the latter also distinguishes the exosomes from the lysosomes [72].

Exosomes also transport morphogens (Hedgehog, Wingless, and Wingless-like) taking
part in tissue patterning development described for Drosophila melanogaster [64].

Nucleic acids are another major group of particles found in exosomes, namely DNA
and RNA, which onward can take the functional role in cells. About ~1300 mRNA,
121 miRNA, and >100 small RNA were found in exosomes derived from mouse and
human mast cells, while no DNA and rRNA were detected [73]. Other miRNAs found in
exosomes were lin-4 and let-7, as well as miR-181a and miR-155 in breast milk [73,74].

Some of the exosomal miRNAs can be used as biomarkers in diagnostics (Table 2).
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Figure 2. Exosomes structure and cargo.

Table 2. Examples of miRNA-level changes proposed for diagnosing diseases.

miRNA Level
Change

Source of
Exosomes Disease Source

↑miR-21
Serum

Esophageal squamous cell cancer [75]
↓miR-21 Benign diseases

↑miR-21
Serum

Hepatocellular carcinoma [76]
↓miR-21 Chronic hepatitis B or healthy volunteers as well

↑miR-1246
↑miR-4644 Saliva Pancreatobiliary tract cancer [77]

↑ bta-miR-142-5p
↑ bta-miR-223 Milk Detection of early mammary gland bacterial

infection [78]

↑miR-1290
↑miR-375 Plasma Poor overall survival of castration-resistant prostate

cancer patients [79]

↑miR-146a Urine Lupus nephritis patients. Also distinguishing
between active and remission stages of the disease. [80]
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Table 2. Cont.

miRNA Level
Change

Source of
Exosomes Disease Source

↑miR-1910-3p Serum Breast cancer patients [81]

↑miR-423-5p Serum Lymph node metastasis of gastric cancer patients [82]

↑miR-106b Serum Lung cancer patients [83]

Stimulation of human cells by mouse exosomes leads to the synthesis of mouse
proteins in human cells. In addition, the mRNA profile of exosomes and recipient cells was
different, suggesting that mRNA is subjected to active sorting into MVB. This can be crucial
in terms of therapeutic mRNA delivery by exosomes [74].

To summarize, exosomal cargo can further improve its therapeutic properties when
properly designed. This can be used for the fabrication of double-action exosomes, contain-
ing both therapeutic substances with the additional effect enhancement by incorporating
proper nucleic acids, lipids, and proteins into exosomes. To this date, only a few concepts
of this simultaneous strategy were proposed [8,84].

6. Exosomes Innate Functions

Exosomes function will vary depending on their origin, cargo, and recipient cells.
These innate properties can serve for further development and upgrading of exosome-
based DDS. Exosomes’ most fundamental and widely recognized function is to mediate
cell–cell signalization, thus regulating cell physiological functions and responses. This
mechanism relies on the exchange of molecules described in the previous chapter.

Additionally, to date, many great articles arise with exosome function/effect descrip-
tion [65,85]. Thus, in this article, we only mention properties influencing DDS. Exosomes
derived from bone marrow, macrophages, and tumors were described as influencing the
inflammatory response, either prolonging allograft rejection time or activating inflamma-
tory cells to the target tumor [86,87]. Exosomes also take part in the immune response and
antigen presentation. Due to this fact, they can stimulate the immune response by MHC
class I or II antigens presentation, which is not desirable in the case of DDS or allogenic
therapeutics and can decrease their body circulation time. The current solution to this
problem is exosomes isolated from mesenchymal or stromal stem cells [88].

As mentioned, the natural exosomal cargo consists of various nucleic acids, proteins,
and lipids, which can directly influence cell behavior and expression pattern. Similarly,
artificial siRNA, mRNA, and miRNA delivered by exosomes will regulate cell expression
as reported [89]. In a similar manner, proteins can also act as procancerogenic agents, e.g.,
exosomes containing high levels of TGF-β and PGE2 will promote tumor growth [90]. On
the other hand, dendritic-cell-derived exosomes containing MHC class I molecules and
tumor antigens are able to activate T-cell anticancer response [87].

