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Abstract: As a result of hardware resource constraints, it is difficult to obtain medical images with
a sufficient resolution to diagnose small lesions. Recently, super-resolution (SR) was introduced
into the field of medicine to enhance and restore medical image details so as to help doctors make
more accurate diagnoses of lesions. High-frequency information enhances the accuracy of the image
reconstruction, which is demonstrated by deep SR networks. However, deep networks are not
applicable to resource-constrained medical devices because they have too many parameters, which
requires a lot of memory and higher processor computing power. For this reason, a lightweight
SR network that demonstrates good performance is needed to improve the resolution of medical
images. A feedback mechanism enables the previous layers to perceive high-frequency information
of the latter layers, but no new parameters are introduced, which is rarely used in lightweight
networks. Therefore, in this work, a lightweight dual mutual-feedback network (DMFN) is proposed
for medical image super-resolution, which contains two back-projection units that operate in a dual
mutual-feedback manner. The features generated by the up-projection unit are fed back into the
down-projection unit and, simultaneously, the features generated by the down-projection unit are fed
back into the up-projection unit. Moreover, a contrast-enhanced residual block (CRB) is proposed as
each cell block used in projection units, which enhances the pixel contrast in the channel and spatial
dimensions. Finally, we designed a unity feedback to down-sample the SR result as the inverse
process of SR. Furthermore, we compared it with the input LR to narrow the solution space of the
SR function. The final ablation studies and comparison results show that our DMFN performs well
without utilizing a large amount of computing resources. Thus, it can be used in resource-constrained
medical devices to obtain medical images with better resolutions.

Keywords: attention module; dual mutual feedback; lightweight; medical image super-resolution;
unity feedback

1. Introduction

The aim of SR is to learn a mapping function from input low-resolution (LR) images to
output high-resolution (HR) images. High-resolution medical images are very important
for doctors in terms of making accurate diagnoses of lesions; thus, SR for medical images
has recently received a great deal of attention. However, image super-resolution remains a
challenge, as LR images lose a certain amount of information as compared to HR images [1].
Many researchers have tried to find a solution to this critical issue [2–5].

On the basis of deep learning, Dong et al. proposed the SR convolutional neural
network (SRCNN) [2], which utilizes the convolutional neural network (CNN) architecture
and is vastly superior to other traditional methods. Thereafter, Dong et al. proposed fast
SR convolutional neural networks (FSRCNNs) [5], which up-sample feature maps using
deconvolution in the last layer of the network and provide more accurate estimates with
less computation. The deconvolutional layer generates HR features by enlarging feature
maps. Then, the subpixel convolutional layer was proposed by Shi et al. [6], which expands
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the number of feature channels in order to store more pixels and rearrange them to generate
HR features. The Laplacian pyramid super-resolution network (LapSRN) [7] up-samples
LR feature maps progressively, which enables it to reconstruct multi-scale SR images in one
training session.

To further improve SR performance, deep networks were introduced into SR. The very
deep SR convolutional neural network (VDSR) [8] proposed by Kim et al. is the first deep
multiple-scale model. It bypasses interpolated LR images to the end by residual learning.
Then, on the basis of VDSR [8], the authors proposed a deeply recursive convolutional
network (DRCN) [9], which trains the network using a recursive-supervised strategy
and achieves a similar performance to VDSR [8] with fewer parameters. Deep dense SR
(DDSR) [10] was proposed for the SR of medical images, which uses densely connected
hidden layers to obtain informative high-level features.

However, it remains a challenge for deep neural networks to go deeper because of
the various difficulties associated with training, such as gradient vanishing/exploding
problems. Rresidual learning was proposed to solve these problems. The deep residual
network (ResNet) [11] is a representative model, which achieves a remarkable performance
based on residual learning. Tai et al. [12] used residual learning and recursive learning
to realize a very deep network without an enormous amount of parameters. The SR
network using dense skip connections (SRDenseNet) [13] is another representative model
based on residual learning. It bypasses all previous features to latter layers in blocks and
densely concatenates all blocks. The enhanced deep SR network (EDSR) [14] proposed
by Lim et al. removes the use of batch normalization (BN), which is harmful to the final
performance in SR tasks. EDSR also employs a pretraining strategy and residual scaling
techniques to improve the final performance. On the basis of residual learning, for the SR
of three-dimensional (3D) brain MRI images, Pham et al. [15] proposed a deep 3D CNN.

