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Abstract: For both linear and nonlinear analysis, finite element method (FEM) software packages,
whether commercial or in-house, have contributed significantly to ease the analysis of simple and
complex structures with various working conditions. However, the literature offers other discretiza-
tion techniques equally accurate, which show a higher meshing flexibility, such as meshless methods.
Thus, in this work, the radial point interpolation meshless method (RPIM) is used to obtain the
required variable fields for a nonlinear elastostatic analysis. This work focuses its attention on the
nonlinear analysis of two benchmark plate-bending problems. The plate is analysed as a 3D solid
and, in order to obtain the nonlinear solution, modified versions of the Newton–Raphson method
are revisited and applied. The material elastoplastic behaviour is predicted assuming the von Mises
yield surface and isotropic hardening. The nonlinear algorithm is discussed in detail. The analysis
of the two benchmark plate examples allows us to understand that the RPIM version explored is
accurate and allows to achieve smooth variable fields, being a solid alternative to FEM.

Keywords: meshless methods; radial point interpolation method; elastoplasticity; plates

1. Introduction

Computational mechanics is the discipline concerned with the use of computational
numerical methods to study phenomena governed by the principles of solid and fluid
mechanics. It is used every day to help predict, develop, and improve not only structural
and fluid applications in the industrial sense but also several other science areas, such
as medicine, biology, chemistry, etc. [1]. With the constant evolution of engineering, the
challenges for computational mechanics are numerous. For example, when analysing the
simulation of manufacturing processes, such as extrusion or moulding, it is necessary to
deal with large displacements of mesh, viscoplastic effects and contact conditions, whereas
in simulations of failure processes, it is required to model the fracture initiation and its
propagation path, leading to the development of demanding remeshing algorithms and
fracture-damage criteria.

Problems dealing with large mesh distortions or localised remeshing requirements
are not efficiently solved by mesh-dependent discretization techniques, such as the finite
element method (FEM) [2]. Meshless methods are an alternative to classic mesh-dependent
discretization methods. In meshless methods, the problem domain is discretized by a
random set of nodes, without any preestablished connectivity, rather than a structured
element mesh. To define the nodal connectivity, meshless methods use the influence-
domain concept, allowing one to establish automatically the nodal connectivity in a later
stage of the preprocessing phase [3,4].

Meshless methods and their origin can be traced to the smooth particle hydrodynamics
method (SPH) [5]. It was applied to polytropic stellar models and used statistical techniques
to recover analytical expressions for the physical variables from a known distribution of
fluid elements, starting with a nonaxisymmetric distribution of approximately 80 particles
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in three dimensions. This method was applied to solid mechanics by Larry D. Libersky
and A.G. Petschek [6] in 1991, in which an elastic-perfectly-plastic constitutive model was
formulated. It was found that excellent features of the SPH, such as robustness, simplicity,
and ease of adding new physics, could be transferred to the analysis of solid mechanics
problems [7].

SPH is a particle method, in which the set of nodes (the particles) do not form a solid
continuum in the same sense as in FEM, being more suited for free surface fluid analyses.
Thus, other meshless technique started to be developed, such as the diffuse element method
(DEM) [8], the first mature meshless method using a weak formulation and shape functions
constructed by using the moving least-squares (MLS) approximants approach. Then, Be-
lytschko and coworkers improved the DEM and proposed in 1994 the element free Galerkin
method (EFGM) [9], one of the most popular meshless methods. At the same period,
other approximation meshless techniques were developed, such as the reproducing kernel
particle method (RKPM) [10] and the meshless local Petrov–Galerkin method (MLPG) [11],
a truly meshless method (in the sense that it does not require a background nodal indepen-
dent integration mesh) based on a local symmetric weak form (LSWF). MLPG does not
need an element mesh for the interpolation of the solution variables. Integrals are solved
over a regular-shaped domain and its boundaries. The generalized finite difference method
(GFDM) is another popular approximation method [12,13]. Because it can be applied to
solve problems discretized by using only an irregular nodal distribution, GFDM is also
considered truly meshless. GFDM uses the Taylor series expansions and the MLS approx-
imation to derive explicit expressions for the required partial derivatives of unknown
variables. Collocation meshless methods are another class of meshless methods available in
the literature, such as the local radial basis function collocation method (LRBFCM) [14,15],
which uses the strong-form formulation to establish the system of equations and obtain
the variable field. LRBFCM uses radial basis functions to construct trial functions, and it
is highly dependent on the shape parameters of the corresponding radial basis function.
The accuracy and efficiency of LRBFCM strongly depend on the values of such shape
parameters, which must be analysed and optimised for distinct problems [14,15]. The
literature offers several variants of collocation methods, such as the Trefftz collocation
method [16,17].

Approximation methods, such as EFGM, RKPM, and MLPG, produce highly accurate
solutions. However, their shape functions lack the Kronecker delta property, hindering the
imposition of the essential and natural boundary conditions, which can only be enforced
with exact technique, such Lagrange multipliers [1]. Therefore, efforts were made to
develop interpolating meshless techniques. The natural element method (NEM), was
one of the first to be developed [18]. Using the natural neighbour and Voronoï diagram
concepts, the nodal connectivity, the background integration mesh and the shape functions
(and corresponding spatial derivatives), are constructed automatically, producing a true
meshless method approach with interpolating properties. In 2001, G.R. Liu and his research
team developed the point interpolator method (PIM) [19], in which the shape functions
are constructed by using a polynomial basis. Although simple and easy to apply, the
process is not capable of producing shape functions when nodes are perfectly aligned (most
common in regular nodal distributions). Therefore, a radial basis function was added to
the formulation, allowing for the development of one of the most popular interpolating
meshless methods: the radial point interpolation method (RPIM) [20]. The use of the radial-
based functions eliminated the singularities occurring from the nodal alignment. Later,
Belinha and coworkers included in the formulation the natural neighbour concept and
developed the natural neighbour radial point interpolation method (NNRPIM) [1,21]. With
the NNRPIM, both the nodal connectivity and the node-dependent integration background
mesh are constructed resorting to the Voronoï tessellation and to the Delaunay triangulation.
This procedure guarantees that the shape functions developed have the Kronecker delta
property and a formulation that is truly meshless. The literature shows that both RPIM
and NNRPIM are highly accurate and present high convergence rates [1], being solid
alternatives for structural analysis.
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It is possible to find in the literature several works successfully combining meshless
methods with elastoplastic formulations. In 1999, Barry and Saigal [22] extended the
EFGM to elastoplasticity considering a 3D formulation with small strains, analysing a
thick-walled pressure vessel with internal pressure and an extension of a strip with a
circular. Compared with reference solutions [23], the method was capable of producing
results very close to the ones obtained in the FEM. In 2006, Belinha and Dinis [24–26]
used the EFGM in the analysis of two-dimensional problems, plates, and laminates in the
elastoplastic regime. Various modified Newton–Raphson algorithms were used to obtain
the nonlinear solution. A Cook membrane and a sandwich material, under distributed
load, were studied. The obtained results were in accordance with FEM solutions. Several
modified Newton–Raphson algorithm versions were used to obtain the nonlinear solution
and their performance and computational cost was also analysed. The results showed that
the EFGM is a solid alternative to such nonlinear problems, being capable of obtaining
similar results to the FEM analysis. More recently, in 2014, Cheng et al. [27], developed
a novel interpolating EFGM (IEFGM) for two-dimensional elastoplasticity. By using the
interpolating moving least-squares method (IMLS) to construct the shape functions, the
Kronecker delta property is satisfied, and the essential boundary conditions can be applied
directly. The method has some advantages, such as simpler formulae and the direct
application of the boundary conditions. The results showed that the IEFGM is in good
agreement with FEM, and it was also found that the IEFGM possesses a higher precision
than the classic EFGM.

