
Citation: Tanveer, M.; Kim, B.; Hong,

J.; Sim, S.‑H.; Cho, S. Comparative

Study of Lightweight Deep Semantic

Segmentation Models for Concrete

Damage Detection. Appl. Sci. 2022,

12, 12786. https://doi.org/10.3390/

app122412786

Academic Editor: Genevieve

Langdon

Received: 8 November 2022

Accepted: 8 December 2022

Published: 13 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil‑

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Comparative Study of Lightweight Deep Semantic
Segmentation Models for Concrete Damage Detection
Muhammad Tanveer 1, Byunghyun Kim 1 , Jonghwa Hong 2, Sung‑Han Sim 2 and Soojin Cho 1,3,*

1 Department of Civil Engineering, University of Seoul, 163 Seoulsiripdae‑ro, Dongdaemun‑gu,
Seoul 02504, Republic of Korea

2 School of Civil, Architectural Engineering and Landscape Architecture, Sungkyunkwan University, 2066
Seoburo, Jangan‑gu, Suwon 16419, Republic of Korea

3 Graduate School of Urban Bigdata Convergence, University of Seoul, 163 Seoulsiripdae‑ro,
Dongdaemun‑gu, Seoul 02504, Republic of Korea

* Correspondence: soojin@uos.ac.kr; Tel.: +82‑2‑6490‑2434

Abstract: Innovative concrete structure maintenance now requires automated computer vision in‑
spection. Modern edge computing devices (ECDs), such as smartphones, can serve as sensing and
computational platforms and can be integrated with deep learning models to detect on‑site damage.
Due to the fact that ECDs have limited processing power, model sizes should be reduced to im‑
prove efficiency. This study compared and analyzed the performance of five semantic segmentation
models that can be used for damage detection. These models are categorized as lightweight (ENet,
CGNet, ESNet) and heavyweight (DDRNet‑Slim23, DeepLabV3+ (ResNet‑50)), based on the number
of model parameters. All five models were trained and tested on the concrete structure dataset con‑
sidering four types of damage: cracks, efflorescence, rebar exposure, and spalling. Overall, based
on the performance evaluation and computational cost, CGNet outperformed the other models and
was considered effective for the on‑site damage detection application of ECDs.

Keywords: computer vision; edge computing device; deep learning; lightweight models; damage
detection

1. Introduction
Structural health monitoring (SHM) is an essential way to prevent civil structures

from damage as well as to improve their structural health via regular maintenance. SHM
can be categorized into two approaches: vision‑based inspection and sensor‑based moni‑
toring. The latter uses sensors installed on structures to continuously monitor structural
changes by measuring structural responses, including displacement, strain, and accelera‑
tion. Vision‑based inspection finds apparent damage or phenomena caused by structural
damage, which have been recently observed, using optical devices combined with vari‑
ous computer vision (CV) techniques. The recent advances in CV techniques have had a
high impact on today’s SHM of civil structures. These techniques are generally noncon‑
tact, remote, and quick, with minimal interference to structural operation; hence, such CV
techniques are promising as a supplement to conventional labor‑based inspection.

The inspection of concrete infrastructure is important, as these structures experience
degradation through aging, earthquakes, or overloading. The degradation becomes ap‑
parent in the form of damage, such as cracks, spalling, rebar exposure, rebar corrosion,
segregation, and efflorescence. Various studies have reported the detection of such dam‑
age using CV techniques [1–3]. Over the last decade, machine learning algorithms, such as
k‑means and self‑organizing maps (SOMs), support vector machines (SVMs), naive Bayes
classifiers, and feed‑forward neural networks (FNNs), have been applied to detect various
types of structural damage [4–6]. However, following the evolution of convolutional neu‑
ral networks (CNNs) and an increase in the amount of data, deep learning architectures

Appl. Sci. 2022, 12, 12786. https://doi.org/10.3390/app122412786 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app122412786
https://doi.org/10.3390/app122412786
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-5601-399X
https://orcid.org/0000-0002-7737-1892
https://orcid.org/0000-0002-1824-9408
https://doi.org/10.3390/app122412786
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app122412786?type=check_update&version=1

Appl. Sci. 2022, 12, 12786 2 of 18

have been widely used for damage detection in concrete structures [7–9]. Cha et al. [10]
conducted a comparative study on crack detection to compare the CNN‑based approach
with the traditional Canny and Sobel edge detection methods. Zhang et al. [11] proposed
a crack‑detection model using fully convolutional layers with different dilation rates for
feature‑map extraction. Kim and Cho [12] conducted a study on crack morphology detec‑
tion using a CNN‑based architecture known as AlexNet. Yang et al. [13] used three object
detectionmodels (AlexNet, VGGNet13 and ResNet18) for crack detection in concrete struc‑
tures. Many studies have proposed crack detection and localization using deep learning
models [14–16]. Ali et al. [17] proposed a customized CNN‑based model approach for
crack detection and localization, which outperformed other pre‑trained object detection
models in terms of accuracy.

To quantify the detected damage, damage must be both detected and pixel‑wise seg‑
mented. Regarding pixel‑wise segmentation, many researchers have used semantic and
instance segmentation deep‑learning models [18–20] for inspection. Hsieh and Tsai [21]
conducted a review of pixel‑level crack segmentation and compared eight different deep
learning models with a performance evaluation. Kim et al. [22] used an artificial neural
network for crack segmentation. They also proposed algorithms to analyze the length and
width of cracks, known as thinning and tracking algorithms. Zhou and Song [23] proposed
an encoder–decoder network called CrackNet for crack segmentation on a concrete road‑
way. In addition to concrete crack segmentation, Junior et al. [24] proposed a deep learning
architecture for crack segmentation on ceramic tiles. The authors focused on cracks irre‑
spective of the background, and detected and separated cracks close to the grout.

Damage, such as spalling, rebar exposure, and efflorescence, can occur in any concrete
structure, along with cracks, and they are significant indicators of structural integrity. Ef‑
florescence is a white salt residue that occurs mainly in areas with low temperatures and
moist conditions. Spalling or potholes occur whenwater in a concrete structure undergoes
multiple freeze–thaw cycles or when the rebar inside the concrete swells due to corrosion.
Rebar exposure mainly occurs in concrete structures owing to the pouring of concrete mix‑
tures with water deficiency or spalling. It is usually accompanied by spalling or cracks
and is always detected with other concrete damage [25]. Li et al. [26] modified a fully
convolutional network to detect multiple forms of damage via semantic segmentation in
concrete structures, including cracks, spalling, rebar exposure, and holes. Shi et al. [27]
detected corrosion and cracks by improving segmentation accuracy using two methods of
data input: (i) squashing segmentation, to input images with high resolution and (ii) crop‑
ping segmentation, to crop the image into a desired resolution. Although deep learning
model performances arematerial‑specific, their performanceswere found to be inadequate
when a pre‑trained model was tested on different material images with the same task [28].
Therefore, Hoskere et al. [29] proposed a multi‑task semantic segmentation model called
MaDnet to detect multiple forms of damage in concrete, steel, and asphalt. For real‑time
damage detection, many studies have been conducted using fast R‑CNN [30] and mask
R‑CNN [31]. Wang et al. [32] used the fast R‑CNNmodel to detect multiple forms of dam‑
age in real‑time masonry structures. Kim and Cho [33] proposed a study based on mask
R‑CNN for instance segmentation, and they detected multiple forms of damage in a con‑
crete structure.

The abovementioned studies sought to achieve better damage detectability by imple‑
menting highly complex models with numerous trainable parameters. Thus, the mod‑
els in these studies performed well on high‑performance computers with several GPUs.
However, in the past decade, various small edge computing devices (ECDs) have become
available, including smartphones, Jetson, Coral, Raspberry Pi, andArduino [34–36]. These
ECDs connect to, or can be easily integrated with, imaging sensors, and they can be used
by practitioners to build portable inspection devices that can detect and quantify damage
to the field. In particular, smartphones have improved dramatically in terms of processors,
memory, batteries, and communication; thus, smartphones have recently been used in var‑
ious SHM applications [37–39]. To use ECDs as the operating platforms of deep learning

Appl. Sci. 2022, 12, 12786 3 of 18

models, lightweight models with a relatively small number of tunable parameters and ap‑
propriate performance are preferred. Howard et al. [40] proposed a lightweight network
known as MobileNet for object classification. The authors introduced depth‑wise separa‑
ble convolution instead of standard convolution, resulting in a lightweight network, by
decreasing the parameters from 29.3 million to 4.2 million. Cai et al. [41] proposed the
YOLObile framework, which is a real‑time object detectionmodel formobile devices. They
implemented their model on a mobile device (Samsung Galaxy S20) and achieved an in‑
ference speed of approximately 17 FPS. In addition to classification and detection models,
some research studies have been conducted on lightweight semantic segmentationmodels.
Paszke et al. [42] proposed the first lightweight semantic segmentation model, known as
ENet, which constitutes only 0.4 million parameters. Subsequently, other state‑of‑the‑art
models have been proposed that are supposed to be efficient for mobile devices [43–45].
However, the application of these models to damage segmentation tasks has rarely been
reported in the literature.

In summary, the main contributions of the proposed study are as follows:
1. Three lightweight models (ENet) [42], context‑guided network (CGNet) [45], and ef‑

ficient symmetric network (ESNet) [46]) and two heavyweight models (deep dual‑
resolution network (DDRNet) [47] and DeepLabV3+ [48]) were compared for dam‑
age segmentation from structural images to investigate the best model that could be
embedded in edge computing devices with less computational power.