Exosomes are superior to artificial lipovesicles in terms of biocompatibility and in-
ternalization. They can also serve to reach hard-to-access and brain tissues due to the
possibility of targeted delivery and blood–brain-barrier crossing, respectively [28].

7. Targeted Delivery

Another factor influencing exosomes targeted delivery is the cell origin and membrane-
incorporated targeting moieties [91,92]. Isolated exosomes are proposed for targeted
therapy and drug delivery to the same type of cells the exosomes were derived from. It is
due to the fact that different membrane moieties are differently expressed by various cells.
Surface moieties can be either expressed via genetic engineering of the endosomal sorting
mechanism or fixed at the surface of released exosomes with click chemistry (Table 3) [85,92].
A similar approach is described for other DDS devices such as fibrin [93].
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Table 3. Examples of moieties for exosome targeting.

Moiety Targeted Cells/Tissue Source

Rabies viral glycoprotein Brain [94]

Mannose- and sialic acid- enriched glycoproteins Cancer cells [95]

Integrins α6β4 and α6β1 Lung metastasis [96]

Integrins αvβ5 Liver metastasis [97]

Cd63 Neuronal dendrites [98]

Phosphatidylethanolamine Glioblastoma cells [99]

Sphingomyelin Tumor microenvironment [100]

Metalloproteinase 15 Breast cancer cells (integrin αvβ3) [8]

Folate Breast cancer cells (FA receptors) [101]

CpG-STAT3 ASO Glioma microenvironment [102]

Another problem in targeted delivery is the insufficient half-life time of exosomes
administered in vivo. Studies have shown the rapid clearance of exosomes by macrophages
limiting the half-life of unmodified exosomes to 2–30 min [103]. To overcome this problem,
additional proteins (such as CD47, PD-L1, CD31, and CD24) prolonging circulation time
are added to the surface, or exosomes are coated with PEG to avoid recognition of the
immune system [92,103]. Macrophage, monocyte, and MSC-derived exosomes were found
to be especially immune to phagocytosis and fast body clearance [88,104].

There are also reports that certain particles, such as sphingolipids, can affect exosomes
cell uptake [105].

7.1. Cell Origin

Exosomes properties depend on source cells as they are closely related to overall cell
processes necessary for metabolism. Crude exosomes can act as a double-agents for cancer
development according to their source. Exosomes derived from normal cells will act as
anticancer/antimetastatic in opposition to the reports that cancer exosomes will further
increase proliferation, metastasis, and angiogenesis of cancer cells, promoting both in vitro
and in vivo growth [89,106,107]. Careful selection of the exosomes source is crucial for
proper exosomal-based DDS development. Due to their bilateral mode of action, exosomes
can both increase or restrain the proper DDS mode of action.

7.2. Cancer Cells

Targeted delivery of cancer exosomes is mediated by expressed surface proteins, e.g.,
tetraspanins, interacting with different cell types in a different manner [108]. Tetraspanins
also seem responsible for further malignancy spread; thus, therapeutic usage of this type of
exosomes is not recommended [109]. It is worth mentioning that cancerous exosomes were
used for stimulating the immune response to prevent the remaining cancer cells to grow
after resection. The immune response was mediated by tumor-specific antigens presented
at the surface of exosomes administered to patients after surgery [110,111]. Additionally,
exosomes released from a dorsally implanted cell-graft composed of HT29 and HCT116
cell lines preferably locate at the stomach and intestine. This may be due to the origin of the
cells composing the implant, which were derived from colorectal and colon tumors [112].
This effect is also supported by higher autologous exosomes uptake by the colorectal cell
line than allogenic cell-derived exosomes both in vitro and in vivo. Latter studies also
revealed an increased accumulation of autologous exosomes in the tumor site [113]. This
effect can be overcome by expressing on the vesicles surface cancer-targeting particles such
as integrins. Designed in this manner, exosomes will specifically target cells other than
autologous cells, also increasing their uptake ratio [114].
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7.3. Normal Cells