Regarding the RPIM, and its versios, in 2011, Dinis and coworkers [28] extended
the NNRPIM to the large-deformation elastoplastic analysis, using the Newton–Rapson
nonlinear solution algorithm and an efficient “forward-Euler” procedure to return the
stress state to the yield surface. Then, in 2015, Zhang et al. [29] were capable of combining
the node-based smoothed radial point interpolation method (NS-RPIM) with gradient-
dependent plasticity to analyse the elastoplastic material behaviour of 2D solids. More
recently, in 2019, Belinha and coworkers [30] extended both RPIM and NNRPIM to the
elastoplastic analysis of aluminium alloys. In order to obtain comparable results, due to
the lack of a suitable elastoplastic solution, an experimental test was performed in order to
obtain the force/displacement curve and the corresponding mechanical properties. A dog-
bone-shaped specimen was analysed with elastoplastic assumptions, under uniaxial tensile
state conditions. Two different influence-cell degrees were considered—first degree and
second degree—with the results showing that the second-degree influence cell returned
a smooth result, whereas the first-degree cell had some discontinuities. Moreover, the
results obtained with either the RPIM and NNRPIM showed a strong correlation with the
experimental data. The main disadvantage of NNRPIM is clearly addressed: its higher
computational cost when compared to the FEM and RPIM, which is due to the time spent
establishing the natural neighbours and constructing the background integration points.
Nevertheless, being a truly meshless method is also pointed out as its main advantage.
Therefore, to fully discretize the problem domain, only a nodal discretization is required.
The technique is then capable of automatically generating all the other required numerical
structures (nodal connectivity, integration point, and shape functions).

In the present work, a radial point interpolation method version combined with a
nonlinear solution algorithm was originally written and coded to study the elastoplastic
bending behaviour of plates by using a classic 3D formulation. Thus, in the following
sections, the RPI formulation and its extension to elastoplasticity are presented, and then
3D plate examples are solved by considering elastoplastic materials.

2. Meshless Methods

The majority of meshless methods follow a generic procedure, well discribed in the
literature [1,2]. After the problem geometry and the natural and essential boundary condi-
tions are described and established, the problem domain and the respective boundary are
discretized by using a nodal set, which can follow a regular or irregular distribution. Similar
to mesh-dependent methods combined with weak formulations and applied to elasticity
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problems, the accuracy of the solution provided by meshless methods depends on the
nodal density of the discretization. Thus, a higher density of nodes generally returns more
accurate results. Moreover, in specific problems wherein particular geometrical or loading
details can have a considerable effect on the stress distribution (material discontinuities or
concentrated loads), a higher nodal density in those locations is required to obtain better
results. In meshless methods, the nodal distribution does not form a mesh because there is
no preestablished connectivity between the nodes.

After the nodal discretization of the problem domain, the background integration
points are defined. The complete set of integration points is known as integration mesh.
Background integration meshes can be obtained by using background integration cells
(fitted to the problem domain, as elements in the FEM) or by using nodal integration
schemes (as the ones used in NEM or NNRPIM). This last procedure uses the mathematical
concepts of natural neighbours, Voronoï diagrams and Delaunay tessellation to construct
the integration points uniquely based on the nodal distribution, and thus producing truly
meshless formulations.

After discretizing the problem domain with nodes and integration points, it is possible
to establish the nodal connectivity. In FEM, as input, it is necessary to declare the nodes
forming each element. Thus, integration points inside each element interact with the nodes
forming that element, and elements interact with other elements possessing common nodes.
In meshless methods, because there is no preestablished declared relation between the
nodes, it is necessary to enforce such connectivity. Therefore, it is necessary to apply
the concept of influence domain. Each integration point xI will search for nodes inside
a certain radius. The nodes inside such radius will form the influence domain of xI .
Due to its simplicity, several meshless formulations apply such concepts (RPIM, EFGM,
MLPG, RKPM, etc.). There are several variants to this concept [1], some authors use
fixed radial searches and other use variable radial searches. Fixing a radius will produce
uneven influence domains. Integration points near a physical boundary will possess a
lower number of nodes inside their influence domains when compared with the influence
domains of the nodes inside the problem domain. Alternatively, fixing the number of
nodes inside each influence domain (variable radius searches), will produce influence
domains of the same size for all integration points. Alternatively, meshless formulations
using the natural neighbour concept, such as NEM or NNRPIM, already possess the nodal
connectivity established due to the Voronoï diagram [31] of the nodal discretization. Each
integration point xI has an associated node xi, and each node possesses a set of natural
neighbours: Vi . Thus, the influence domain of xI is the set of natural neighbours of xi: Vi,
and xi itself.