2. A concrete dataset that contains four types of concrete damage, i.e., cracks, efflores‑
cence, spalling, and rebar exposure, was constructed for training and testing of the
semantic segmentation models. Images were collected from online and real concrete
structures in South Korea.

3. The lightweight segmentation models were benchmarked for the detection of multi‑
ple types of concrete damage, and the tradeoff between the number of model param‑
eters and accuracy was investigated.
After fair training of the models using the same training images, the inference per‑

formance on the test images was evaluated in terms of detectability and computation. De‑
tectability wasmeasured usingmean intersection over union (mIoU) and F1‑score, and the
computation was measured using floating‑point operations (FLOPs), as well as inference
speed on a computer with GPUs.

2. Semantic Segmentation Models for Multi‑Damage Detection
To study the tradeoff between themodel parameters and accuracy, we chose five deep

segmentation models to detect multiple types of damage in concrete: three lightweight
models (ENet, CGNet, and ESNet) and two heavyweight models (DDR‑Slim and DeepLab
V3+). Brief descriptions of these models are provided below.

2.1. Efficient Neural Network (ENet)
Paszke et al. [42] proposed an efficient lightweight deep neural network (ENet) for se‑

mantic segmentation tasks. It is a state‑of‑the‑art model with very low parameters
(0.4 million) and FLOPs. The ENet was trained and tested on three types of datasets with
different numbers of classes. For the Cityscapes dataset [49], with 19 classes, and the
CamVid testing dataset [50], with 11 classes, the mIoUs of ENet were reported as 58.3%
and 51.3%, respectively. Figure 1a shows the ENet initial block, containing the convolu‑
tional and max‑pooling layers with concatenation. The initial block was first used in the
encoder part to downsample the input image resolution to half. Figure 1b depicts the
ENet bottleneck module, which consists of three convolutional layers, two max‑pooling
layers, and a regularizer. The 1 × 1 convolutional layer was used for the projection and
expansion of the input features. The convolutional layer was dilated at different ratios to
perform classification with a large receptive field. A spatial dropout [51] regularizer was
placed at the end of the convolutional layers in the bottleneck module to avoid overfitting
issues that could be caused by a small training dataset. The ENet architecture comprises

Appl. Sci. 2022, 12, 12786 4 of 18

five sections that contain the initial block and bottleneck modules. Several bottleneck mod‑
ules were used in Sections 1–3 to further downsample the input image resolution to 1/8.
Batch normalization (BN) and a parametric rectified linear unit (PReLU) were used after
each convolutional layer to reduce the computational cost. The PReLU is an activation
function that generalizes the conventional rectified unit by incorporating a negative slope.
PReLU enhances model fitting with negligible additional computational expense and min‑
imal overfitting risk [52]. The ENet architecture is different from other encoder–decoder
models because the decoder module in ENet has fewer layers than the encoder. This was
prompted by the idea that the encoder should be able to function on lower‑resolution data
and provide information processing and filtering in a manner similar to the original classi‑
fication architectures. Sections 4 and 5 describe the decoder part for the upsampling of the
feature map, and very few bottleneck modules were used, compared with the encoder.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 4 of 18

classification with a large receptive field. A spatial dropout [51] regularizer was placed at

the end of the convolutional layers in the bottleneck module to avoid overfitting issues

that could be caused by a small training dataset. The ENet architecture comprises five

sections that contain the initial block and bottleneck modules. Several bottleneck modules

were used in sections 1, 2 and 3 to further downsample the input image resolution to 1/8.

Batch normalization (BN) and a parametric rectified linear unit (PReLU) were used after

each convolutional layer to reduce the computational cost. The PReLU is an activation

function that generalizes the conventional rectified unit by incorporating a negative slope.

PReLU enhances model fitting with negligible additional computational expense and

minimal overfitting risk [52]. The ENet architecture is different from other encoder–de-

coder models because the decoder module in ENet has fewer layers than the encoder. This

was prompted by the idea that the encoder should be able to function on lower-resolution

data and provide information processing and filtering in a manner similar to the original

classification architectures. Sections 4 and 5 describe the decoder part for the upsampling

of the feature map, and very few bottleneck modules were used, compared with the en-

coder.

Figure 1. (a) ENet initial block; (b) ENet bottleneck module.

2.2. Context Guided Network (CGNet)

Wu et al. [42] proposed a context-guided network (CGNet) as a lightweight semantic

segmentation model. CGNet contains only 0.5 million trainable parameters, which saves

memory footprint and is considered suitable for implementation on ECDs. The perfor-

mance of CGNet was evaluated using the Cityscapes and CamVid datasets, and it outper-

formed the other lightweight models, in terms of accuracy and computational cost. The

architecture of the CGNet is simple and constitutes many CG blocks. Figure 2 presents the

hierarchy of the CG block used for feature extraction. The CG block comprises two pri-

mary stages. In the first stage, floc(*) and fsur(*) are used to learn the local features and

the relevant surrounding context. The floc(*) is a 3 × 3 depth-wise convolutional layer was

employed for learning the local features from the eight adjacent feature vectors. Mean-

while, fsur(*) is a 3 × 3 depth-wise dilated/atrous convolutional layer for a large receptive

field to efficiently learn the surrounding context. The depth-wise convolutional layer in

both floc(*) and fsur(*) helped to significantly reduce the number of parameters in CGNet.

Figure 1. (a) ENet initial block; (b) ENet bottleneck module.

2.2. Context Guided Network (CGNet)
Wu et al. [42] proposed a context‑guided network (CGNet) as a lightweight semantic

segmentation model. CGNet contains only 0.5 million trainable parameters, which saves
memory footprint and is considered suitable for implementation on ECDs. The perfor‑
mance of CGNet was evaluated using the Cityscapes and CamVid datasets, and it outper‑
formed the other lightweight models, in terms of accuracy and computational cost. The
architecture of the CGNet is simple and constitutes many CG blocks. Figure 2 presents the
hierarchy of the CG block used for feature extraction. The CG block comprises two pri‑
mary stages. In the first stage, floc(*) and fsur(*) are used to learn the local features and the
relevant surrounding context. The floc(*) is a 3× 3 depth‑wise convolutional layer was em‑
ployed for learning the local features from the eight adjacent feature vectors. Meanwhile,
fsur(*) is a 3 × 3 depth‑wise dilated/atrous convolutional layer for a large receptive field
to efficiently learn the surrounding context. The depth‑wise convolutional layer in both
floc(*) and fsur(*) helped to significantly reduce the number of parameters in CGNet. Fur‑
thermore, fjoi(*) extracts joint features from the outputs of floc(*) and fsur(*). The fjoi(*) is
simply designed as a concatenation layer, followed by the BN and PReLU operators. Stage
two involves fglo(*), which consists of global average pooling, followed by two fully con‑
nected layers that extract the global context to improve the joint features. Joint features

Appl. Sci. 2022, 12, 12786 5 of 18

are refined channel‑wise by applying the global context as a weighted vector to enhance
relevant features and minimize irrelevant features.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 5 of 18

Furthermore, fjoi(*) extracts joint features from the outputs of floc(*) and fsur(*). The fjoi(*)

is simply designed as a concatenation layer, followed by the BN and PReLU operators.

Stage two involves fglo(*), which consists of global average pooling, followed by two fully

connected layers that extract the global context to improve the joint features. Joint features

are refined channel-wise by applying the global context as a weighted vector to enhance

relevant features and minimize irrelevant features.

Figure 2. Structure of CGblock used in the CGNet.

Figure 3 represents the entire CGNet architecture. The encoder part comprises three

stages for downsampling the input image resolution, as well as many CG blocks. In stage

1, the downsampling ratio is half, constituting three standard convolutional (3 × 3) layers,

followed by the BN and PReLU operators. In stage 2, the input image passes through three

CG blocks that downsample the resolution to 1/4. The dilation rate for fsur(*) in the CG

blocks of stage 2 was 2. In stage 3, the input image is passed through 21 CG blocks and

further downsampled to 1/8. The dilation rate for fsur(*) in the CG blocks of stage 3 was

4. Finally, the decoder part, to visualize the prediction of CGNet, employs an upsampling

layer to resize the prediction into its original input resolution.

Figure 3. Overall architecture of CGNet.

2.3. Efficient Symmetric Network (ESNet)

An efficient symmetric network (ESNet) is another lightweight state-of-the-art model

that was proposed by Wang et al. [46]. ESNet consists of only 1.6 million parameters and

is considered appropriate for embedding into ECDs. The ESNet was trained on the

Figure 2. Structure of CGblock used in the CGNet.

Figure 3 represents the entire CGNet architecture. The encoder part comprises three
stages for downsampling the input image resolution, aswell asmanyCGblocks. In stage 1,
the downsampling ratio is half, constituting three standard convolutional (3 × 3) layers,
followed by the BN and PReLU operators. In stage 2, the input image passes through three
CG blocks that downsample the resolution to 1/4. The dilation rate for fsur(*) in the CG
blocks of stage 2 was 2. In stage 3, the input image is passed through 21 CG blocks and
further downsampled to 1/8. The dilation rate for fsur(*) in the CG blocks of stage 3 was
4. Finally, the decoder part, to visualize the prediction of CGNet, employs an upsampling
layer to resize the prediction into its original input resolution.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 5 of 18

Furthermore, fjoi(*) extracts joint features from the outputs of floc(*) and fsur(*). The fjoi(*)

is simply designed as a concatenation layer, followed by the BN and PReLU operators.