Exosomes isolated from immune cells are recognized as safe, serving as delivery
vehicles, and were proposed for use as vehicles for drugs, vaccines, and immunotherapy.
The most common types of cells are dendritic cells, macrophages, monocytes, B cells,
and T cells. These cells’ native function regulates the immunologic response and, thus,
exosomes derived from them will also target cells recognized as hostile, e.g., cancer cells.
Dendritic-cells-derived exosomes contain numerous membrane moieties that can induce
cancer cells’ death themself. Macrophage culture purity needs to be maintained at a high
profile due to the potential influence of pathogens on exosomes properties and mode
of action [115]. These exosomes also convert M2 macrophages to M1 type, increasing
phagocytosis of tumor cells. Additionally, macrophage-derived exosomes stimulate the
inflammatory response by the release of Th-1 type cytokines, which can be utilized in
cancer vaccines, where exosomes may play the role of an adjuvant [116]. Human dermal
fibroblasts are also used as an exosomes source [117].

7.4. Stem Cells

MSC-derived exosomes seem to be the most suitable immunologically for DDS design.
These cells were isolated from various kinds of tissues such as adipose, liver, amniotic
fluid, placenta, umbilical cord, and menstrual blood stem cells [117,118]. They do not
express MHC antigens at the surface, thus evading phagocytosis and fast clearance from
organisms [119]. Another advantage of MSCs is the production of exosomes in greater
amounts than other cells. Currently, MSCs and dendritic cells are favored for use in
clinical studies [120].

7.5. Plants, Fruits, and Milk

Due to the high cost and problems with the isolation of large amounts of exosomes
from the mentioned cells, plants and fruits are currently recognized as promising exosomes
sources [121]. In a similar manner, bovine milk is also an easily accessible, cost-effective
source, containing significant amounts of microvesicles [122]. They are generally stable
in acidic environments; thus, they are great candidates for oral drugs development [118].
There was no record of modifying plants or bovines in order to obtain modified exosomes.

8. Loading Drugs to Exosomes

While designing DDS, one of the most important features is the method of drug
loading. It should be chosen carefully based on the drug and the exosomes properties. The
biogenesis of exosomes makes them promising drug carriers due to their biocompatibility,
stability, and preferred tumor targeting [123]. They are built similarly to double-membraned
liposomes and the same methods can be used for drug loading.

Exosomes can be loaded with numerous drugs, macromolecules, and other substances
either by passive or active methods (Figure 3). Passive methods are simple and based on
drug incubation with exosomes or with cells with further isolation of released exosomes
containing drugs (Figure 3I,II). This method depends on the difference in the drug con-
centration gradient; thus, during the incubation with exosomes, the substance itself will
migrate to the vesicle. This process can be intensified by applying an additional force, such
as shaking or stirring [9,124]. In a similar matter, the incubation of cells with a drug will
result in the release of exosomes loaded with the drug. The downsides of this method are
low loading efficiency and low-output drug concentration (about 1%) [124]. Incubation
of drugs with exosomes or other DDS vehicles is a very common and simple method,
especially popular with hydrophobic drugs [122,125].