Afterward, the shape functions are constructed by using approximation or interpola-
tion functions according to the technique adopted. Regardless of the technique, the field
variable can be approximated (or interpolated) at an integration point xI with

u(xI) =
n

∑
i=1

ϕi(xI) · u(xi) = Φ(xI)
T · us, (1)

where n is the number of nodes inside the influence domain of the integration point xI ,
us is a vector containing the field variable components of each node xi included in the
influence domain of xI , and ϕi(xI) is the ith component of the shape function constructed
for xI . Instead, the sum operation, the vectorized operation of Equation (1) can be used, in
which Φ(xI) = {ϕ1(xI), ϕ2(xI), · · · , ϕn(xI)}T and us = {u(x1), u(x2), · · · , u(xn)}T .

After constructing the shape function of each integration point, and its spatial partial
derivatives, it is possible to apply then to a strong or weak form governing the problem do-
main and establish the system of equations, the resolution of which provides the problem’s
solution variable fields (displacements, velocities, pressures, etc.)
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2.1. The Radial Point Interpolation Method

In order to obtain the background integration points and to allow the numerical integra-
tion of the integro-differential equations governing the studied phenomenon, the RPIM classic
formulation uses the Gauss–Legendre quadrature integration scheme. Therefore, the problem
domain can be divided with regular integration cells, Figure 1, and then each integration
cell is transformed into a isoparametric cube, in which the integration points are included
following the Gauss–Legendre integration scheme (Figure 1). In the end, by using linear
polynomial interpolating functions N(ξ, η, ζ) = {N1(ξ, η, ζ), N2(ξ, η, ζ), · · · , N8(ξ, η, ζ)}T,
whose generic equation is given by

Ni(ξ, η, ζ) =
1
8
· (1 + ξ̂i · ξ) · (1 + η̂i · η) · (1 + ζ̂i · ζ), (2)

considering 
Ξ = {ξ̂1, ξ̂2, · · · , ξ̂8} = {−1, 1, 1,−1,−1, 1, 1,−1}
H = {η̂1, η̂2, · · · , η̂8} = {−1,−1, 1, 1,−1,−1, 1, 1}
Z = {ζ̂1, ζ̂2, · · · , ζ̂8} = {−1,−1,−1,−1, 1, 1, 1, 1},

(3)

the isoparametric coordinates can be transformed back into Cartesian coordinates
(Figure 1), with

xI =


xI
yI
zI

 =

 N(ξ I , ηI , ζ I)
T

N(ξ I , ηI , ζ I)
T

N(ξ I , ηI , ζ I)
T

 ·


xT
1

xT
2
...

xT
8

 =

 N1 N2 · · · N8
N1 N2 · · · N8
N1 N2 · · · N8

 ·


x1 y1 z1
x2 y2 z2
...

...
...

x8 y8 z8

. (4)

For the RPIM formulation, inside each integration cell, it can be inserted in 2 × 2 × 2
integration points, whose isoparametric coordinates and weights are, correspondingly,


ξ I
ηI
ζ I
ωI

 =


−1√

3
1√
3

1√
3

−1√
3

−1√
3

1√
3

1√
3

−1√
3

−1√
3

−1√
3

1√
3

1√
3

−1√
3

−1√
3

1√
3

1√
3

−1√
3

−1√
3

−1√
3

−1√
3

1√
3

1√
3

1√
3

1√
3

1 1 1 1 1 1 1 1

. (5)

The integration weight of each integration point can be calculated with

ω̂I =
Vcel
Viso
·ωI (6)

with Vcel being the total volume of the integration cell and Viso the total volume of the
isoparametric cell, which is Viso = 2× 2× 2 = 8.

Thus, following the Gauss–Legendre integration scheme, a given function f (x, y, z)
defined inside a hexagonal domain Ωh discretized with 2× 2× 2 integration points, can be
integrated with

F =
∫

Ωh

f (x, y, z)dΩh =
8

∑
I=1

f (xI , yI , zI) · ω̂I , (7)

for which each xI = {xI , yI , zI} is obtained with Equation (4) and the corresponding ω̂I is
indicated in Equation (5).

This procedure is repeated for each integration cell, allowing us to discretize the com-
plete solid domain with a set of nQ integration points (known as background integration
mesh). Summing all integration points’ weight gives the solid domain total volume, VΩ:

nQ

∑
I=1

ω̂I = VΩ. (8)
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As already mentioned, the RPIM enforces the nodal connectivity by establishing
overlapped influence domains. In this work, a spherical influence domain will be used,
imposing a fixed number of nodes inside each influence domain. Thus, each integration
point xI will search for the n closest nodes and those nodes will set the influence domain of
xI . According to Wang et al. [20], for a 2D problem, each influence domain should possess
between n = 9 and n = 16 nodes. Thus, respectively, and in accordance with [32], for a
3D problem, each influence domain should possess between n = 27 and n = 64 nodes.
Respecting the same number of nodes inside each influence domain allows the construction
of shape functions with the same level of complexity for each integration point xI .

Figure 1. Integration scheme for the RPIM, using rectangular parallelepiped integration cells.

Regarding the construction of the shape functions, RPIM uses the radial point inter-
polating (RPI) technique. Thus, consider a function u(x) defined in the domain Ω ∈ R3

discretized by a set of N nodes: X = {x1, x2, . . . , xN} ∈ R3. Assuming an integration
point, xI , possessing an influence domain with n nodes inside, it is possible to obtain the
function’s interpolated value for xI by using the following construction:

u(xI) =
n

∑
i=1

ri(xI) · ai(xI) +
m

∑
j=1

pj(xI) · bj(xI) =

= r(xI)
T · a(xI) + p(xI)

T · bT(xI) = {r(xI)
T , p(xI)

T}
{

a
b

}
,

(9)

where r(xI) is a radial basis function, p(xI) is a polynomial basis function, with m monomi-
als, and ai(xI) and bj(xI) are nonconstant coefficients of r(xI) and p(xI), respectively.

The vectors present in Equation (9) are defined by

r(xI) = {r1(xI), r2(xI), . . . , rn(xI)}T

p(xI) = {p1(xI), p2(xI), . . . , pm(xI)}T

a(xI) = {a1(xI), a2(xI), . . . , an(xI)}T

b(xI) = {b1(xI), b2(xI), . . . , bm(xI)}T .

. (10)

Complete polynomial basis functions are added to the basis function to ensure the
consistency of the RPI functions, e.g., adding to the RBF a linear polynomial ensures C1

consistency and helps the RPI pass the standard patch test. Generally, low-order polynomial
basis are considered, such as

p(xI) = {1}, m = 1

p(xI) = {1, xI , yI , zI}T , m = 4

p(xI) = {1, xI , yI , zI , x2
I , xI · yI , y2

I , yI · zI , z2
I , zI · xI}T , m = 10.