Above classical SR methods are all feedforward SR methods; low-frequency infor-
mation is directly passed to the following layer or bypassed to the latter layers through
skip connections. The feedback mechanism enables the previous layers to perceive high-
frequency information from the latter layers, but no new parameters are introduced. It is
widely used in the domain of computer vision [16–19]. Recently, Haris et al. [20] proposed
error feedback for image SR, which was used in two back-projection units. Thereafter,
the SR feedback network (SRFBN) [21] was proposed, which contains a feedback block that
functions in a self-feedback manner. For the SR of medical images, the feedback adaptive
weighted dense network (FAWDN) [22] was proposed based on an adaptive weighted
dense block and feedback connection.

Although the feedback mechanism is used in some SR methods, it is rarely used in
lightweight SR methods. The feedback mechanism enables the previous layers to perceive
high-frequency information from latter layers, but no new parameters are introduced.
Therefore, it is very applicable for lightweight networks. Moreover, most medical devices
are resource-constrained, so lightweight feedback SR networks with good performance
are desired. In order to meet the demand, a lightweight dual mutual-feedback network
(DMFN) is proposed for artificial intelligence in medical image super-resolution. The
DMFN feeds the HR features generated by the up-projection unit back into the down-
projection unit, and feeds LR features generated by the down-projection unit back into the
up-projection unit, which forms a dual mutual-feedback architecture, as shown in Figure 1.
Our method that was trained using natural images is named DMFN, and our method that
was trained using medical images is named DMFN+. They were tested on MRI13 from [22]
and compared with other state-of-the-art SR methods, as shown in Figure 2. Our method
performs very well with little computational cost.
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Figure 1. The structure of DMFN.

(a) scaling factor of x3 (b) scaling factor of x4

Figure 2. PSNR vs. parameters on MRI13 in [22].

Our contributions are summarized as follows:

• To better perceive the high-level information from each other, we designed a dual
mutual-feedback structure. The HR features generated by the up-projection unit
are fed back into the down-projection unit, and the LR features generated by the
down-projection unit are fed back into the up-projection unit.

• To boost the expressive ability of the network, we propose a contrast-enhanced resid-
ual block (CRB) for use as each cell block in the projection units. CRB uses the
contrast-enhanced channel and spatial attention within residual learning. The contrast-
enhanced channel attention module learns the pixel contrast of each feature map to
restore the textures, structures, and edges of images. The contrast-enhanced spatial at-
tention module learns the pixel contrast in the same spatial location along the channel
dimension to infer finer spatial-wise information.

• To narrow the search domain of the SR function, we designed a unity feedback.
We down-sampled the SR result to LR image as the inverse process of SR. We then
compared it with the input LR to calculate the unity feedback loss. The proposed unity
feedback is helpful in terms of learning a better SR function with very few introduced
parameters, which can be applied as a module to other SR networks.

2. Related Work

In this study, we designed a feedback network, which is inspired by SRFBN [21].
Moreover, inspired by [20], we used two back-projection units working in a dual mutual-
feedback manner. Furthermore, we propose an attention-based module CRB for use as
each cell block in the two back-projection units.

2.1. Attention Mechanism

The attention mechanism helps the networks perceive more informative features.
Previously, the attention mechanism was used for image classification tasks [23] in RNN.
Recently, inspired by the non-local means method, [24] learned the relationship between
pixels with weighted sum t using long-range dependencies acquisition. Then, Hu et al. [25]
learned the dependencies between channels with very little computational cost. The
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residual channel attention block (RCAB) proposed in [26] first used channel attention within
the residual block. The convolutional block attention module (CBAM) [27] enhanced the
discriminate learning ability of the network with the help of channel and spatial attention.
Hui et al. [28] proposed the contrast-enhanced channel attention (CCA) and argued that
channel attention with standard deviation can better learn the interdependencies between
feature channels.

Inspired by [28], we designed contrast-enhanced spatial attention, which learns the
contrast of pixels in the spatial dimension to infer finer spatial-wise information in feature
maps. Then, we used contrast-enhanced channel attention and spatial attention successively
within the residual block, which is named the contrast-enhanced residual block (CRB).

2.2. Back-Projection

Irani et al. [29] used back-projection for image enhancements, which confirmed that
iterative updates and down-sampling can minimize reconstruction error. Dai et al. [30] pro-
posed bilateral back-projection for SR networks with a single LR input. Then Dong et al. [31]
used iterative back-projection and incorporated non-local information to improve recon-
struction performance. Timofte et al. [32] enhanced the reconstruction capabilities of
learning-based SISR with the refinement of back-projection. Hairs et al. [20] learned the
errors after up- and down-sampling to refine the intermediate features, which was used to
realize up-projection and down-projection. The up- and down-projection units were then
learned iteratively to further improve reconstruction performance.