Stage two involves fglo(*), which consists of global average pooling, followed by two fully

connected layers that extract the global context to improve the joint features. Joint features

are refined channel-wise by applying the global context as a weighted vector to enhance

relevant features and minimize irrelevant features.

Figure 2. Structure of CGblock used in the CGNet.

Figure 3 represents the entire CGNet architecture. The encoder part comprises three

stages for downsampling the input image resolution, as well as many CG blocks. In stage

1, the downsampling ratio is half, constituting three standard convolutional (3 × 3) layers,

followed by the BN and PReLU operators. In stage 2, the input image passes through three

CG blocks that downsample the resolution to 1/4. The dilation rate for fsur(*) in the CG

blocks of stage 2 was 2. In stage 3, the input image is passed through 21 CG blocks and

further downsampled to 1/8. The dilation rate for fsur(*) in the CG blocks of stage 3 was

4. Finally, the decoder part, to visualize the prediction of CGNet, employs an upsampling

layer to resize the prediction into its original input resolution.

Figure 3. Overall architecture of CGNet.

2.3. Efficient Symmetric Network (ESNet)

An efficient symmetric network (ESNet) is another lightweight state-of-the-art model

that was proposed by Wang et al. [46]. ESNet consists of only 1.6 million parameters and

is considered appropriate for embedding into ECDs. The ESNet was trained on the

Figure 3. Overall architecture of CGNet.

2.3. Efficient Symmetric Network (ESNet)
An efficient symmetric network (ESNet) is another lightweight state‑of‑the‑art model

that was proposed by Wang et al. [46]. ESNet consists of only 1.6 million parameters
and is considered appropriate for embedding into ECDs. The ESNet was trained on the
Cityscapes dataset, and its performance was compared with other lightweight models. ES‑
Net achieved 70.7% mIoU on the Cityscapes testing dataset and achieved better perfor‑
mance, in terms of accuracy and inference speed, comparedwith othermodels in the study.
To reduce the computational cost, ESNet employed two types of residual modules, known
as factorized convolutional units (FCUs) and parallel FCUs (PFCUs), in their encoder and
decoder parts. These are non‑bottleneck modules, in which the standard convolution is
decomposed into two 1D convolutional layers.

Figure 4a shows the entire FCU block, which consists of three decomposed 1D convo‑
lutional layers with addition, and each convolutional layer is followed by a rectified linear
unit (ReLU) activation function with BN. K in Figure 4a represents the kernels size, which
is not fixed to vary the receptive fields, depending on the feature map.

Appl. Sci. 2022, 12, 12786 6 of 18

Appl. Sci. 2022, 12, x FOR PEER REVIEW 6 of 18

Cityscapes dataset, and its performance was compared with other lightweight models.

ESNet achieved 70.7% mIoU on the Cityscapes testing dataset and achieved better perfor-

mance, in terms of accuracy and inference speed, compared with other models in the

study. To reduce the computational cost, ESNet employed two types of residual modules,

known as factorized convolutional units (FCUs) and parallel FCUs (PFCUs), in their en-

coder and decoder parts. These are non-bottleneck modules, in which the standard con-

volution is decomposed into two 1D convolutional layers.

Figure 4a shows the entire FCU block, which consists of three decomposed 1D con-

volutional layers with addition, and each convolutional layer is followed by a rectified

linear unit (ReLU) activation function with BN. K in Figure 4a represents the kernels size,

which is not fixed to vary the receptive fields, depending on the feature map.

Figure 4. Structure of (a) FCU block and (b) PFCU block. Figure 4. Structure of (a) FCU block and (b) PFCU block.

Figure 4b shows the PFCU block consists of decomposed 1D convolutional layers
and adopts a transform–split–transform–merge strategy. The PFCU comprises two de‑
composed 1D convolutional layers that are then connected to three parallel dilated 1D
convolutions. The dilation rates in the corresponding convolutional layers are 2, 3 and 5,
and the outputs from these three dilated convolutions are added.

Figure 5 displays the entire architecture of ESNet, which is symmetric with the same
number of layers in the encoder and decoder. The encoder part of the ESNet contains three
blocks. Block 1 consists of three FCU modules, whose filter size (K) is 3, to downsample
the input image to half. Block 2 consists of two FCU modules, with K of 5, to capture a
wide‑scaled context, and the downsampling ratio in this block is 1/4. Three PFCU blocks
are used in block 3 to further downsample the input to 1/8 of its original resolution. For
upsampling, the decoder comprises two blocks. Blocks 4 and 5 contain two FCU modules
with filter sizes of 5 and 3, respectively. In blocks 4 and 5, the upsampling layer is employed
in front of each FCU unit to resize the output to its original resolution map.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 7 of 18

Figure 4b shows the PFCU block consists of decomposed 1D convolutional layers

and adopts a transform–split–transform–merge strategy. The PFCU comprises two de-

composed 1D convolutional layers that are then connected to three parallel dilated 1D

convolutions. The dilation rates in the corresponding convolutional layers are 2, 3 and 5,

and the outputs from these three dilated convolutions are added.

Figure 5 displays the entire architecture of ESNet, which is symmetric with the same

number of layers in the encoder and decoder. The encoder part of the ESNet contains three

blocks. Block 1 consists of three FCU modules, whose filter size (K) is 3, to downsample

the input image to half. Block 2 consists of two FCU modules, with K of 5, to capture a

wide-scaled context, and the downsampling ratio in this block is 1/4. Three PFCU blocks

are used in block 3 to further downsample the input to 1/8 of its original resolution. For

upsampling, the decoder comprises two blocks. Blocks 4 and 5 contain two FCU modules

with filter sizes of 5 and 3, respectively. In blocks 4 and 5, the upsampling layer is em-

ployed in front of each FCU unit to resize the output to its original resolution map.

Figure 5. Overall symmetric encoder–decoder architecture of ESNet.

2.4. Deep Dual-resolution Network (DDRNet-23-Slim)

Hong et al. [47] proposed a family of networks known as deep dual-resolution net-

works (DDRNet) for real-time road scene semantic segmentation. To investigate the

tradeoff between accuracy and speed, they proposed different networks with several lay-

ers. DDRNet-23-Slim achieved better performance and inference speed, with a low reduc-

tion in accuracy. DDRNet-23-Slim contains approximately 5.7 million parameters and has

been tested on both the Cityscapes and CamVid datasets. DDRNet-23-Slim achieved ap-

proximately 77.4% mIoU on the Cityscapes test dataset with the inference speed of 102

FPS, and 74.7% mIoU with the inference speed of 230 FPS on the CamVid test dataset.

Figure 6 depicts the architecture of the DDR-Net, which comprises several modules

known as sequential residual basic block, single residual bottleneck block, deep aggrega-

tion pyramid pooling module (DAPPM), and segmentation head (seg head). All modules

contain different types of convolutional layers with varying filter sizes to downsample the

input image resolution. First, the input image was downsampled to 1/64 of its resolution;

subsequently, these low-resolution feature maps were connected to the DAPPM module.

Figure 5. Overall symmetric encoder–decoder architecture of ESNet.

2.4. Deep Dual‑Resolution Network (DDRNet‑23‑Slim)
Hong et al. [47] proposed a family of networks known as deep dual‑resolution net‑

works (DDRNet) for real‑time road scene semantic segmentation. To investigate the trade‑

Appl. Sci. 2022, 12, 12786 7 of 18

off between accuracy and speed, they proposed different networks with several layers.
DDRNet‑23‑Slim achieved better performance and inference speed, with a low reduction
in accuracy. DDRNet‑23‑Slim contains approximately 5.7million parameters and has been
tested on both the Cityscapes and CamVid datasets. DDRNet‑23‑Slim achieved approxi‑
mately 77.4%mIoU on the Cityscapes test dataset with the inference speed of 102 FPS, and
74.7% mIoU with the inference speed of 230 FPS on the CamVid test dataset. Figure 6
depicts the architecture of the DDR‑Net, which comprises several modules known as se‑
quential residual basic block, single residual bottleneck block, deep aggregation pyramid
pooling module (DAPPM), and segmentation head (seg head). All modules contain differ‑
ent types of convolutional layers with varying filter sizes to downsample the input image
resolution. First, the input imagewas downsampled to 1/64 of its resolution; subsequently,
these low‑resolution feature maps were connected to the DAPPM module. DAPPM con‑
tains large pooling kernels that further downsample the feature maps to 1/128, 1/256, and
1/512 of the input image resolution. After downsampling, both featuremaps of resolutions
1/64 and 1/512were concatenated and added to the seg headmodule, comprised of a, 3 × 3,
standard convolutional layer, followed by a 1 × 1 convolution. Finally, the output from
the seg head was upsampled to its original input resolution for segmentation prediction.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 18

DAPPM contains large pooling kernels that further downsample the feature maps to

1/128, 1/256, and 1/512 of the input image resolution. After downsampling, both feature

maps of resolutions 1/64 and 1/512 were concatenated and added to the seg head module,

comprised of a, 3 × 3, standard convolutional layer, followed by a 1 × 1 convolution. Fi-

nally, the output from the seg head was upsampled to its original input resolution for

segmentation prediction.

Figure 6. Overall architecture of DDRNet-23-Slim.