. (11)

As recommended in the literature [1], for efficiency purposes, in this work, a constant
polynomial basis function is applied, m = 1.
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Regarding the radial basis function, this work assumes the multiquadratic radial basis
function (MQ-RBF), proposed initially by Hardy [33],

rj(xi) = rij = (d2
ij + c2)p =

((√
(xj − xi)2 + (yj − yi)2 + (zj − zi)2

)2
+ c2

)p
, (12)

in which c and p are the MQ-RBF shape parameters. For 3D analyses, the literature [1]
shows that c should be close to zero, but not be zero, and p should be close to one, but not
be one. Therefore, following the literature recommendation, in this work the following
MQ-RBF shape parameters are considered: c = 10−4 and p = 1− 10−4. The MQ-RBF
shape parameters were obtained by optimizing the Kronecker delta function of the 3D RPI
shape functions. The results shown in [1] proved to be accurate and stable, allowing us to
reproduce highly complex variable fields.

The polynomial basis has to satisfy an extra requirement in order to obtain a
unique solution,

n

∑
i=1

pj(xi)ai(xi) = 0 (13)

with j = {1, 2, . . . , m}. Therefore, combining Equation (9) with Equation (13), a new
equation matrix can be written as[

R P
PT 0

]{
a
b

}
= G

{
a
b

}
=

{
us
0

}
(14)

where us is given by
us = {u1, u2, . . . , un}T (15)

with the symmetric matrix R obtained with

R =


r11 r12 . . . r1n
r21 r22 . . . r2n
...

...
. . .

...
rn1 rn2 . . . rnn

 (16)

and matrix P, of size [n×m], of the polynomial basis being given by

p =


p1(x1) p2(x1) . . . pm(x1)
p1(x2) p2(x2) . . . pm(x2)

...
...

. . .
...

p1(xn) p2(xn) . . . pm(xn)

. (17)

The moment matrix G is symmetric because the distance is directionally independent.
Solving Equation (14), {

a
b

}
= G−1 ·

{
us
0

}
(18)

and substituting Equation (18) into Equation (9), the interpolation is obtained:

u(xI) = {r(xI)
T , p(xI)

T} ·G−1 ·
{

us
0

}
= {Φ(xI), Ψ(xI)} ·

{
us
0

}
, (19)

where Φ(xI) is the interpolation of the integration point xI ,

{Φ(xI), Ψ(xI)} = {r(xI)
T , p(xI)

T} ·G−1 = {φ1(xI), . . . , φn(xI), ψ1(xI), . . . , ψm(xI)} (20)

In order to achieve a well-conditioned moment matrix, G, the number of monomials,
m, of the polynomial basis function should be much lower than the number of nodes,
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n, inside the influence domain of xI : m � n. Such a relation is assured because in 3D
analyses, the polynomials have m = 1, m = 4 and m = 10 for constant, linear, and quadratic
polynomial basis functions, respectively, and the number of nodes inside the influence
domain is typically n ≥ 27.

The Galerkin weak form depends on the partial derivative of Φ(xI). Thus, in regard
to a general direction ξ, the partial derivatives can be written as

Φξ(xI) = {r(xI)
T
ξ , p(xI)

T
ξ } ·G−1, (21)

with the partial derivatives of the MQ-RBF in order to ξ being defined as

(rij)ξ = 2 · p · (d2
ij + c2)p−1 · (ξ j − ξi). (22)

As the literature shows, RPI functions possess several useful properties, such as the
Kronecker delta property and satisfy the partition of unity. Being interpolating functions,
they allow one to impose directly the essential and natural boundary conditions, reducing
the overall computational cost of the analysis when compared with approximating meshless
methods [1].

2.2. Discrete System of Equations

Being a discrete numerical technique, RPIM uses the Galerkin weak formulation to
construct the global system of equations. Thus, considering the solid domain Ω, with a body
force b, bounded by a surface boundary Γ, submitted to external forces t, on the natural
boundary Γt, and displacement constrains at the essential boundary Γu, the Galerkin weak
form can be expressed as∫

Ω
δεT · σ · dΩ−

∫
Ω

δu(xI)
T · b · dΩ−

∫
Γt

δu(xI)
T · t · dΓ = 0, (23)

recalling that because u(xI) = Φ(xI)
T · u, it is possible to interpolate all the components of

the field variable with one operation:

u(xI) =

u(xI)
v(xI)
w(xI)

 = H(xI) · u =

=

φ1(xI) 0 0 . . . φn(xI) 0 0
0 φ1(xI) 0 . . . 0 φn(xI) 0
0 0 φ1(xI) . . . 0 0 φn(xI)

 ·



u1
v1
w1
...

un
vn
wn


(24)

and express the deformation vector as

ε(xI) = L · u(xI) =



∂
∂x 0 0
0 ∂

∂y 0
0 0 ∂

∂z
∂

∂y
∂

∂x 0
0 ∂

∂z
∂

∂y
∂
∂z 0 ∂

∂x


·Φ(xI) · u = B(xI) · u = B(xI) ·



u1
v1
w1
...

un
vn
wn


(25)
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being B(xI) the deformation matrix of integration point xI , which can be defined as

B(xI) =



∂φ1(xI)
∂x 0 0 · · · ∂φn(xI)

∂x 0 0
0 ∂φ1(xI)

∂y 0 · · · 0 ∂φn(xI)
∂y 0

0 0 ∂φ1(xI)
∂z · · · 0 0 ∂φn(xI)

∂z
∂φ1(xI)

∂y
∂φ1(xI)

∂x 0 · · · ∂φn(xI)
∂y

∂φn(xI)
∂x 0

0 ∂φ1(xI)
∂z

∂φ1(xI)
∂y · · · 0 ∂φn(xI)

∂z
∂φn(xI)

∂y
∂φ1(xI)

∂z 0 ∂φ1(xI)
∂x · · · ∂φn(xI)

∂z 0 ∂φn(xI)
∂x ,


(26)

where n is the number of nodes inside the influence domain of integration point xI .
Then, with the linear strain–stress relation σ(xI) = c(xI) · ε(xI), stress at an integration

point xI can be defined by

σ(xI) = c(xI) · ε(xI) = c(xI) · B(xI) · u (27)

where c(xI) is the material constitutive matrix of integration point xI . Substituting the
stress and the strain in Equation (23) allows us to obtain∫