Inspired by [20], we argue that mutual learning between two back-projection units
will improve their performance, as it enhances the information exchange between the two.
Further experimental results indicate that mutual learning between two back-projection
units performs better than the existing independent learning methods.

2.3. Feedback Mechanism

In feedforward SR methods, the low-frequency information is directly passed to
the following layer or is bypassed to the latter layers through skip connections. The
feedback mechanism enables the previous layers to perceive the high-level information
of latter layers, which is widely used in the domain of computer vision [16–19]. Recently,
Hairs et al. [20] used error feedback in back-projection units to correct intermediate features.
Then, Han et al. [33] designed a dual-state structure with delayed feedback to exchange
signals between states. SRFBN [21] is a feedback network with a feedback block, which
iteratively feeds the output features back to itself as the input.

Inspired by the above feedback methods, we used dual mutual feedback on two
back-projection units, which feeds the HR features generated by the up-projection unit back
into the down-projection unit, and feeds the LR features generated by the down-projection
unit back into the up-projection unit. Our dual mutual feedback performs better than dual
self-feedback and single feedback manners.

3. Method or Methodology

In this section, we present the overall architecture of DMFN, including the dual
mutual-feedback component, the contrast-enhanced residual block (CRB) that is used as
each cell block in the dual mutual-feedback component, and the loss function.

3.1. Architecture of DMFN

Similar to SRFBN [21], our DMFN can be unfolded into several iterations because
of the feedback manner, and the iteration t is set from 1 to T. The back-projection units
feed back their output results to each other iteratively in a dual mutual-feedback manner.
As shown in Figure 3, two convolutional layers are firstly used to obtain shallow features,
which are then up-sampled. Then, the shallow features and the up-sampled shallow
features are learned by the dual mutual-feedback component. In the dual mutual-feedback
component, the HR features generated by the up-projection unit are fed back into the
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down-projection unit, and the LR features generated by the down-projection unit are fed
back into the up-projection unit in the next iteration, which forms a dual mutual-feedback
structure. Then, the outputs of dual mutual feedback from all iterations are concatenated
for image reconstruction by fusing them with the bicubic interpolated results. Finally, we
down-sampled the SR results to LR images as the inverse process of SR in the unity feedback
component. Then, we compared it with the input LR to calculate the unity feedback loss.

Figure 3. The unfolded DMFN.

We define Lin and Hin as the shallow features learned by the first component, which
can be obtained by {

Lin = fc(LR)
Hin = fup(Lin)

}
, (1)

where fc contains two convolutional layers to obtain shallow LR features. fup is a deconvo-
lutional upsampling operation.

In the dual mutual-feedback component of the t-th iteration, we use Lt
out to represent

the LR features generated by the down-projection unit, and Ht
out to represent the HR

features generated by the up-projection unit. The functions are as follows:

Lt
out =

{
fd−p(Hin)

fd−p([Hin, Ht−1
out ])

t = 1
t ≥ 2

}
, (2)

Ht
out =

{
fu−p(Lin)

fu−p([Lin, Lt−1
out ])

t = 1
t ≥ 2

}
, (3)

where fd−p are the operations of the down-projection unit, which contains some features
from the up-projection unit because of themutual learning between the two back-projection
units. fu−p is the operations of the up-projection unit, which also contains some features
from the down-projection unit. [] is the concat function.

For reconstruction, we up-scale the LR features generated by the down-projection unit,
which are then fused with the HR features generated by the up-projection unit. We define
the final HR feature results of the t-th iteration as follows:

Ht
rb = Ht

out + fup(Lt
out). (4)

Since the final HR features of all iterations are fused and then added to the bicubic
interpolated result of LR input, the final SR result is as follows:
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SR = fcm([H1
rb, H2

rb, ..., HT
rb]) + fBC(LR), (5)

where fcm is a conv-3 compression layer, and fBC represents the bicubic up-sample function.
Finally, we down sample the SR result to the LR image named LR′ by the down-

sampling function fdown, which contains two convolutional layers for down sampling and
channel transformation. The unity feedback loss calculated by LR′ and LR is used to narrow
the search domain of the SR function.