2.5. DeepLabV3+ (ResNet-50)

DeepLabV3+ is an encoder–decoder network and is a modified version of

DeepLabV3 proposed by Chen et al. [48]. It contains numerous trainable parameters and

is considered to be efficient for complex dataset segmentation. DeepLabV3+ was trained

and tested on both the PASCAL VOC 2012 [53] and Cityscapes datasets, which achieved

approximately 89% and 82.1% mIoU, respectively. In the encoder part shown in Figure 7,

any deep CNN (DCNN) can be used as a backbone network for dense feature extraction.

ResNet-50 was used as the backbone network in this study. The atrous spatial pyramid

pooling (ASPP) module in the encoder uses multiple dilated convolutions at varying rates

to improve feature extraction for high-level features. The ASPP probes an input convolu-

tional feature layer with filters that have different sampling rates and effective fields of

view. This allows it to capture both the objects and the context of an image at different

scales. In the encoder part, the input was downsampled to 1/8 of the original resolution.

The decoder module is used to upsample the feature map obtained by the encoder

into its original resolution. First, depth-wise separable convolution is applied to both high-

and low-level features to reduce the computational cost and parameters. Subsequently,

high-level features are upsampled by the ratio of four and concatenated with low-level

features. To refine the features better, some 3 × 3 standard convolutions are applied after

concatenation, and then the features are upsampled by the ratio of 4 to reconstruct the

features into the corresponding input resolution.

Figure 6. Overall architecture of DDRNet‑23‑Slim.

2.5. DeepLabV3+ (ResNet‑50)
DeepLabV3+ is an encoder–decoder network and is amodified version of DeepLabV3

proposed by Chen et al. [48]. It contains numerous trainable parameters and is considered
to be efficient for complex dataset segmentation. DeepLabV3+ was trained and tested on
both the PASCAL VOC 2012 [53] and Cityscapes datasets, which achieved approximately
89% and 82.1% mIoU, respectively. In the encoder part shown in Figure 7, any deep CNN
(DCNN) can be used as a backbone network for dense feature extraction. ResNet‑50 was
used as the backbone network in this study. The atrous spatial pyramid pooling (ASPP)
module in the encoder uses multiple dilated convolutions at varying rates to improve fea‑
ture extraction for high‑level features. The ASPP probes an input convolutional feature
layer with filters that have different sampling rates and effective fields of view. This al‑
lows it to capture both the objects and the context of an image at different scales. In the
encoder part, the input was downsampled to 1/8 of the original resolution.

The decoder module is used to upsample the feature map obtained by the encoder
into its original resolution. First, depth‑wise separable convolution is applied to both high‑
and low‑level features to reduce the computational cost and parameters. Subsequently,
high‑level features are upsampled by the ratio of four and concatenated with low‑level
features. To refine the features better, some 3 × 3 standard convolutions are applied after
concatenation, and then the features are upsampled by the ratio of 4 to reconstruct the
features into the corresponding input resolution.

Appl. Sci. 2022, 12, 12786 8 of 18
Appl. Sci. 2022, 12, x FOR PEER REVIEW 9 of 18

Figure 7. Overall architecture of DeepLabV3+ (Backbone Network = ResNet-50).

2.6. Loss Functions for the Five Models

The loss function plays a vital role in the training of any deep-learning model. The

loss function was used to calculate the prediction error of the model during training and

to calculate the gradient to update the weights of the model accordingly. The loss function

is typically determined by considering the task of the model, such as regression, binary

classification, and multiclass classification. This study aimed to detect multiple types of

damage in the images, so the categorical cross-entropy loss [54], expressed in Equation

(1), was used to train all five models in this study:

L= - ∑ ∑ y
ij

log ŷ
ij

c

j=1

n

i=1

 (1)

Here, L denotes the cross-entropy loss, n is the number of pixels, c is the number

of classes in the data, and y
ij
 and ŷ

ij
 are the true labelled and predicted values of the ith

example pixel corresponding to the jth class, respectively.

3. Details for Model Training and Evaluation

This section describes the dataset used for training and testing, the details of training,

including hyperparameters, and the evaluation metrics used for the evaluation of detect-

ability.

3.1. Concrete Dataset

To evaluate the performance of the models, an image dataset containing concrete

damage, was constructed. The images were collected from different sources, including

online sources, as well as from real concrete structures in South Korea. Images in the da-

taset contained four types of damage: cracks, efflorescence, spalling, and rebar exposure.

A total of 3840 images was used, of which 90% (3440 images) were used for training and

10% (400 images) for testing the models. The images had varying resolutions, starting

from a high resolution of 1600 × 1200 to a lower resolution of 796 × 716 in RGB format. For

pixel-level classification, the data was labelled manually using an Adobe Photoshop la-

belling tool to create the ground truths. Figure 8 shows an example of the four types of

damage in the concrete dataset with the corresponding ground truths. The damages were

labeled using different colors: cracks in red, efflorescence in green, spalling in magenta,

Figure 7. Overall architecture of DeepLabV3+ (Backbone Network = ResNet‑50).

2.6. Loss Functions for the Five Models
The loss function plays a vital role in the training of any deep‑learning model. The

loss function was used to calculate the prediction error of the model during training and
to calculate the gradient to update the weights of the model accordingly. The loss function
is typically determined by considering the task of the model, such as regression, binary
classification, and multiclass classification. This study aimed to detect multiple types of
damage in the images, so the categorical cross‑entropy loss [54], expressed in Equation (1),
was used to train all five models in this study:

L = −
n

∑
i=1

c

∑
j=1

yijlog ŷij (1)

Here, L denotes the cross‑entropy loss, n is the number of pixels, c is the number
of classes in the data, and yij and ŷij are the true labelled and predicted values of the ith

example pixel corresponding to the jth class, respectively.

3. Details for Model Training and Evaluation
This section describes the dataset used for training and testing, the details of training,

including hyperparameters, and the evaluation metrics used for the evaluation
of detectability.

3.1. Concrete Dataset
To evaluate the performance of themodels, an image dataset containing concrete dam‑

age, was constructed. The images were collected from different sources, including online
sources, as well as from real concrete structures in South Korea. Images in the dataset
contained four types of damage: cracks, efflorescence, spalling, and rebar exposure. A to‑
tal of 3840 images was used, of which 90% (3440 images) were used for training and 10%
(400 images) for testing the models. The images had varying resolutions, starting from
a high resolution of 1600 × 1200 to a lower resolution of 796 × 716 in RGB format. For
pixel‑level classification, the data was labelled manually using an Adobe Photoshop la‑
belling tool to create the ground truths. Figure 8 shows an example of the four types of
damage in the concrete dataset with the corresponding ground truths. The damages were
labeled using different colors: cracks in red, efflorescence in green, spalling in magenta,

Appl. Sci. 2022, 12, 12786 9 of 18

and rebar exposure in cyan. The background was not labeled and is shown in white in the
ground truth.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 18

and rebar exposure in cyan. The background was not labeled and is shown in white in the

ground truth.

 Cracks Efflorescence Spalling and Rebar Exposure

Original

Image

Ground

Truth

Figure 8. Examples from concrete dataset with damage and respective ground truths (in colors).

3.2. Training Details

Five models were trained on the Python IDE platform using the TensorFlow and

Keras [55] libraries. Experiments were conducted on a workstation with two Intel Xeon

processor CPUs and four NVIDIA RTX Titan GPUs with 64-GB RAM. The models were

trained on multiple GPUs as distributed training, which helped increase the batch size

and reduced the training time. During the training, 50% of the training data were ran-

domly selected and augmented at every epoch. Two types of data augmentation options

were used on the training images: (1) random flip right and left, and (2) random scale of

1–1.5. All models were trained from scratch, except DeeplabV3+(ResNet-50). To train the

deep learning model from scratch all the learnable model parameters, like weights (con-

volution filters) were initialized randomly according to the input data during training and

loss was calculated after each iteration. These model parameters were monitored by loss

function and the training stopped when the loss minimized and was close to zero. Models

like DeepLabV3+ used backbone network (ResNet-50) for classification tasks and decoder

head for semantic segmentation. This backbone network used pretrained weights of

ImageNet, excluding last fully connected layer, and helped the model to optimize quickly

during training, also known as transfer learning. In this study DeepLabV3+ also used pre-

trained weights in the encoder module ResNet-50 as transfer learning. All models had an

input image resolution of 680 × 680. The global batch size for training was 16 (four per

GPU) and a total of 60 K iterations were set to train the models. An adaptive momentum

(ADAM) [56] optimizer was employed to effectively train the model by adaptively chang-

ing the learning rate. The learning rate was scheduled, starting from 0.001 changes at each

iteration and ending at 0.0001 at the completion of training.

3.3. Evaluation Metrics

Figure 8. Examples from concrete dataset with damage and respective ground truths (in colors).