Ω
δ(B(xI) · u)T · (c(xI) · B(xI) · u) · dΩ−

∫
Ω

δ(H(xI) · u)T · b · dΩ−
∫

Γt
δ(H(xI) · u)T · t · dΓ = 0 (28)

because only the small strain will be considered, δB(xI) = 0 and δH(xI) = 0 , the expression
can be presented as∫

Ω
δuT · B(xI)

T · c(xI) · B(xI) · u · dΩ−
∫

Ω
δuT ·H(xI)

T · b · dΩ−
∫

Γt
δuT ·H(xI)

T · t · dΓ =

= δuT
∫

Ω
B(xI)

T · c(xI) · B(xI) · dΩ · u− δuT
∫

Ω
H(xI)

T · b · dΩ− δuT
∫

Γt
H(xI)

T · t · dΓ = 0
(29)

leading to its final form, representing the system of equations

K · u− fb − ft = 0 ⇒ u = K−1 · (fb + ft), (30)

in which K, u, fb and ft are the global stiffness matrix, the global displacement field, and the
global body and external force vectors, respectively. The discretization procedure allows us
to obtain these entities by using a numerical integration:

K =
∫

Ω
B(xI)

T · c(xI) · B(xI) · dΩ =
NQ

∑
I=1

B(xI)
T · c(xI) · B(xI) · ω̂I (31)

fb =
∫

Ω
H(xI)

T · b · dΩ =
NQ

∑
I=1

H(xI)
T · b · ω̂I (32)

ft =
∫

Γt
H(xI)

T · t · dΓ = 0 =
nQ

∑
J=1

H(xJ)
T · t · ω̂J . (33)

Because the RPI function possesses the Kronecker delta property, the essential and nat-
ural boundary conditions can be directly imposed by using the direct imposition method or
penalty methods, such as in other discrete numerical methods using interpolation functions.

3. Elastoplastic Analysis

The mathematical theory of plasticity provides a theoretical description for the rela-
tionship between stress and strain for a material exhibiting an elastoplastic behaviour [23].
Material plasticity is characterized by an irreversible deformation. Before occuring, plastic
flow, the material shows a linear elastic behaviour, for which a linear relation following
the generalized Hooke’s law is valid. After the yield stress σY is reached (established



Appl. Sci. 2022, 12, 12842 10 of 28

by the yield criterion), plastic behaviour occurs and the stress field starts following a
flow rule. In order to implement material plasticity, it is necessary to establish three
fundamental concepts:

• a yield criterion, indicating the stress level at which plastic flow initiates, and an initial
yield surface, defining the elastic limit in a multiaxial stress state;

• a hardening law, describing the evolution of the subsequent yield surfaces; and
• a flow rule, relating the plastic deformation to the current stresses in the material and

the stress increments outside the yield surface.

Concerning the yield criterion, in this work, the von Mises yield criterion is considered:

F(σ) =

√
1
2

[
(σxx − σyy)2 + (σyy − σzz)2 + (σzz − σxx)2 + 6(σ2

yz + σ2
zx + σ2

xy)
]
− σY = 0. (34)

Assuming small strains, the total strain ε can be decomposed into two components [34,35],

ε = εp + εe, (35)

where εp is the plastic component of the total strain and εe the elastic component. Concern-
ing the hardening law, this work assumes that the yield surface grows linearly from the
initial yield surface, only changing its size and expanding uniformly with the increase of
the effective plastic strain, εp:

εp =
∫

dεp =
∫ [2

3
dε

p
ij · dε

p
ij

] 1
2

(36)

where dεp is the plastic component of strain occurring during a strain increment.
The flow rule serves as a mathematical description of the evolution of the infinitesimal

increments of the plastic strain dεp in the course of the load history of the body [36]. As
the incremental load increases, and the yield function f reaches a value equal to the yield
stress of the material, σY, the frontier of elasticity starts to end and plasticity begins. The
variation of the yield function can be written as a function of the variation of the stress field

d f =

(
∂ f
∂σ

)T

· dσ, (37)

where ∂ f /∂σ is the gradient of f , and therefore an orthogonal vector to the yield surface for
a certain stress increment dσ. Applying the Prandtl–Reuss flow rule, it is possible to write

dεp = dλ · ∂ f
∂σ

, (38)

where dλ is the plastic multiplier (a scalar). The vector ∂ f /∂σ is a vector normal to the
yield surface at the current stress state, as shown in Figure 2a [23,36], also known as a flow
vector: a = ∂ f /∂σ.

3.1. Elastoplastic Constitutive Model

For its implementation in computational mechanics, it is convenient to present the pre-
vious elastoplastic theory in matrix formulation [23]. Thus, generically, the yield criterion
of Equation (34) can be defined as

F(σ, κ) = f (σ, κ)− σY(κ) = 0, (39)
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where κ is a generic hardening parameter (which in this work will be assumed as the
effective plastic deformation, Equation (36)). By differentiating Equation (39), it is possible
to write

dF =

(
∂F
∂σ

)
· dσ +

∂F
∂κ
· dκ = 0, (40)

which is equivalent to Equation (37) but for a material with hardening. Thus, Equation (40)
can be written as function of the plastic multiplier dλ,

aT · dσ − A · dλ = 0, (41)

where the vector a is termed the flow vector, a = ∂ f /∂σ. The hardening parameter A
depends on the hardening rule [23], and it can be written as

A = − 1
dλ
· ∂F

∂κ
· dκ. (42)

(a) (b)

Figure 2. (a) Flow vector representation. (b) Stress returning procedure.

From decomposition equation, Equation (35), it possible to write εe = ε− εp. Thus,
with Equation (38), dεp = dλ · a, and using the Hooke law,

dσ = c · dεe = c · (dε− dεp) = c · (dε− dλ · a), (43)

it is possible to develop Equation (41) as

aT · (c · (dε− dλ · a))− A · dλ = 0 =⇒ dλ =
aT · c · dε

aT · c · a + A
. (44)

Substituting Equation (44) in Equation (43) permits us to obtain

dσ = c · dε− aT · c · dε

aT · c · a + A
· c · a =

(
c− c · a · aTc

aT · c · a + A

)
· dε = cp · dε, (45)
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with cp being the elastoplastic tangential constitutive matrix. The elastic constitutive matrix
can be defined as

c =



1
E

−ν
E

−ν
E 0 0 0

−ν
E

1
E

−ν
E 0 0 0

−ν
E

−ν
E

1
E 0 0 0

0 0 0 2·(ν+1)
E 0 0

0 0 0 0 2·(ν+1)
E 0

0 0 0 0 0 2·(ν+1)
E



−1

, (46)

where E is the elastic modulus of the material (observed in the linear elastic phase) and ν
the Poisson’s coefficient.