LR′ = fdown(SR), (6)

3.2. Dual Mutual-Feedback Component

The dual mutual-feedback component of the t-th iteration is shown in Figure 4. Pink
represents the up-projection unit, and blue represents the down-projection unit. Then,
we unfold the two back-projection units. The upward arrows represent the up-sampling
operation, and the downward arrows represent the down-sampling operation. The pink
arrows connect to an up-projection unit, and the blue arrows connect to a down-projection
unit. Then, we use mutual learning (black arrows) between the two back-projection units
to exchange information. Finally, the outputs of the two units are fed back into each other
in the next iteration to realize dual mutual feedback.

Figure 4. Dual mutual-feedback component of the t-th iteration in DMFN.

In the dual mutual-feedback component of the t-th iteration, we define the HR features
as Ht

1, Ht
2 and Ht

3, and the LR features as Lt
1, Lt

2 and Lt
3. We use fCRB to represent the

operations of CRB. The dual mutual-feedback procedure is as follows:

Lt
1 =

{
fCRB(Lin)

fCRB([Lin, Lt−1
out ])

t = 1
t ≥ 2

}
, (7)

Ht
1 =

{
fCRB(Hin)

fCRB([Hin, Ht−1
out ])

t = 1
t ≥ 2

}
, (8){

Lt
2 = fCRB([Lt

1, fdown(Ht
1)])

Ht
2 = fCRB([Ht

1, fup(Lt
1)])

}
, (9){

Lt
3 = fCRB([Lt

2, fdown(Ht
2)])

Ht
3 = fCRB([Ht

2, fup(Lt
2)])

}
, (10){

Lt
out = fCRB(Lt

2 + fdown(Ht
3 − Ht

1))
Ht

out = fCRB(Ht
2 + fup(Lt

3 − Lt
1))

}
. (11)

3.3. Contrast-Enhanced Residual Block (CRB)

To further boost the expressive ability of our network, we propose a contrast-enhanced
residual block (CRB), which is used as each cell block of the dual mutual-feedback com-
ponent, as shown in Figure 5. CRB uses contrast-enhanced channel attention and spatial
attention within the residual block. Contrast-enhanced channel attention assigns different
weights to channels, and contrast-enhanced spatial attention assigns different weights to
spatial locations. Therefore, the feature learning ability of residual blocks is enhanced.
As shown in Figure 5, the input features Fin are learned by a multi-layer perceptron fmlp
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(Conv-ReLU-Conv) and then are learned by contrast-enhanced channel attention. The input
of contrast-enhanced channel attention X is shown below:

X = fmlp(Fin). (12)

Figure 5. Contrast-enhanced residual block (CRB).

3.3.1. Contrast-Enhanced Channel Attention

As is the case for CCA [28], both standard deviation and average pooling are used
to describe the context of each channel. Standard deviation enables the network to per-
ceive more channels with a greater pixel contrast, as it represents image details related to
structures, textures, and edges. Average pooling enables the network to perceive more
informative channels. The size of feature maps X is H×W × C and we use c ∈ (1, . . . . . . C)
to represent the channel number. We use i ∈ (1, . . . . . . H) and j ∈ (1, . . . . . . W) to represent
the pixel location in each feature map. The weights of each channel calculated by average
pooling and standard deviation are shown below:

wavg
c =

1
HW ∑

(i,j)∈xc

xi,j
c , (13)

wstd
c =

√√√√ 1
HW ∑

(i,j)∈xc

(xi,j
c −

1
HW ∑

(i,j)∈xc

xi,j
c )2, (14)

Then, we use Wavg
c ∈ R1×1×C and Wstd

c ∈ R1×1×C to represent the average-pooled and
standard deviation results of X on all channels. They are learned by fmlp, and normalized
with the application of the sigmoid function. Finally, the input feature maps X are rescaled
by the element-wise product. The features learned by contrast-enhanced channel attention
are shown below:

Y = X ∗ σ( fmlp(W
avg
c ) + fmlp(W

std
c )). (15)

3.3.2. Contrast-Enhanced Spatial Attention

We argue that the standard deviation value in the spatial dimension indicates the
pixel contrast in the same spatial location along the channel dimension. The pixels with a
higher standard deviation value must have a higher information value in some channels,
which should be given more attention. Average pooling enables the network to perceive
more informative spatial locations along the channel dimension. Therefore, both stan-
dard deviation and average pooling are used to describe the pixel weights in the spatial
dimension, which enhances the image details. The size of feature maps Y is H ×W × C
and we use c ∈ (1, . . . . . . C) to represent the channel number. We use i ∈ (1, . . . . . . H) and
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j ∈ (1, . . . . . . W) to represent the pixel location in each feature map. The weights of each
spatial location calculated by average pooling and standard deviation are shown below:

wavg
i,j =

1
C

C

∑
c=1

yi,j
c . (16)

wstd
i,j =

√√√√ 1
C

C

∑
c=1

(yi,j
c −

1
C

C

∑
c=1

yi,j
c )2. (17)