3.2. Training Details
Five models were trained on the Python IDE platform using the TensorFlow and

Keras [55] libraries. Experiments were conducted on a workstation with two Intel Xeon
processor CPUs and four NVIDIA RTX Titan GPUs with 64‑GB RAM. The models were
trained onmultiple GPUs as distributed training, which helped increase the batch size and
reduced the training time. During the training, 50% of the training data were randomly
selected and augmented at every epoch. Two types of data augmentation options were
used on the training images: (1) random flip right and left, and (2) random scale of 1–
1.5. All models were trained from scratch, except DeeplabV3+(ResNet‑50). To train the
deep learning model from scratch all the learnable model parameters, like weights (convo‑
lution filters) were initialized randomly according to the input data during training and
loss was calculated after each iteration. These model parameters were monitored by loss
function and the training stopped when the loss minimized and was close to zero. Models
like DeepLabV3+ used backbone network (ResNet‑50) for classification tasks and decoder
head for semantic segmentation. This backbone network used pretrained weights of Im‑
ageNet, excluding last fully connected layer, and helped the model to optimize quickly
during training, also known as transfer learning. In this study DeepLabV3+ also used pre‑
trained weights in the encoder module ResNet‑50 as transfer learning. All models had an
input image resolution of 680 × 680. The global batch size for training was 16 (four per
GPU) and a total of 60 K iterations were set to train the models. An adaptive momentum
(ADAM) [56] optimizer was employed to effectively train the model by adaptively chang‑
ing the learning rate. The learning rate was scheduled, starting from 0.001 changes at each
iteration and ending at 0.0001 at the completion of training.

Appl. Sci. 2022, 12, 12786 10 of 18

3.3. Evaluation Metrics
To evaluate the detectability of trained segmentationmodels, twowidely usedmetrics

were introduced: (pixel‑wise) F1 score and intersection over union (IoU). The F1 score is
the harmonic mean of the precision and recall and is given by Equation (2):

F1 − score = 2∗Precision ∗ Recall
Precision+ Recall

(2)

The precision and recall can be calculated using:

Precision =
TPs

TPs+ FPs
(3)

Recall =
TPs

TPs+ FNs
(4)

where true positives (TPs) are the overlapping pixels between the prediction and ground
truth, false positives (FPs) are the non‑overlapping pixels of the prediction, and false neg‑
atives (FNs) are the non‑overlapping pixels of the ground truth. Precision assesses the
model’s reliability in classifying positive samples, while recall assesses the model’s de‑
tectability on positive samples. By calculating the harmonic mean of the precision and
recall, the F1 score provides a balanced measure of both reliability and detectability.

The IoU, also known as the Jaccard coefficient, is a commonly usedmetric for semantic
segmentation tasks and can be described as the area of intersection of prediction with the
ground truth, divided by the total area of the union of prediction and ground truth. The
IoU can be expressed using TPs, FPs, and FNs, as shown in Equation (5):

IoU =
TPs

TPs+ FPs+ FNs
(5)

4. Results and Discussion
This section describes the experimental results of all the deep learning models used

in this study. The models were compared in terms of their performance and computation.
Note that all trained models were tested on 400 testing images of the concrete dataset.

4.1. Predicted Results Visualization
For the qualitative analysis of the segmentation performance of all the models, some

prediction results for the test dataset are illustrated in Figure 9. The results are presented
for each model corresponding to each damage class, with the raw image and pixel label
ground truth from top to bottom. From the visual inspection, all models successfully pre‑
dicted damage; however, some false alarms or FPs were observed in some prediction im‑
ages. In the crack predictions, the models predicted the cracks but with a different pat‑
tern, compared to the ground truth. In the ground truth, the crack was labeled as non‑
continuous with a fine texture; however, the predictions were continuous and coarser
than the ground truth. In the efflorescence class, it is evident from Table 1 that all mod‑
els achieved better accuracy and an IoU of more than 50%. However, in the prediction,
models predicted efflorescence with the same pattern as the ground truth, but some labels
were missing and predicted as background, instead of efflorescence. The third column
in Figure 9 shows the prediction results for the spalling class. In the background of the
spalling image, there are parts of the climber or creeper plant. As a result, of this noisy and
complex background, some false predictions were observed in the results of ESNet and
DDRNet‑23‑Slim; however, overall, each model achieved better accuracy in the spalling
class. The rebars in the concrete structure were mainly exposed after spalling; hence, the
fourth column in Figure 9 displays the rebar exposure surrounded by spalling. All the
models predicted rebar exposure with a minor pattern difference when compared with
the ground truth.

Appl. Sci. 2022, 12, 12786 11 of 18

Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 18

 Cracks Efflorescence Spalling Rebar Exposure

Original Image

Ground Truth

ENet

CGNet

ESNet

DDRNet-23-Slim

Figure 9. Cont.

Appl. Sci. 2022, 12, 12786 12 of 18Appl. Sci. 2022, 12, x FOR PEER REVIEW 13 of 18

DeepLabV3+

Figure 9. Example of prediction results of all models with original images and ground truths

Figure 10 illustrates some of the prediction results for all models with multiple clas-

ses and background noise. Noise in the background, or varied lighting conditions, in an

image can significantly impact the performance of a deep learning model. For this pur-

pose, the performance of each model was analyzed and compared. The first example in-

cludes the prediction of crack and spalling classes in parallel. Only CGNet predicted both

types of damage in the lightweight models; however, certain spalling pixels were not pre-

dicted. DDR-23-Slim and DeepLabv3+, meanwhile, predicted spalling in the same manner

as CGNet. In the case of spalling and rebar exposure, all models, except CGNet and

DeepLabV3+, failed to detect rebar exposure. In the last example, in Figure 10, the image

contained only cracks, and in the background, some stones were visible at the right corner

of the image. In the prediction of all models, except DeepLabV3+, there were false alarms

and missing crack labels. ESNet and DDRNet-23-Slim failed to predict cracks. CGNet pre-

dicted cracks more accurately than ENet; however, stones in the background were pre-

dicted as spalling. As in all examples, the DeepLabV3+ model predicted damage effec-

tively, irrespective of any background conditions. Comparing the performance of other

models with DeepLabV3+ indicated that the CGNet model predictions in complex back-

ground conditions, or with multiple labels, were better than those of the other models.

 Cracks & Spalling Spalling & Rebar Exposure Crack

Original Image

Ground Truth

Figure 9. Example of prediction results of all models with original images and ground truths.

Figure 10 illustrates some of the prediction results for all models withmultiple classes
and background noise. Noise in the background, or varied lighting conditions, in an
image can significantly impact the performance of a deep learning model. For this pur‑
pose, the performance of each model was analyzed and compared. The first example in‑
cludes the prediction of crack and spalling classes in parallel. Only CGNet predicted both
types of damage in the lightweight models; however, certain spalling pixels were not pre‑
dicted. DDR‑23‑Slim and DeepLabv3+, meanwhile, predicted spalling in the same man‑
ner as CGNet. In the case of spalling and rebar exposure, all models, except CGNet and
DeepLabV3+, failed to detect rebar exposure. In the last example, in Figure 10, the image
contained only cracks, and in the background, some stones were visible at the right corner
of the image. In the prediction of all models, except DeepLabV3+, there were false alarms
and missing crack labels. ESNet and DDRNet‑23‑Slim failed to predict cracks. CGNet
predicted cracks more accurately than ENet; however, stones in the background were pre‑
dicted as spalling. As in all examples, the DeepLabV3+ model predicted damage effec‑
tively, irrespective of any background conditions. Comparing the performance of other
models with DeepLabV3+ indicated that the CGNet model predictions in complex back‑
ground conditions, or with multiple labels, were better than those of the other models.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 13 of 18

DeepLabV3+

Figure 9. Example of prediction results of all models with original images and ground truths

Figure 10 illustrates some of the prediction results for all models with multiple clas-

ses and background noise. Noise in the background, or varied lighting conditions, in an

image can significantly impact the performance of a deep learning model. For this pur-

pose, the performance of each model was analyzed and compared. The first example in-

cludes the prediction of crack and spalling classes in parallel. Only CGNet predicted both

types of damage in the lightweight models; however, certain spalling pixels were not pre-

dicted. DDR-23-Slim and DeepLabv3+, meanwhile, predicted spalling in the same manner

as CGNet. In the case of spalling and rebar exposure, all models, except CGNet and

DeepLabV3+, failed to detect rebar exposure. In the last example, in Figure 10, the image

contained only cracks, and in the background, some stones were visible at the right corner

of the image. In the prediction of all models, except DeepLabV3+, there were false alarms

and missing crack labels. ESNet and DDRNet-23-Slim failed to predict cracks. CGNet pre-

dicted cracks more accurately than ENet; however, stones in the background were pre-

dicted as spalling. As in all examples, the DeepLabV3+ model predicted damage effec-

tively, irrespective of any background conditions. Comparing the performance of other

models with DeepLabV3+ indicated that the CGNet model predictions in complex back-

ground conditions, or with multiple labels, were better than those of the other models.

 Cracks & Spalling Spalling & Rebar Exposure Crack

Original Image

Ground Truth

Figure 10. Cont.

Appl. Sci. 2022, 12, 12786 13 of 18Appl. Sci. 2022, 12, x FOR PEER REVIEW 14 of 18

ENet

CGNet

ESNet

DDRNet-23-Slim

DeepLabV3+

Figure 10. Example of prediction results of all models in complex background conditions.

4.2. Performance Evaluation

Table 1 compares the damage detectability of all models considering precision, recall,

F1 score, and IoU according to damage type. DeepLabV3+ with the ResNet50 backbone

could be considered a benchmark for all other models because it achieved the best perfor-

mance for all types of damage, as expected. Consequently, the performances of the other

four models (ENet, CGNet, ESNet, and DDRNet-23-Slim) were compared regarding the

ratio of F1 scores and IoUs, using DeepLabV3+ (ResNet50) as the benchmark.

Figure 10. Example of prediction results of all models in complex background conditions.