The hardening parameter A can be obtained by means of the hardening hypothesis [23]
considering the associated flow rule. In this work, the analysed nonlinear materials exhibit
a “linear-elastic/linear plastic” hardening behaviour. Thus, as shown in the literature [23],
the hardening parameter A can be written as

A =
ET

1− ET
E

, (47)

where ET is the tangent modulus (tangent to the stress–strain curve in the plastic regime).

3.2. Stress-Returning Algorithm

In this work, an incremental procedure is adopted, in which an incremental stress
leads to an incremental strain. Thus, trial stresses are a sum of a previous stress state with
an incremental stress state. Consequently, it is possible to obtain trial stress states beyond
the yield surface. For such case, the trial stress state must be forced to return to the yield
surface. In this work, a “backward-Euler” procedure is adopted [23], Figure 2b.

Considering a trial stress state σtrial(xI) at a given integration point xI , the trial stress
state is constituted by the previous stress state on the integration point, σ(xI), and the
incremental stress state of the present load increment (or iteration), dσ(xI),

σtrial(xI) = σ(xI) + dσ(xI), (48)

if the trial stress state does not respect the yield criterion, Equation (39), being observed:

f (σtrial(xI), κ) > σY(κ), (49)

then, it is necessary to return the stress state to the yield surface. As Figure 2b shows,
consider a two-dimensional Westgaard stress space in which a stress state represented
by point B has passed beyond the yield surface. In order to avoid extra, unnecessary
computations, instead calculating the intersection stress state represented with point A, it
is assumed a “forward” yield function fB, containing the stress state B,

fB = σB − σ∗Y, (50)

in which σ∗Y is the updated yield stress, accounting for the hardening parameter

σ∗Y = σ + [ET · ε
p
i−1], (51)

where ε
p
i−1 is the accumulated effective plastic strain from the previous increment, (i− 1).

Thus, the flow vector is calculated from stress state B, aB, and the plastic multiplier dλ
is given by

dλ =
fB

aT
B · c · aB + H′

. (52)
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Now it is possible to estimate the stress in point C:

σC = σB − dλ · c · aB. (53)

As can be observed, stress state σC is an estimated stress state. In order to achieve
accurately stress state σC, it would be required to use the flow vector calculated directly in
point C,

σC = σB − dλ · c · aC. (54)

However, stress state σC is unknown, naturally hindering the calculation of aC. There-
fore, an iterative procedure must be implemented to reach point C from point B. For each
“stress return iteration”, the effective plastic strain is updated in order to apply Equation (51)
and pass to the next “stress return iteration”, until point C is satisfactorily approximated,
concluding the iterative process.

3.3. Nonlinear Solution Algorithm

The elastoplastic analysis of structures involves a set of nonlinear equations that need
to be solved in order to obtain the problem’s corresponding solution. Generally, such
nonlinear equations are solved by using iterative-incremental methods. In this work, the
Newton–Raphson method is used as a nonlinear solution technique. Therefore, for a given
increment i and iteration j, the the displacement, δuj

i for each load increment δ f j
i is given by

δuj
i =

(
d f
du

)−1

· δ f j
i = K−1

T · δ f j
i (55)

and the total displacements are given by

uj
i = uj−1

i + ∂uj−1
i . (56)

During the incremental-iterative process, the increment of load acts as a predictor. It
provides a starting solution, u0

i , in order for the iterative process to have a starting point to
begin the convergence process. In addition, the complete version of the Newton–Raphson
method, in which the stiffness matrix is calculated in each iteration (of each increment),
there are several other versions documented in the literature [23]. For instance, the KT0
approach, in which only the initial stiffness matrix, calculated in the first iteration of the
first increment (the elastic stiffness matrix), is considered for the complete analysis. Another
version is the KT1, in which the stiffness matrix is calculated only at the first iteration of
each increment, being then used in all the iterations of such increments. Both KT0 and KT1
versions allow us to reduce the number of computations in slightly nonlinear problems;
however, for highly nonlinear problems the best approach is to use the complete version
of the Newton–Raphson method, which allows us to significantly reduce the number of
iterations in each increment.

The complete version of the Newton–Raphson used in this work can be summarised
as follows. First, the problem domain is discretized with a nodal mesh, the background
integration mesh is constructed and the nodal connectivity is imposed. Then, the RPI
shape functions are constructed for each integration point. In this work, an incremental-
iterative procedure was implemented for the elastoplastic deformation problem. Thus, the
discretized system of equation represented in Equation (30) can be written as

KT · ∆u− ∆f = fres, (57)

where KT is the tangent stiffness matrix, ∆u the incremental displacement field, ∆f is the
incremental load vector, and fres is the residual force vector. Thus, the process can start for
the first increment (i = 1).

1. Set the incremental load, ∆f = fi.
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2. Loop over all integration points, xI .

(a) Construct c(xI)p, Equation (45).
(b) Construct K(xI)T , Equation (31).

3. Assemble the global tangent stiffness matrix: KT = A
nQ
I=1K(xI)T .

4. Solve ∆ui = K−1
T · ∆f.

5. Update the displacement field: ui = ui−1 + ∆ui.
6. Loop over all integration points, xI .

(a) Evaluate the strain increment: ∆ε(xI)
i = B(xI) · ∆ui.

(b) Considering the elastic constitutive matrix, Equation (46), obtain the incremen-
tal stress state: ∆σ(xI)

i = c(xI) · ∆ε(xI)
i.

(c) Calculate the trial stress state: σ(xI)
i
trial = σ(xI)

i−1 + ∆σ(xI)
i.

(d) Verify if: f
(
σ(xI)

i
trial
)
≤ σY(κ). If so, σ(xI)

i
new = σ(xI)

i
trial . Otherwise, the al-

gorithm presented in Section 3.2 is applied, which will lead to
σ(xI)

i
new = σ(xI)

i
returned 6= σ(xI)

i
trial .