Higher loading efficiency can be achieved with active loading methods, including
sonication (~28%), electroporation (~5%), extrusion, freeze–thaw, pH gradient (1.7%), and
conjugation methods [124]. Both sonication and electroporation will result in a temporary
disruption of the exosome membrane, mediated by sonic waves or electric pulses, respec-
tively (Figure 3III,IV). Afterward, exosomes will accumulate the drug from the solution
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through small membrane pores induced by mentioned agents. These methods do not seem
to alter exosome membrane properties but cause an increase in exosomes size [124,126].
The extrusion method is also based on an exosome membrane disruption by a syringe-
based lipid extruder (Figure 3V) [127]. In one experiment, the freeze–thaw loading method
was used with unknown efficacy but observable therapeutic effects (Figure 3VI) [128].
In addition, a method based on a pH-driven drug loading was presented but needs ex-
tended research due to the very low drug loading efficiency [129]. Another approach
is to conjugate drugs to exosomes via antibodies or click-chemistry. The antibodies will
bind non-covalently to the exosomes surface via their affinity to structural elements of
the exosomes (Figure 3VII). The chemical synthesis will result in covalently bound drugs
to exosomes via, e.g., PEG or membrane proteins, and the further release dependent on
exosomes degradation. These methods can also serve to target exosomes to desired cells by
the introduction of specific receptors to the membrane [7].

Figure 3. Methods of loading drugs into exosomes. (I)—drug loaded exosomes released from
drug exposed cells, (II)—drug incubation with exosomes with additional stirring, (III)—sonication,
(IV)—electroporation, (V)—extrusion, (VI)—freeze-thaw cycles, (VII)—chemical conjugation of drug
to exosome.

Mentioned methods allow for the incorporation of drugs into the inside of exosomes or
the phospholipid bilayer depending on their hydro- and lipophilic properties. Hydrophilic
substances will preferably locate in the lumen of exosomes, whilst substances soluble in
lipids will accumulate at the membrane of exosomes (Figure 2). Some studies report that
hydrophilic substances are easily loaded into exosomes, while lipophilic substances are
loaded less efficiently. Generally, the substances are released from exosomes in about 50%
during 24 h in vitro [122].

An extensive evaluation is needed for the assessment of the influence of mentioned
loading methods on the structure and properties of exosomes. To date, aggregation and
fusion were confirmed for electroporation [130].

Thus far, exosomes were used to deliver a variety of substances including chemother-
apeutics (paclitaxel, doxorubicin, and taxol), RNA, and DNA (Table 4). Exosome-based
designs of vaccines against bacterial (toxoplasmosis and salmonellosis), viral (AIDS and
hepatitis B), cancer (lung, pancreatic, colon, brain, and breast), and other diseases were also
proposed [131]. Exosomes were also used as a device for gene editing tools delivery such
as Cas9 [132]. Exosomes are either collected from the disease culture medium (bacterial
vaccines) or modified with genetic engineering methods. The mode of action of these
vaccines is mainly by the presentation of immunogenic surface particles. There are some
reports on completed and running clinical trials including exosome-mediated drug delivery
with promising outcomes [120,133].

Route of Administration

According to current studies, exosomes are mostly administrated intravenously and
locate preferably in the liver. Only a few studies used another administration method,
namely nasal, oral, and intraperitoneal. In these cases, exosomes are preferably located in
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the lungs and brain, stomach, and liver, respectively. There is a clear connection between
the administration route and exosomes accumulation [88,134,135]. This is also confirmed
in currently completed clinical studies, as reported at clinicaltrails.gov (accessed on 15
November 2022). For instance, few studies described the use of exosomal inhalations in
the treatment of pulmonary diseases such as SARS-CoV-2-related ones [136]. These studies
reported a very good tolerance of exosomes. Other clinically tested applications were:
ointment, oral applications, intra-disc injection, and intravenous injection.

Table 4. Examples of drugs, macromolecules, and potential targeted therapy strategies with exosomes.

Drug/Macromolecule
Loading

Efficiency and
Method

Origin Targeted
Cells/Tissue Effect Ref.

Paclitaxel

1.4%; RT
incubation;

5.3%; electropo-
ration;

28.3%; mild
sonication

RAW 264.7 cell
line

Madin–Darby
canine kidney
MDCKWT and

MDCKMDR1 cells,
Murine Lewis lung

carcinoma cell
subline (3LL-M27)

Over ×50 cytotoxicity increase
for

multiple-drug-resistant cell line.
[124]

Doxorubicin

7.4%;
sonication and

subsequent
extrusion

4T1 cell line MCF-7 cell line
Near-infrared laser-triggered

doxorubicin release from
exosomes modified with Fe3O4.