4.2. Performance Evaluation
Table 1 compares the damage detectability of all models considering precision, recall,

F1 score, and IoU according to damage type. DeepLabV3+ with the ResNet50 backbone
could be considered a benchmark for all other models because it achieved the best perfor‑
mance for all types of damage, as expected. Consequently, the performances of the other

Appl. Sci. 2022, 12, 12786 14 of 18

four models (ENet, CGNet, ESNet, and DDRNet‑23‑Slim) were compared regarding the
ratio of F1 scores and IoUs, using DeepLabV3+ (ResNet50) as the benchmark.

Themaximumvalues of precision and recall were inconsistently achieved by different
models in each damage class; however, the F1 score could be a balancedmetric. Regarding
the cracks, there was a significant difference between the precision and recall values of all
models. A lower precision indicated a higher number of FPs (i.e., false alarms) in the pre‑
diction of cracks. Cracks usually had very narrow widths, and, in most cases, the cracks
were predicted to be wider than the ground truths, which significantly lowered precision.
ESNet achieved the best F1 score of 0.64 and IoU of 0.46, compared with the other models.
The detectability ratio of ESNet over DeepLabV3+ was 91.6% for the F1 score and 86.8%
for IoU. The other models exhibited detectability ratios between 80% and 91% for the F1
score and 71% and 84% for IoU, respectively. Regarding efflorescence, the F1 scores and
IoUs were larger than those of cracks for all models, owing to the wide shapes of efflores‑
cence. CGNet achieved the best F1 score of 0.71 and IoU of 0.59, which were greater than
those of the other models. The ratios were 91.7% for the F1 score and 94.5% for the IoU,
which indicated that the performance of CGNet was close to that of DeepLabV3+. Simi‑
lar trends were observed for rebar exposure and spalling. CGNet achieved the F1 score
of 0.65 (ratio = 87.7%) and IoU of 0.47 (ratio = 79.9%) for spalling, and the F1 score of 0.75
(ratio = 95.8%) and IoU of 0.60 (ratio = 94.4%) for spalling. Although DDRNet‑23‑Slim is
a heavyweight model that was expected to have better detectability, the detectability ratio
was determined to be lower than that of the other models. As a result, CGNet showed the
best performance in detecting damage, except for cracks.

The lower performance of CGNet in detecting cracks could be solved by implement‑
ing proper post‑processing algorithms, because the CGNet detected cracks thicker than
the ground truths. As shown in, CGNet exhibited a relatively high recall and low preci‑
sion, which meant that the crack objects were predicted to be thicker. If the cracks were
predicted to be thick, post‑processing algorithms that use general CV techniques such as
subtraction [57] could, subsequently, help to obtain accurate crack objects. Considering the
possible implementation of post‑processing algorithms for cracks, CGNet could be consid‑
ered the best segmentation model to detect all types of damage with reasonable accuracy.

Table 1. Evaluation results of all trained models corresponding to each damage class.

Damage Class Models Precision Recall F1 Score IoU

Cracks

ENet 0.58 0.71 0.64 (91.31) * 0.45 (84.00) **
CGNet 0.50 0.71 0.59 (84.09) * 0.42 (77.74) **
ESNet 0.56 0.74 0.64 (91.61) * 0.46 (86.77) **

DDRNet‑23‑Slim 0.48 0.66 0.56 (80.24) * 0.38 (70.75) **
DeepLabV3+ 0.62 0.79 0.70 (100.00) * 0.54 (100.00) **

Efflorescence

ENet 0.76 0.67 0.71 (91.41) * 0.55 (88.15) **
CGNet 0.71 0.71 0.71 (91.69) * 0.59 (94.54) **
ESNet 0.81 0.61 0.69 (89.25) * 0.52 (82.25) **

DDRNet‑23‑Slim 0.74 0.68 0.71 (90.96) * 0.56 (89.63) **
DeepLabV3+ 0.81 0.75 0.78 (100.00) * 0.63 (100.00) **

Rebar Exposure

ENet 0.72 0.56 0.63 (85.26) * 0.45 (77.01) **
CGNet 0.68 0.62 0.65 (87.70) * 0.47 (79.91) **
ESNet 0.66 0.57 0.61 (82.86) * 0.43 (74.32) **

DDRNet‑23‑Slim 0.63 0.45 0.53 (70.98) * 0.33 (57.01) **
DeepLabV3+ 0.77 0.72 0.74 (100.00) * 0.58 (100.00) **

Spalling

ENet 0.72 0.71 0.71 (91.55) * 0.54 (83.90) **
CGNet 0.77 0.72 0.75 (95.83) * 0.61 (94.36) **
ESNet 0.72 0.65 0.68(87.63) * 0.51 (79.68) **

DDRNet‑23‑Slim 0.75 0.65 0.70 (89.75) * 0.52 (81.44) **
DeepLabV3+ 0.80 0.75 0.78 (100.00) * 0.64 (100.00) **

* Ratio of F1 score of all models to DeepLabV3+. ** Ratio of IoU to DeepLabV3+.

Appl. Sci. 2022, 12, 12786 15 of 18

4.3. Computational Cost Evaluation
Table 2 reports the model parameters, FLOPs, and inference speed corresponding to

each model to compare the computation. All the experiments for measuring inference
speedwere performed onNVIDIARTXTitanGPU. FLOPs and inference speedwere calcu‑
lated considering the resolution of input images as 680× 680. ENet constitutes 0.4 million
parameters and 6.98 G of FLOPs – the lowest numbers of parameters and FLOPs among
all models. Usually, the ENet model exhibits efficient inference speed when the BN and
dropout layers are merged into the convolution filters [42]. However, to maintain balance
in this study, the inference speeds of the models were calculated without merging BN and
dropout layers into the convolution filters. Hence, the ENet inference time was very high
during prediction, of around 140 ms per image. CGNet is also a lightweight model that
contains 0.5 million trainable parameters and 9.8G of FLOPs. The number of parameters
and FLOPs of CGNet were slightly higher than those of ENet, although its inference speed
was reported as 60 ms. Another lightweight model, ESNet, with 1.6 million parameters
and 41.42 G of FLOPs, showed the inference speed as 96 ms per image, which was higher
than CGNet but lower than ENet. DDRNet‑23‑Slim is a heavyweight model comprising
5.7 million parameters. Regardless of the high number of parameters, its architecture has
beendesigned to have efficient inference speed [47]. Hence, it contained 16.27GFLOPs and
the inference speed was measured as 85 ms per image. DeepLabV3+ (ResNet50) is compu‑
tationally expensive and consists of 17 million parameters and 156.67 G FLOPs. However,
its inference speedwas reported to be 80msper image, whichwas better than those of ENet,
ESNet and DDRNet‑23‑Slim. However, ECDs have minimal computational resources and
memory. Thus, the application of deep learning models on ECDs must have less parame‑
ters, FLOPs, and efficient computational time for inference [58]. Models like DeepLabV3+
or DDRNet‑23‑Slim show relatively efficient inference speed on GPU, but can occupy or
require more memory than that available on ECDs, as a high number of FLOPs is required.

Table 2. Computational cost comparison of all trained models.

Sr. No Models Parameters
Millions (m) FLOPs(G) Inference Speed

Milliseconds (ms)

1 ENet 0.4 6.98 140
2 CGNet 0.5 9.8 60
3 ESNet 1.6 41.42 96
4 DDRNet‑23‑Slim 5.7 16.27 85
5 DeepLabV3+ 17 156.67 80

Therefore, this benchmark demonstrated that the CGNet had similar detectability to
that of the representative heavyweight segmentation model (i.e., DeepLabV3+), although
the inference speed and computational parameters were minimal. Thus, among the five
comparedmodels, CGNetwas the bestmodel that could be embedded inECDs for portable
outdoor inspection of concrete structures.

5. Conclusions
This studymainly focused on the relationship between ECDs and deep learning mod‑

els. For this purpose, the performances of various lightweight (ENet, CGNet, and ESNet)
and heavyweight (DDRNet‑23‑Slim) semantic segmentation models were compared by
benchmarking the DeepLabV3+ (ResNet‑50) model. All models were trained without us‑
ing pre‑trained weights, except for DeepLabV3+, on a real concrete dataset with four dam‑
age classes: cracks, efflorescence, rebar exposure, and spalling. The performance of each
trained model was validated using a 400‑image testing dataset that included all the four
damage classes. Following are the conclusions based on the study:
â By benchmarking the IoU and F1 score of DeepLabV3+, CGNet achieved a higher

detectability ratio regarding both the F1 score and mIoU metrics (varying from 77%
to 95%) compared with the other models, except for crack segmentation. It was evi‑

Appl. Sci. 2022, 12, 12786 16 of 18

dent that the decoder module of CGNet did not have any trainable layers; thus, the
prediction of small objects, such as cracks, omitted some essential information.

â Among all the models, CGNet exhibited a better inference speed of approximately
60 ms per image of 680 px × 680 px, which required only 9.8G FLOPs.

â The tradeoff between model parameters, inference time, and accuracy indicated that
CGNet was the best among the four models and could be embedded in ECDs for
on‑site damage detection.
This study demonstrated the potential of lightweight deep learning applications for

automated structural inspections. Considering the ongoing evolution and improvement
of deep learning methods and algorithms, more ideal algorithms could be embedded in
ECDs to obtainmore advanced detection outcomes in the future. Furthermore, the damage
in the dataset could be extended by adding segregation to the concrete and corrosion to
the rebar.