Then, we use Wavg
s ∈ RH×W×1 and Wstd

s ∈ RH×W×1 to represent the average-pooled
and standard deviation results of Y across the channel. They are learned using f 7×7 (conv-7
layer), which is helpful to identify important spatial locations, and normalized with the
application of the sigmoid function. Finally, it rescales the input Y using the element-wise
product. The features learned by contrast-enhanced spatial attention are shown below:

Fcsa = Y ∗ σ( f 7×7[Wavg
s , Wstd

s ]) (18)

Finally, because CRB is a residual block, Fout, as the output of CRB, can be obtained by

Fout = Fcsa + Fin. (19)

3.4. Loss Function

We designed a unity feedback method that down-samples the SR result SR to LR
images LR′, as the inverse process of SR. Then, we compared it with the input LR to obtain
the unity feedback loss, which can be used to narrow the search domain of the SR function.
We chose the L1 loss function and used w to represent the weight of the unity feedback loss.
Accordingly, our loss function is as follows:

Loss = ‖SR, HR‖1 + w
∥∥LR′, LR

∥∥
1, (20)

4. Experimental Results

In this section, we first introduce the setting of our experiments. Then, we present the
experiments and analyze the results to prove the effectiveness of our methods, which in-
clude unity feedback, dual mutual-feedback feedback, mutual learning, the concat function
for SR reconstruction, and CRB.

4.1. Setting
4.1.1. Datasets

First, we trained our DMFN with the DIV2k [34] dataset and validated it with Set5 [35].
This was used to compare it with other SR methods trained using natural images. Moreover,
the corresponding ablation models were trained with the DIV2k [34] dataset and validated
with Set5 [35]. Then, as is the case with FAWDN [22], we trained our network with the
medical image dataset MRIMP and validated it with MRI13, which was used in [22]. This
was named DMFN+. Finally, all the comparison results were tested with three medical
image datasets: the MRI13 dataset in [22], ADNI100 [36] dataset and OASIS100 [37] dataset.

The DIV2k [34] dataset contains 800 training images, which have a resolution of 2K. We
increased the number of images 10-fold through rotation and cropping. The medical image
dataset MRIMP in FAWDN [22] contains 1444 training images. These were obtained using
GoogleMR by crawling the keywords IXI [38], ADNI [36], KneeMR [39], and LSMRI [40].
LR images come from the bicubic down-sampling of HR images. All experimental results
were obtained on a GPU under the PyTorch framework.

4.1.2. Implementation

The Adam optimizer was employed to train our network. We set the initial learning
rate (lr) to 0.0005, the epochs to 1000 (halved every 200 epochs), the batch size to 16,
and the base filter number to 32. As is the case for SRFBN-S [21], we performed the dual
mutual-feedback procedure four times.
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4.2. Effectiveness of Unity Feedback

In our study, we designed a unity feedback to narrow the search domain of the SR
function, so our loss function contains two parts, as shown in Equation (20). We used the
SR loss and unity feedback loss to train our DMFN, and we used w to represent the weight
assigned to the unity feedback loss. In this experiment, we increase the weight of unity
feedbak loss w from 0 to 1 to obtain the best trade-off. Then, we compare the SR results of
DMFN with different weights in Table 1. The unity feedback improved the performance
of our DMFN, and performed best when w = 0.1. Therefore, we set the weight of unity
feedback loss to 0.1 to supervise the training of our methods.

Table 1. Comparison of different weights assigned to unity feedback loss on DMFN.

w Scale Params
MRI13 ADNI100 OASIS100

PSNR/SSIM PSNR/SSIM PSNR/SSIM

0

×3

583 k 36.58/0.9480 30.13/0.8716 34.22/0.9475
0.01 583 k 36.61/0.9482 30.15/0.8718 34.36/0.9479
0.1 583 k 36.72/0.9485 30.17/0.8719 34.35/0.9478
1 583 k 36.54/0.9480 30.14/0.8715 34.33/0.9477

4.3. Effectiveness of Dual Mutual Feedback

For evaluating the effectiveness of dual mutual feedback, we performed ablation
studies for dual feedback, mutual feedback, and feedback. The ablation architectures are
shown in Figure 6. First, to realize the ablation of dual feedback, we used feedback with
down sampling, as shown in Figure 6b. Therefore, it perfomed two more up-sampling steps
and one more down-sampling step than the proposed DMFN in every feedback session.
Second, to realize the ablation of mutual feedback, the architecture has one more up-
sampling and down-sampling step than the proposed DMFN in each feedback, as shown in
Figure 6c. Finally, to realize the ablation of feedback, we used a down-sampling operation
after the up-projection unit to build the feedforward architecture, and up-sampled all
features at the last layer, as shown in Figure 6d. All the ablation architectures have more
parameters and a higher computational complexity than the proposed DMFN.