(e) Update the stress field: σ(xI)
i = σ(xI)

i
new.

7. Calculate the residual force vector: fi
res = ∆f−

∫
Ω BT(σi − σi−1)dΩ.

8. Apply a residual force convergence criteria: Λ =
((

fi
res
)T · fi

res

)1/2
·
((

fi)T · fi
)−1/2

.

(a) if Λ ≤ ϑ, being ϑ a small threshold value (such as ϑ = 10−3), then, the process
moves to point 2, initialising a new increment: i = i + 1, and assuming a new
force increment: ∆f = fi+1.

(b) If Λ > ϑ, then the iterative process begins, attempting to achieve Λ ≤ ϑ. Thus,
the process moves to point 2, initialising iteration j, assuming a new force
increment: ∆f = fi

res.

4. Numerical Results

In this section, simply supported and clamped 3D square plates are analysed. The
three nonlinear solution algorithms (KT-0, KT-1, and KT-ALL) are used and compared
by using the RPIM and the FEM for both plate configurations. The results obtained are
compared with solutions documented in the literature [26], which were obtained by using
the element free Galerkin method (EFGM) and an equivalent single-layer deformation
theory, the first order shear deformation theory, and matched/validated with advanced
FEM formulations, equally assuming an equivalent single layered deformation theory.

Regarding the geometric properties of the plates, following Figure 3 representation, the
length L and thickness h of all analysed cases are: L = 6.0 m and h = 0.2 m. Concerning the
plate’s material, the following mechanical properties were considered: elasticity (Young’s)
modulus: E = 206.7 GPa, Poisson’s coefficient: ν = 0.3, tangent elasticity modulus:
ET = 2.067 GPa, and yield stress: σY = 206.7 MPa.

Regarding the loading conditions, all plates are submitted to a uniform distributed load
covering the complete surface of the plate, as shown in Figure 3. In order to reduce the com-
putational cost of the nonlinear analyses, instead computing the complete plate, only one
quarter of the plate is analysed, assuming the corresponding boundary conditions. Thus, in
surface AA′B′B the displacement on Ox direction is assumed constrained: ū = 0, in surface
AA′D′D the displacement on Oy direction is assumed constrained: v̄ = 0, and in line AA′

both Ox and Oy directions are constrained: ū = 0 ∧ v̄ = 0. These symmetry boundary
conditions are common to both simply supported and clamped plate examples. In addition,
for the simply supported plate, the line of nodes on the middle layer of the plate (with
z = 0) have all degrees of freedom constrained: ū = 0∧ v̄ = 0∧ w̄ = 0. For the clamped
plate, in addition to the symmetry boundary conditions, all the points belonging to surfaces
BB′C′C and DD′C′C have all degrees of freedom constrained: ū = 0∧ v̄ = 0∧ w̄ = 0.
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Figure 3. Square plate representation showing the geometric properties, the symmetry assumption
and the uniform distributed load considered in all analyses.

All examples are analysed by using the FEM and the RPIM. Concerning FEM, eight-
node hexagonal elements are considered, assuming full integration: 2× 2× 2 integration
points following the Gauss–Legendre quadrature scheme. Regarding the RPIM, the back-
ground integration mesh coincides with the FEM element mesh, being formed by hexagonal
integration cells filled with 2× 2× 2 integration points respecting the Gauss–Legendre
quadrature scheme, and each influence domain is composed of 27 nodes. The RPI shape
functions are constructed with a constant polynomial basis, p(xI) = 1, and the MQ-RPI
shape parameters: c = 10−4 and p = 1− 10−4.

The problem domain is dicretized with a 3D regular nodal of of 16× 16× 7 = 1792
nodes, which corresponds to 15× 15× 6 = 1350 hexagonal elements in FEM, or hexagonal
integration cells in RPIM.

4.1. Normalized Central Displacement

In this section, the w displacements of point P (obtained along Oz) as a function of the
applied load will be presented. Thus, in order to represent normalized load-displacement
curves, the obtained w displacement are normalized with

w̄P =
wP · D
Mp · L2 , (58)

and the force is normalized with

f̄ =
f · L2

Mp
, (59)

being,

D =
100 · E · h3

12(1− ν2)
, (60)

and

Mp = σY
h2

4
, (61)

where wP is the obtained transversal displacement (along Oz) on point P, h is the thickness
of the plate, E the elasticity (Young’s) Modulus, ν the Poisson’s coefficient, MP the plastic
moment, and σY the yield stress of the material being used.

The normalized load-transversal displacement curves are presented in Figure 4 for both
simply supported and clamped plates, and for both numerical methods (FEM and RPIM).

Regarding the simply supported plate, it can be observed that by using the KT1
and KT-All nonlinear solution algorithms allows similar solutions for FEM and RPIM.
Comparing the results with the literature, it is perceptible that both FEM and RPIM (using
the KT-All nonlinear solution algorithm) are capable of achieving close results with the
EFGM formulation by using an equivalent single layer theory [26].
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(a) (b)

(c) (d)

Figure 4. Normalized load-transversal displacement curves obtained with three nonlinear solution
algorithms (KT0, KT1, and full Newton–Raphson method—KT-ALL). FEM analysis for the (a) simply
supported plate and (b) the clamped plate. RPIM analysis for the (c) simply supported plate and
(d) the clamped plate.

For the clamped plate, Figure 4b shows that the FEM with KT1 and KT-All is capable
of delivering a solution close to the reference solution. However, because the clamped plate
is a more demanding benchmark, the solution is not as close as for the simply supported
plate. FEM requires more nodes along the thickness to achieve a closer solution. For the
RPIM (Figure 4d), both KT1 and KT-All algorithms produce solutions very close with
the literature.

Notice that in the present work, a full 3D-deformation theory is considered, which
is fundamentally different from the first-order shear deformation theory used by the
reference solution. The full 3D-deformation theory strongly depends on the number of
nodes along the thickness. Thus, the similarity between the obtained results and the
solution documented in the literature indicates that both FEM and RPIM nonlinear solution
algorithms were successfully implemented.