Author Contributions: Conceptualization, M.T. and S.C.; methodology, M.T. and B.K.; software,
M.T. and B.K.; validation, M.T., B.K., J.H., S.‑H.S. and S.C.; formal analysis, M.T.; data curation, J.H.,
and B.K.; writing—original draft preparation, M.T.; writing—review and editing, S.‑H.S. and S.C.;
visualization, M.T.; supervision, S.C.; funding acquisition, S.C. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by the Korea Agency for Infrastructure Technology Advance‑
ment (KAIA) Grant (21CTAP‑C163726‑01).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Restrictions apply to the availability of these data. Data was obtained
from inspection reports of Seoul Facilities Corporation and are availablewith the permission of Seoul
Facilities Corporation.

Acknowledgments: This work was supported by the Korea Agency for Infrastructure Technology
Advancement (KAIA), grant funded by the Ministry of Land, Infrastructure, and Transport (Grant
21CTAP‑C163726‑01).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Jahanshahi, M.R.; Masri, S.F. Adaptive Vision‑based Crack Detection using 3D Scene Reconstruction for Condition Assessment

of Structures. Autom. Constr. 2012, 22, 567–576. [CrossRef]
2. Koch, C.; Georgieva, K.; Kasireddy, V.; Akinci, B.; Fieguth, P. A Review on Computer Vision based Defect Detection and Condi‑

tion Assessment of Concrete and Asphalt Civil Infrastructure. Adv. Eng. Informatics 2015, 29, 196–210. [CrossRef]
3. Morgenthal, G.; Hallermann, N. Quality Assessment of Unmanned Aerial Vehicle (UAV) Based Visual Inspection of Structures.

Adv. Struct. Eng. 2014, 17, 289–302. [CrossRef]
4. Nick, W.; Asamene, K.; Bullock, G.; Esterline, A.; Sundaresan, M. A Study of Machine Learning Techniques for Detecting and

Classifying Structural Damage. Int. J. Mach. Learn. Comput. 2015, 5, 313–318. [CrossRef]
5. Wang, Y.; Xiong, W.; Cheng, J.; Chia, S.C.; Chen, W.; Huang, W.; Zhou, J. Vision Based Hole Crack Detection. IEEE Trans. Ind.

Electron Appl. 2015, 1932–1936. [CrossRef]
6. Prasanna, P.; Dana, K.J.; Gucunski, N.; Basily, B.B.; La, H.M.; Lim, R.S.; Parvardeh, H. Automated Crack Detection on Concrete

Bridges. IEEE Trans. Autom. Sci. Eng. 2014, 13, 591–599. [CrossRef]
7. Chen, F.‑C.; Jahanshahi, M.R. NB‑CNN: Deep Learning‑Based Crack Detection Using Convolutional Neural Network andNaïve

Bayes Data Fusion. IEEE Trans. Ind. Electron. 2018, 65, 4392–4400. [CrossRef]
8. Dorafshan, S.; Thomas, R.J.; Maguire, M. Comparison of Deep Convolutional Neural Networks and Edge Detectors for Image‑

Based Crack Detection in Concrete. Constr. Build. Mater. 2018, 186, 1031–1045. [CrossRef]
9. Yang, X.; Li, H.; Yu, Y.; Luo, X.; Huang, T.; Yang, X. Automatic Pixel‑Level Crack Detection and Measurement Using Fully

Convolutional Network. Comput. Aided Civil Infrastruct. Eng. 2018, 33, 1090–1109. [CrossRef]
10. Cha, Y.‑J.; Choi, W.; Büyüköztürk, O. Deep Learning‑Based Crack Damage Detection Using Convolutional Neural Networks.

Comput. Civ. Infrastruct. Eng. 2017, 32, 361–378. [CrossRef]
11. Zhang, J.; Lu, C.; Wang, J.; Wang, L.; Yue, X.‑G. Concrete Cracks Detection Based on FCN with Dilated Convolution. Appl. Sci.

2019, 9, 2686. [CrossRef]

http://doi.org/10.1016/j.autcon.2011.11.018
http://doi.org/10.1016/j.aei.2015.01.008
http://doi.org/10.1260/1369-4332.17.3.289
http://doi.org/10.7763/IJMLC.2015.V5.526
http://doi.org/10.1109/iciea.2015.7334428
http://doi.org/10.1109/TASE.2014.2354314
http://doi.org/10.1109/TIE.2017.2764844
http://doi.org/10.1016/j.conbuildmat.2018.08.011
http://doi.org/10.1111/mice.12412
http://doi.org/10.1111/mice.12263
http://doi.org/10.3390/app9132686

Appl. Sci. 2022, 12, 12786 17 of 18

12. Kim, B.; Cho, S. Automated Vision‑Based Detection of Cracks on Concrete Surfaces Using a Deep Learning Technique. Sensors
2018, 18, 3452. [CrossRef]

13. Yang, C.; Chen, J.; Li, Z.; Huang, Y. Structural CrackDetection and Recognition Based onDeep Learning. Appl. Sci. 2021, 11, 2868.
[CrossRef]

14. Ali, L. Damage Detection and Localization in Masonry Structure using Faster Region Convolutional Networks. Int. J. Geomate
2019, 17. [CrossRef]

15. Wang, L.; Kawaguchi, K.; Wang, P. Damaged Ceiling Detection and Localization in Large‑Span Structures using Convolutional
Neural Networks. Autom. Constr. 2020, 116, 103230. [CrossRef]

16. Ramli, J.; Coulson, J.; Martin, J.; Nagaratnam, B.; Poologanathan, K.; Cheung, W. Crack Detection and Localisation in Steel‑Fibre‑
Reinforced Self‑Compacting Concrete Using Triaxial Accelerometers. Sensors 2021, 21, 2044. [CrossRef]

17. Ali, L.; Alnajjar, F.; Jassmi, H.; Gocho, M.; Khan, W.; Serhani, M. Performance Evaluation of Deep CNN‑Based Crack Detection
and Localization Techniques for Concrete Structures. Sensors 2021, 21, 1688. [CrossRef]

18. Sun, L.; Kamaliardakani,M.; Zhang, Y.WeightedNeighborhoodPixels SegmentationMethod forAutomatedDetection of Cracks
on Pavement Surface Images. J. Comput. Civ. Eng. 2016, 30. [CrossRef]

19. Yun, H.‑B.; Mokhtari, S.; Wu, L. Crack Recognition and Segmentation Using Morphological Image‑Processing Techniques for
Flexible Pavements. Transp. Res. Rec. J. Transp. Res. Board 2015, 2523, 115–124. [CrossRef]

20. Jenkins, M.D.; Carr, T.A.; Iglesias, M.I.; Buggy, T.; Morison, G. A Deep Convolutional Neural Network for Semantic Pixel‑Wise
Segmentation of Road and Pavement Surface Cracks. In Proceedings of the 2018 26th European Signal Processing Conference
(EUSIPCO), Rome, Italy, 3–7 September 2018; pp. 2120–2124. [CrossRef]

21. Hsieh, Y.‑A.; Tsai, Y.J. Machine Learning for Crack Detection: Review andModel Performance Comparison. J. Comput. Civ. Eng.
2020, 34, 04020038. [CrossRef]

22. Kim, J.J.; Kim, A.‑R.; Lee, S.‑W. Artificial Neural Network‑Based Automated Crack Detection and Analysis for the Inspection of
Concrete Structures. Appl. Sci. 2020, 10, 8105. [CrossRef]

23. Zhou, S.; Song,W. Concrete RoadwayCrack Segmentation using Encoder‑DecoderNetworkswith Range Images. Autom. Constr.
2020, 120, 103403. [CrossRef]

24. Junior, G.; Ferreira, J.; Millán‑Arias, C.; Daniel, R.; Junior, A.; Fernandes, B. Ceramic Cracks Segmentation with Deep Learning.
Appl. Sci. 2021, 11, 6017. [CrossRef]

25. Cha, Y.‑J.; Choi, W.; Suh, G.; Mahmoudkhani, S.; Büyüköztürk, O. Autonomous Structural Visual InspectionUsing Region‑Based
Deep Learning for Detecting Multiple Damage Types. Comput. Civ. Infrastruct. Eng. 2017, 33, 731–747. [CrossRef]

26. Li, S.; Zhao, X.; Zhou, G. Automatic Pixel‑Level Multiple Damage Detection of Concrete Structure using Fully Convolutional
Network. Comput. Aided Civil Infrastruct. Eng. 2019, 34, 616–634. [CrossRef]

27. Shi, J.; Dang, J.; Cui, M.; Zuo, R.; Shimizu, K.; Tsunoda, A.; Suzuki, Y. Improvement of Damage Segmentation Based on Pixel‑
Level Data Balance Using VGG‑Unet. Appl. Sci. 2021, 11, 518. [CrossRef]

28. Alipour, M.; Harris, D.K. Increasing the Robustness of Material‑Specific Deep Learning Models for Crack Detection across Dif‑
ferent Materials. Eng. Struct. 2020, 206, 110157. [CrossRef]

29. Hoskere, V.; Narazaki, Y.; Hoang, T.A.; Spencer, B.F.MaDnet: Multi‑Task Semantic Segmentation ofMultiple Types of Structural
Materials and Damage in Images of Civil Infrastructure. J. Civ. Struct. Heal. Monit. 2020, 10, 757–773. [CrossRef]

30. Girshick, R. Fast R‑CNN. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile,
7–13 December 2015; pp. 1440–1448. [CrossRef]

31. He, K.; Gkioxari., G.; Dollár, P.; Girshick, R. ”Mask R‑CNN,”. In Proceedings of the 2017 IEEE International Conference on
Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2980–2988. [CrossRef]

32. Wang, N.; Zhao, Q.; Li, S.; Zhao, X.; Zhao, P. Damage Classification forMasonryHistoric Structures Using Convolutional Neural
Networks Based on Still Images. Comput. Civ. Infrastruct. Eng. 2018, 33, 1073–1089. [CrossRef]

33. Kim, B.; Cho, S. AutomatedMultiple Concrete Damage Detection Using Instance Segmentation Deep LearningModel. Appl. Sci.
2020, 10, 8008. [CrossRef]

34. Chen, Y.; Zhang, Y.; Maharjan, S. Deep Learning for Secure Mobile Edge Computing. arXiv 2017, arXiv:1709.08025.
35. Hochstetler, J.; Padidela, R.; Chen, Q.; Yang, Q.; Fu, S. Embedded Deep Learning for Vehicular Edge Computing. IEEE ACM

Symposium Edge Comput. SEC 2018, 341–343. [CrossRef]
36. Li, H.; Ota, K.; Dong, M. Learning IoT in Edge: Deep Learning for the Internet of Things with Edge Computing. IEEE Netw.