Figure 6. The ablation architectures. (a) is the DMFN. (b) represents the ablation of dual feedback.
(c) represents the ablation of mutual feedback. (d) represents the ablation of feedback.

The experimental results are shown in Table 2. First, the ablation of dual feedback
did not perform well. This is because the input of the two units is so similar that the
information exchange between them cannot function adequately. Second, the ablation
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of mutual feedback also exhibited a poorer performance than DMFN. This is because it
has less information exchange for its self-feedback architecture, and the additional up
sampling and down sampling are not directly used for SR reconstruction. Finally, DMFN
with feedback manner has fewer parameters but performs better than the feedforward
manner. This is because the feedback mechanism enables the previous layers to perceive
high-level information of latter layers.

Table 2. The ablation studies of dual feedback, mutual feedback, and feedback on DMFN.

Dual Mutual Feedback Scale Params MRI13 ADNI100 OASIS100

PSNR/SSIM PSNR/SSIM PSNR/SSIM

! ! !

×3

583 k 36.72/0.9485 30.17/0.8719 34.35/0.9478
# ! ! 631 k 36.49/0.9479 30.13/0.8716 34.24/0.9475
! # ! 687 k 36.58/0.9480 30.14/0.8716 34.31/0.9477
! ! # 633 k 36.53/0.9479 30.14/0.8714 34.35/0.9477

4.4. Ablation Study of Mutual Learning between Two Back-Projection Units

Inspired by [20], we argue that mutual learning between the two back-projection units
will improve their performance, as it facilitates information exchange. We performed an
ablation study for the mutual-learning method, in which two back-projection units were
learned independently, as shown in Figure 7. As illustrated in Table 3, the mutual-learning
method performed better than the independent-learning method.

(a) Two units with mutual learning (b) Two units with independent learning

Figure 7. The comparison of our mutual-learning method and the independent-learning method
between the two back-projection units. The black arrows show the mutual learning between two
units, which are not used in independent-learning.

Table 3. Comparisons of mutual learning and independent learning on DMFN.

Architecture Scale Params
MRI13 ADNI100 OASIS100

PSNR/SSIM PSNR/SSIM PSNR/SSIM

DMFN with mutual learning ×3 583 k 36.72/0.9485 30.17/0.8719 34.35/0.9478
DMFN with independent-learning 574 k 36.55/0.9479 30.13/0.8713 34.31/0.9476

4.5. Ablation Study of the Concat Function for SR Reconstruction

Certain multi-branch methods [7,9,21] reconstruct the SR image using multi-prediction,
such as SRFBN [21], which generates a prediction in each feedback procedure. However,
we argue that previous feedback procedures cannot produce a meaningful prediction as a
result of their very shallow HR features. Accordingly, we concatenated the HR features
of all feedback procedures to obtain the final SR result. We compared our concat function
and the multi-prediction method using the DMFN, as shown in Figure 8. As illustrated
in Table 4, the concat function performed better than the multi-prediction method on
the DMFN. Therefore, the concat function was shown to be effective and applicable to
feedback networks.
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Figure 8. DMFN without the concat function, which degrades into the multi-prediction method.

Table 4. Comparison of the concat function and multi-prediction used on DMFN.

Reconstruction Method Scale Params
MRI13 ADNI100 OASIS100

PSNR/SSIM PSNR/SSIM PSNR/SSIM

concat function ×3 583 k 36.72/0.9485 30.17/0.8719 34.35/0.9478
multi-prediction 582 k 36.24/0.9468 30.08/0.8708 34.07/0.9465

4.6. Improvement of CRB

A contrast-enhanced residual block (CRB) was designed by fusing both the contrast-
enhanced channel and spatial attention within residual learning, which is used in the
dual mutual-feedback component as each cell block. In this experiment, we replaced
the CRB with several attention-based modules used in existing methods to evaluate their
effectiveness, such as CBAM [27], RCAB [26], and CCA [28]. Figure 9 shows a comparison
of these attention models. Our CRB and CBAM [27] contain both channel and spatial
attention, while CCA [28] and RCAB [26] are models based on the channel attention. We
used the above attention models on our DMFN to compare their performance. They are
denoted as DMFN-CBAM, DMFN-RCAB and DMFN-CCA. As illustrated in Table 5, our
CRB performed better than the above attention-based models. Therefore, our CRB was
shown to be efficient and to improve SR performance.