[137]

Doxorubicin 6.5%;
sonication

murine bone
marrow of

male KM mice

Zebrafish,
C6-Luc

glioma-bearing
mice

Rapid blood–brain-barrier
crossing and brain

accumulation. Targeting of
infiltrating brain tumor cells.

[138]

hsa-miR148a-3p

ND; chemical
transfection

(Lipofectamine
2000)

Bovine milk HepG2, Caco-2 cell
lines

Cost-effective source of
exosomes. Time-dependent cell

incorporation.
[139]

Paclitaxel 8%; RT
incubation Bovine milk

Lung tumor
xenograft in nude

mice

Oral delivery. Tumor growth
inhibition. Lower systemic and

immunogenic
toxicities compared to

intravenous
administration.

[140]

Taxol
14%; cells
incubation
with drug

MSC from
umbilical cord

A549, SK-OV-3,
MDA-hyb1 cell

lines; MDA-hyb1
breast tumors in
NODscid mice

Reduced cancer growth and
metastasis similar to ×1000
higher concentration of free

taxol administration than
exosomes containing taxol.

[141]

Erastin

3.2 mg
erastin/mg

protein;
sonication

HFL-1 cell line MDA-MB-231 cell
line

Folate-labeled exosomes for
targeted

delivery, promotion of
ferroptosis,

decreased proliferation, and
migration of cancer cells.

[101]

clinicaltrails.gov
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Table 4. Cont.

Drug/Macromolecule
Loading

Efficiency and
Method

Origin Targeted
Cells/Tissue Effect Ref.

CRISPR/Cas9 plasmid
DNA

chemical
transfection of
exosomes from

MSC
(Exo-Fect™
Exosome

Transfection
Kit);

chemical
transfection

(Lipofectamine
2000) of cells

(HEK293T) and
isolation of

exosomes from
conditioned

medium

MSC;
HEK293T cell

line

KPC689
cell line

Successfully disrupted
KrasG12D oncogenic allele in

pancreatic cancer cells.
Inhibition of proliferation and

tumor growth

[142]

siRNA targeting KRAS in
PEI matrix;

Plasmid DNA coding p53

>90%;
incubation
with PEI
matrix;

<5%; electropo-
ration;

35% chemical
transfection

with Exo-Fect™
(about 35%)

Bovine
colostrum

H1299, A549, H522,
Panc-1, MiaPaCa-2
cell lines; in vivo
A549 xenograft

models

Inhibition of tumor growth and
KRAS

expression. Induced expression
of p53 in p53-null H1299 cells.

[143]

Doxorubicin;
cholesterol-modified

miRNA159

74.5–160.6
ng/µg

exosomes;
incubation in
triethylamine
solution;1.2%

of miRNA,
5.3% of

cholesterol-
modified
miRNA

THP-1 cell line MDA-MB-231 cell
line

Targeting properties of
exosomes,

synergistic therapeutic effects
on cancer cells, inhibition of

growth and motility.
Silencing of TCF-7 gene.

[8]

5-fluorouracil; miR-21
inhibitor oligonucleotide

3.1%; 0.5%;
electroporation 293T cell line

HCT-116SFR cell
line; in vivo

BALB/c nude mice

Successful co-delivery,
down-regulation of miR-21 in

cells, induction of cycle
arrest, reduction of
proliferation, drug

resistance renversement, 5-FU
cytotoxicity increase, reduction

in tumor growth in vivo

[10]

miR-31-5p N/A;
electroporation Bovine milk

HUVEC cell line;
in vivo BALB/c

mice

Improved cells function in vitro,
enhancement of angiogenesis,
and wound healing in diabetic

mice in vivo

[144]
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Table 4. Cont.

Drug/Macromolecule
Loading

Efficiency and
Method

Origin Targeted
Cells/Tissue Effect Ref.