2018, 32, 96–101. [CrossRef]
37. Yu, Y.; Han, R.; Zhao, X.; Mao, X.; Hu, W.; Jiao, D.; Li, M.; Ou, J. Initial Validation of Mobile‑Structural Health Monitoring

Method Using Smartphones. Int. J. Distrib. Sens. Networks 2015, 11. [CrossRef]
38. Kong, Q.; Allen, R.M.; Kohler, M.D.; Heaton, T.H.; Bunn, J. Structural HealthMonitoring of BuildingsUsing Smartphone Sensors.

Seism. Res. Lett. 2018, 89, 594–602. [CrossRef]
39. Wang, N.; Ri, K.; Liu, H.; Zhao, Z. “图像相关法 (Image Correlation)学习内容”. IEEE Sensors J. 2018, 18, 4664–4672. [CrossRef]
40. Howard, A.G.; Zhu, M.; Chen, B.; Kalenchenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient

Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861.
41. Cai, Y.; Li, H.; Yuan, G.; Niu, W.; Li, Y.; Tang, X.; Ren, B.; Wang, Y. YOLObile: Real‑Time Object Detection on Mobile Devices

via Compression‑Compilation Co‑Design. Proc. Conf. AAAI Artif. Intell. 2021, 35, 955–963. [CrossRef]

http://doi.org/10.3390/s18103452
http://doi.org/10.3390/app11062868
http://doi.org/10.21660/2019.59.8272
http://doi.org/10.1016/j.autcon.2020.103230
http://doi.org/10.3390/s21062044
http://doi.org/10.3390/s21051688
http://doi.org/10.1061/(ASCE)CP.1943-5487.0000488
http://doi.org/10.3141/2523-13
http://doi.org/10.23919/eusipco.2018.8553280
http://doi.org/10.1061/(ASCE)CP.1943-5487.0000918
http://doi.org/10.3390/app10228105
http://doi.org/10.1016/j.autcon.2020.103403
http://doi.org/10.3390/app11136017
http://doi.org/10.1111/mice.12334
http://doi.org/10.1111/mice.12433
http://doi.org/10.3390/app11020518
http://doi.org/10.1016/j.engstruct.2019.110157
http://doi.org/10.1007/s13349-020-00409-0
http://doi.org/10.1109/ICCV.2015.169
http://doi.org/10.1109/ICCV.2017.322.,"”
http://doi.org/10.1111/mice.12411
http://doi.org/10.3390/app10228008
http://doi.org/10.1109/sec.2018.00038
http://doi.org/10.1109/MNET.2018.1700202
http://doi.org/10.1155/2015/274391
http://doi.org/10.1785/0220170111
http://doi.org/10.1109/JSEN.2018.2828139
http://doi.org/10.1609/aaai.v35i2.16179

Appl. Sci. 2022, 12, 12786 18 of 18

42. Paszke, A.; Chaurasia, A.; Kim, S.; Culurciello, E. ENet: A Deep Neural Network Architecture for Real‑Time Semantic Segmen‑
tation. arXiv 2016, arXiv:1606.02147.

43. Emara, T.; El Munim, H.E.A.; Abbas, H.M. LiteSeg: A Novel Lightweight ConvNet for Semantic Segmentation. Digital Image
Comput. Tech. Appl. DICTA 2019, 1–7. [CrossRef]

44. Wang, Y.; Zhou, Q.; Liu, J.; Xiong, J.; Gao, G.; Wu, X.; Latecki, L.J. LEDNET: A Lightweight Encoder‑Decoder Network for Real‑
Time Semantic Segmentation; National Engineering Research Center of Communications and Networking, Key Laboratory of
BroadbandWireless Communications and Sensor Network Technology, Institute of Advanced ICIP: China, 2019; pp. 1860–1864.

45. Wu, T.; Tang, S.; Zhang, R.; Cao, J.; Zhang, Y. CGNet: A Light‑Weight Context Guided Network for Semantic Segmentation.
IEEE Trans. Image Process. 2020, 30, 1169–1179. [CrossRef]

46. Wang, Y.; Zhou, Q.; Xiong, J.; Wu, X.; Jin, X. ESNet: An Efficient Symmetric Network for Real‑Time Semantic Segmentation.
Pattern Recognit. Comput. Vision 2019, 41–52. [CrossRef]

47. Hong, Y.; Pan, H.; Sun, W.; Jia, Y. Deep Dual‑resolution Networks for Real‑time and Accurate Semantic Segmentation of Road
Scenes. arXiv 2021, 14, 1–12. Available online: http://arxiv.org/abs/2101.06085 (accessed on 7 November 2022).

48. Chen, L.‑C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder‑Decoder with Atrous Separable Convolution for Semantic
Image Segmentation. In Proceedings of the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018.
[CrossRef]

49. Cordts, M.; Omran, M.; Ramos, S.; Rehfeld, T.; Enzweiler, M.; Benenson, R.; Franke, U.; Roth, S.; Schiele, B. The Cityscapes
Dataset for Semantic Urban Scene Understanding. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 3213–3223. [CrossRef]

50. Brostow, G.J.; Fauqueur, J.; Cipolla, R. Semantic Object Classes in Video: A High‑Definition Ground Truth Database. Pattern
Recognit. Lett. 2009, 30, 88–97. [CrossRef]

51. Tompson, J.; Goroshin, R.; Jain, A.; LeCun, Y.; Bregler, C. Efficient Object Localization using Convolutional Networks. In Pro‑
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 648–656.
[CrossRef]

52. He, K.; Zhang, X.; Ren, S.; Sun, J. Delving deep into rectifiers: Surpassing human‑level performance on imagenet classification.
In Proceedings of the International Conference on Computer Vision, Las Condes, Chile, 11–18 December 2015; pp. 1026–1034.

53. Everingham, M.; Van Gool, L.; Williams, C.K.I.; Winn, J.; Zisserman, A. The Pascal Visual Object Classes (VOC) Challenge. Int.
J. Comput. Vis. 2009, 88, 303–338. [CrossRef]

54. Zhang, Z.; Sabuncu, M.R. Generalized Cross Entropy Loss for Training Deep Neural Networks with Noisy Labels. Adv. Neural
Inf. Process. Syst. 2018, 2018, 8778–8788.

55. Abadi,M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin,M.; et al. TensorFlow:
Large‑Scale Machine Learning on Heterogeneous Distributed Systems. arXiv 2016, arXiv:1603.04467.

56. Kingma, D.P.; Ba, J.L. Adam: A method for stochastic optimization. In Proceedings of the 3rd International Conference on
Learning Representations, Conference Track Proceedings, San Diego, CA, USA, 7–9 May 2015; pp. 1–15.

57. Kim, B.; Cho, S. Image‑Based Concrete Crack Assessment usingMask and Region‑Based Convolutional Neural Network. Struct.
Control. Heal. Monit. 2019, e2381. [CrossRef]

58. Wang, Y.;Wang, J.; Zhang,W.; Zhan, Y.; Guo, S.; Zheng, Q.;Wang, X.A Survey onDeployingMobileDeepLearningApplications:
A Systemic and Technical Perspective. Digit. Commun. Netw. 2021, 8, 1–17. [CrossRef]

http://doi.org/10.1109/dicta47822.2019.8945975
http://doi.org/10.1109/TIP.2020.3042065
http://doi.org/10.1007/978-3-030-31723-2_4
http://arxiv.org/abs/2101.06085
http://doi.org/10.1007/978-3-030-01234-2_49
http://doi.org/10.1109/cvpr.2016.350
http://doi.org/10.1016/j.patrec.2008.04.005
http://doi.org/10.1109/cvpr.2015.7298664
http://doi.org/10.1007/s11263-009-0275-4
http://doi.org/10.1002/stc.2381
http://doi.org/10.1016/j.dcan.2021.06.001

	Introduction
	Semantic Segmentation Models for Multi-Damage Detection
	Efficient Neural Network (ENet)
	Context Guided Network (CGNet)
	Efficient Symmetric Network (ESNet)
	Deep Dual-Resolution Network (DDRNet-23-Slim)
	DeepLabV3+ (ResNet-50)
	Loss Functions for the Five Models

	Details for Model Training and Evaluation
	Concrete Dataset
	Training Details
	Evaluation Metrics

	Results and Discussion
	Predicted Results Visualization
	Performance Evaluation
	Computational Cost Evaluation

	Conclusions
	References