Figure 9. Existing attention models [26–28].
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Table 5. Comparison of existing attention models and our CRB on DMFN.

Attention Module Scale Params
MRI13 ADNI100 OASIS100

PSNR/SSIM PSNR/SSIM PSNR/SSIM

DMFN

×3

583 k 36.72/0.9485 30.17/0.8719 34.35/0.9478
DMFN-CBAM 583 k 36.40/0.9476 30.13/0.8721 34.21/0.9472
DMFN-RCAB 582 k 36.47/0.9478 30.13/0.8718 34.24/0.9473
DMFN-CCA 582 k 36.56/0.9479 30.14/0.8717 34.29/0.9475

4.7. Comparison with Classical SR Methods

Our DMFN was trained using DIV2K [34].Therefore, we compared it with other
classical SR methods trained using natural images, such as SRCNN [2], FSRCNN [5],
VDSR [8], DRCN [9], LapSRN [7], SRDenseNet [13], DDSR [10], EDSR [14], SRMD [41],
SRMDNF [41], SRFBN-S [21] and FAWDN [22]. Moreover, we compared our DMFN+ with
FAWDN+ [22], which was trained using the images of MRIMP and part of DIV2K [34], as
the network suffered from overfitting when trained with MRIMP. Our DMFN+ was trained
with MRIMP, and there was no overfitting, which demonstrates the stability of our method.
As illustrated in Table 6, we compared their PSNR and SSIM values, and our DMFN was
shown to perform better than the other natural image SR methods with fewer parameters.
Furthermore, our DMFN+ demonstrated a better performance than the medical image SR
methods with fewer parameters.

Finally, a visual comparison of SR medical images was performed, as shown in
Figure 10. For ADNI100 [36], the performance of DMFN+ was the best, followed by
EDSR [14]. For OASIS100 [37], the performance of DMFN+ was the best, followed by
DMFN. However, DMFN+ requires fewer than half the parameters of EDSR [14], so our
DMFN and DMFN+ provide a better trade-off. In summary, our methods recover image
details and textures better than most of the other methods.

Table 6. Comparison of PSNR/SSIM for differentscale factors on the MRI13 [22], ADNI100 [36],
and OASIS100 [37] datasets. The red and blue represent the best and second-best results, respectively.

Methods Scale Params
MRI13 ADNI100 OASIS100

PSNR/SSIM PSNR/SSIM PSNR/SSIM

Bicubic

×2

- 37.95/0.9677 30.74/0.8943 33.54/0.9585
SRCNN [2] 8 K 40.76/0.9820 32.49/0.9258 35.52/0.9717

FSRCNN [5] 13 K 40.90/0.9809 40.90/0.9809 34.47/0.7778
VDSR [8] 666 K 41.78/0.9835 33.09/0.9328 36.70/0.9759
DRCN [9] 1774 K 42.15/0.9838 33.22/0.9336 37.19/0.9779

LapSRN [7] 251 K 41.99/0.9840 32.96/0.9317 36.98/0.9772
SRDenseNet [13] 7160 K 42.97/0.9846 33.33/0.9348 37.69/0.9788

DDSR [12] 2020 K 41.92/0.9833 33.00/0.9318 36.97/0.9766
EDSR [14] 1370 K 43.61/0.9853 33.50/0.9359 38.18/0.9797
SRMD [41] 1511 K 42.26/0.9841 33.15/0.9335 37.27/0.9780

SRMDNF [41] 1511 K 42.76/0.9848 33.30/0.9348 37.69/0.9794
SRFBN-S [21] 282 K 42.77/0.9843 33.29/0.9342 38.88/0.9806
FAWDN [22] 7170 K 43.35/0.9850 33.41/0.9352 37.91/0.9791

FAWDN+ [22] 7170 K 43.59/0.9851 33.87/0.9400 38.10/0.9798
DMFN(ours) 475 K 43.38/0.9850 33.41/0.9353 39.27/0.9813

DMFN+(ours) 475 K 43.57/0.9851 33.84/0.9397 39.43/0.9818
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Table 6. Cont.