CD47 and SIRPα antibodies

Conjugated to
exosome

surface by
through

pH-sensitive
linker

RAW264.7 cell
line

RAW264.7 cell line,
in vivo BALB/C

mice

Targeting to CD47 expressing
cells,

improvement of macrophages
phagocytosis, exosomal

reprogramming of macrophages
towards anti-cancer

activity

[145]

galectin-9 siRNA,
oxaliplatin

13.17% N/A
electroporation

of galectin 9,
13.17%

maleimide-
thiol

conjugates

BM-MSC
PANC-02 cell line,
in vivo C57BL/6

mice, SD rats

Significant anticancer activity,
Improvement of macrophage

tumor
suppressive activity, increase in

recruitment of cytotoxic T
lymphocytes, Treg
downregulation

[146]

Berberine 17.13%,
sonication

Primary
macrophages C57BL/6J mice

Induction of macrophages to
anti-inflammatory and

anti-apoptotic M2 phenotype,
improvement in mice

movement after spinal injury

[147]

Erastin, Rose Bengal, CD47
surface labeled exosomes

60%, 84%
encapsulation

rates,
sonication

CD 47 plasmid
transfected
donor cells

HEK293T cell
line

RAW264.7
Hepa1-6 cell lines,
in vivo C57BL/6

Deterred exosome phagocytosis,
in vivo and in vitro ferroptosis

induction after
laser irradiation, decrease in

liver and
kidney cytotoxicity of exosomes

[148]

miR-138-5p
Lentivirus
transfected
donor cells

Adipose-
derived stem

cells

T24, 5637 cell line,
in vivo BALB/C

nude mice

Bladder cancer cells
proliferation,

migration, and invasion
decrease,

suppression of tumor growth
in vivo

[149]

PEI—polyethyleneimine.

9. Conclusions and Further Directions

Due to extensive research, exosomes are becoming promising novel drug delivery
devices. Many great advancements are achieved in the field of novel exosomes isolation
techniques, thus achieving rapid, efficient, and precise isolation from a small-volume
sample. Clinically, this is very promising for the future designing of exosome-based assays,
biomarkers screening, and also disease diagnosis and differentiation, delivering results
in a short matter of time. Nevertheless, these methods still require further validation
for specificity, batch-to-batch variations, and selectivity toward specific exosomes types.
Another problem is cell source and cost of purification, as gradual progress is continuously
performed in this manner. Currently, milk and fruits are the most promising candidates for
large-scale, commercial isolation of exosomes.

A vast variety of characterization methods is currently available, which is essential for
the proper discrimination of exosomes in terms of drug delivery. This includes exosomes
markers confirmation, cargo screening, and surface receptors recognition. These properties
are especially important while comparing exosomes isolated from different donor cells.
Especially, MSC-derived exosomes are the most promising devices for drug delivery.
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The utilization of both therapeutics and exosomes benefits allows for a drug concentra-
tion decrease with the adjacent increase in efficiency and reduction in systemic side effects.
Nevertheless, there is still space for upgrading drug loading efficiency to exosomes.

More attention should be given to the innate exosomes properties and their utilization
in combined therapy development and improvement. Further efforts are key to better exo-
somes properties recognition, thus allowing a better understanding of exosomes-mediated
targeted delivery. Despite the recognized natural exosome targeting properties, they are
not relevant clinically, mostly due to low precision of delivery. There are significant efforts
in the modification of exosome donor cells and exosomes itself in order to improve targeted
delivery, but this requires further research. In addition, despite the significant number of
clinical studies in the field of exosome-based drug delivery systems, there should be effort
made to access the long-term toxicity, immunogenicity, and safety of exosomes. In addition,
a sort of “gold standard” for therapeutic exosomes in terms of isolation, description, and
route of administration should be stated as a reference for further research. The optimal
route of administration is still not recognized, as a majority of studies apply exosomes
intravenously. Summarizing, exosomes have great potential as theranostics devices, serving
both as disease discovery and further therapy.
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