Methods Scale Params
MRI13 ADNI100 OASIS100

PSNR/SSIM PSNR/SSIM PSNR/SSIM

Bicubic

×3

- 32.70/0.9126 27.95/0.8063 28.97/0.8919
SRCNN [2] 8 K 35.03/0.9393 29.29/0.8527 31.27/0.9225

FSRCNN [5] 13 K 35.35/0.9406 29.48/0.8562 30.91/0.7568
VDSR [8] 666 K 35.43/0.9449 29.83/0.8661 31.60/0.9308
DRCN [9] 1774 K 35.83/0.9449 29.92/0.8672 32.18/0.9371

SRDenseNet [13] 7160 K 36.25/0.9469 30.06/0.8704 32.64/0.9477
DDSR [12] 202 0K 35.49/0.9433 29.68/0.8638 31.72/0.9330
EDSR [14] 1555 K 36.71/0.9484 30.27/0.8735 33.26/0.9444
SRMD [41] 1528 K 35.91/0.9456 29.91/0.8676 32.29/0.9385

SRMDNF [41] 1528 K 36.09/0.9465 30.02/0.8698 32.52/0.9405
SRFBN-S [21] 375 K 36.09/0.9459 29.99/0.8691 33.79/0.9453
FAWDN [22] 7170 K 36.60/0.9481 30.16/0.8719 33.00/0.9429

FAWDN+ [22] 7170 K 36.73/0.9479 30.75/0.8839 33.19/0.9450
DMFN(ours) 583 K 36.72/0.9485 30.17/0.8719 34.35/0.9478

DMFN+(ours) 583 K 36.75/0.9482 30.76/0.8843 34.41/0.9493

Bicubic

×4

- 29.90/0.8591 26.37/0.7298 26.37/0.7298
SRCNN [2] 8 K 31.75/0.8914 27.49/0.7838 28.47/0.8621

FSRCNN [5] 13 K 32.17/0.8934 27.66/0.7876 28.49/0.6900
VDSR [8] 666 K 32.44/0.9027 28.00/0.8028 28.96/0.8748
DRCN [9] 1774 K 32.64/0.9034 28.04/0.8029 29.29/0.8830

LapSRN [7] 502 K 32.68/0.9072 27.99/0.8027 29.26/0.8837
SRDenseNet [13] 7160 K 32.97/0.9075 28.18/0.8079 29.65/0.8900

DDSR [12] 2020 K 32.45/0.9029 27.91/0.8011 29.15/0.8798
EDSR [14] 1518 K 33.31/0.9107 28.42/0.8136 30.48/0.9003
SRMD [41] 1552 K 32.83/0.9060 28.05/0.8044 29.66/0.8884

SRMDNF [41] 1552 K 32.69/0.9062 28.13/0.8080 28.13/0.8080
SRFBN-S [21] 483 K 32.85/0.9069 28.20/0.8086 31.01/0.9006
FAWDN [22] 7170 K 33.22/0.9098 28.30/0.8117 30.05/0.8957

FAWDN+ [22] 7170 K 33.21/0.9086 28.81/0.8259 30.38/0.8895
DMFN(ours) 707 K 33.37/0.9104 28.30/0.8117 31.47/0.9051

DMFN+(ours) 707 K 33.33/0.9094 28.94/0.8310 31.54/0.9079

Figure 10. Cont.
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Figure 10. Comparison of visualization results on ADNI100 [36] and OASIS100 [37] datasets. Images
on the right are the recovery details of the red box.

5. Conclusions

In this paper, a lightweight dual mutual-feedback network (DMFN) is proposed for use
in artificial intelligence in medical image super-resolution. It contains two back-projection
units working in a dual mutual-feedback manner. We propose a contrast-enhanced residual
block (CRB), which is used in the back-projection units as each cell block. The CRB uses
the contrast-enhanced channel and spatial attention within residual learning to enhance its
ability to express details. We used the concat function for SR image reconstruction. Finally,
a unity feedback method was designed to supervise the process of SR, which down-sampled
the SR result to LR images as the inverse process of SR. As illustrated in the experimental
results, our DMFN outperformed the other methods with very little computational cost.
Accordingly, our method can help doctors to make accurate diagnoses by improving the
resolution of medical images. The DMFN introduces a feedback mechanism into medical
image SR and was shown to exhibit good performance on synthetic datasets. However, we
are not sure whether it will perform well in real-world medical image SR, as the degradation
of real-world images is complicated. In the future, we will focus our attention on real-world
medical image SR, as it is possible that the feedback mechanism can also be used to improve
performance in this scenario.
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