It would be expected that we would obtain similar results regardless of the nonlinear
solution algorithm used (KT0, KT1 or KT-All). However, due to the total computational
time of the analysis, per increment only a maximum of 100 iterations is allowed. The KT-All
never requires more than roughly 10 iterations; however, when a large portion of integration
point yield, KT1 starts to require more than 100 iterations per increment, and from third
increment (very early), KT0 already requires more than 100 iterations per increment. This
is because in each increment the solution is not fully corrected (the number of iterations
is insufficient), the solutions start to accumulate convergence errors and, consequently, to
diverge. This, observation highlights the advantage of using the full Newton–Raphson
method (KT-ALL).

4.2. Stress Diagrams through the Plate’s Thickness

In this section, the stress distributions along with the plates’ thickness for distinct
increment levels, and for the three numerical methods, will be presented. These results were
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obtained only with the KT-All nonsolution algorithm. As for units, the load increments are
in [kN/m2], the stress value (horizontal axis) in MPa, and the thickness coordinate (vertical
axis) is in meters.

First, the stress distribution along line A-A′ is shown for the simply supported plate.
Thus, in Figure 5, the FEM and RPIM results are shown side by side.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5. Stress distribution along the thickness in line A-A’ for the simply supported plate. FEM
analysis (a) σxx, (c) σyy, (e) τxz and (g) τyz. RPIM analysis (b) σxx, (d) σyy, (f) τxz and (h) τyz. Load
increments in [kN/m2].

As a first observation, it is possible to visualise that the stress distribution along the
thickness for the normal stresses σxx and σyy are virtually identical. Such an observation
indicates that the symmetry was properly implemented. Additionally, the normal stresses
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obtained with RPIM are very similar to the ones obtained with the FEM. It is possible to
visualise that, as the material starts to yield, the stress distribution along the thickness
leaves the linear behaviour and starts showing a pronounced curve at the top and bottom
layers, consistent with the maximum (yield) stress allowed.

The most significant differences can be found in the shear components of the stress
tensor: τxz and τyz. However, the differences become smaller as the load increment grows.
At the centre of the plate, along the thickness, the distribution of shear stresses τxz and τyz
should be zero. This is true for the first increment (around 807–815 kN/m2). Figure 5e–h
does not show such a null line for the first increment because the stress on the nodes is
extrapolated from the integration points in its vicinity (which do not belong exactly to
the centre of the plate, and therefore possess non-null shear stresses). Afterward, yielding
starts to occur at the centre of the plate and the stress field of the integration points along
the thickness starts to increase due to the reconfiguration of the stress, a consequence of the
stress-returning algorithm.

For the clamped plate, four interest lines along the plate thickness are analysed. Thus,
Figures 6–9 represent the stress distributions obtained along lines A-A′, B-B′, C-C′ and
D-D′, as indicated in Figure 3, respectively.

Observing Figures 6–9 it is noticeable that the load increments of FEM and RPIM
are different. Such differences come from the elastoplastic algorithm implemented by the
authors. The algorithm first identifies the load increment corresponding to the problem’s
elastic limit, f0 = fel ; then such a load increment is multiplied by a factor, which in this
work was 2.5, and an ultimate load is achieved: fu = 2.5× fel + fel . Then, the number of
increments is decided. In this work, 10 increments were used for each elastoplastic analysis.
Thus, after the elastic limit, each incremental load will have the following magnitude:
fi = 2.5× fel/10. Hence, if two distinct numerical methods predict two distinct elastic
limits (because distinct numerical methods produce distinct numerical results), the ultimate
load, and consequently the incremental load magnitude, of each numerical method will
also be different.

Regarding line A-A′, Figure 6, it is possible to visualise that FEM and RPIM produce
similar results for similar load increment levels. Additionally, as already observed in
the simply supported plate, the normal stresses σxx and σyy evolve from a linear elastic
distribution along the thickness to a curved yield configuration at the top and bottom layers
of the plate. The shear stresses τxz and τyz start with a value very close to zero (it is not zero
due to the same reason already discussed for the simply supported plate) and both evolve
to a bilinear configuration, with lower shear stress values in the top and bottom layers of
the plate and maximum stress in the plate’s middle layer. Such stress evolution is due to
the material yielding and the consequent required stress returning procedure.

Along line B-B′, Figure 7 shows that the normal stresses σyy obtained with FEM and
RPIM are close for similar incremental load levels. However, the shear stress results are very
different. The FEM obtains an expected shear stress τyz distribution, showing an unsym-
metrical irregular path. In opposition, the RPIM produces the expected result, a parabolic
distribution, symmetric with respect to the plate’s middle layer, that becomes gradually
shaped (with a central peak at the plate’s middle layer) as the material yielding evolves.

Line C-C′ was selected to study the variation of the shear stress τxy. Being the plate’s
corner, shear stresses τxy are at maximum at this location. Hence, Figure 8 presents, along
the plate’s thickness, the evolution of shear stress τxy with the plate’s yielding. At first sight,
the most evident observation is the difference between FEM and RPIM results. The shear
stress τxy produced with FEM maintains its almost linear distribution along the thickness as
the plate yields. On the other hand, with RPIM for the first load increments, τxy maintains a
relatively low magnitude; however, as the material starts to yield at this location, the stress
level rises rapidly.

Concerning the stress distribution along the line D-D′, Figure 9, the FEM and RPIM
results are consensual. The normal stress σxx and the shear stress τxz, obtain with FEM and
RPIM, are very close. Furthermore, along this line D-D′, the shear stress τxz obtained with
FEM follows the same evolution as the one observed with RPIM as the plate yields.



Appl. Sci. 2022, 12, 12842 19 of 28

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6. Stress distribution along the thickness in line A-A’ for the clamped. FEM analysis (a) σxx,
(c) σyy, (e) τxz and (g) τyz. RPIM analysis (b) σxx, (d) σyy, (f) τxz and (h) τyz. Load increments
in [kN/m2].
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(a) (b)

(c) (d)

Figure 7. Stress distribution along the thickness in line B-B’ for the clamped. FEM analysis (a) σyy

and (c) τyz. RPIM analysis (b) σyy and (d) τyz. Load increments in [kN/m2].

(a) (b)

Figure 8. Stress distribution along the thickness in line C-C’ for the clamped. FEM analysis (a) τxy.
RPIM analysis (b) τxy. Load increments in [kN/m2].

(a) (b)

Figure 9. Cont.
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(c) (d)

Figure 9. Stress distribution along the thickness in line D-D’ for the clamped. FEM analysis (a) σxx

and (c) τxz. RPIM analysis (b) σxx and (d) τxz. Load increments in [kN/m2].

4.3. Effective Stress Maps

In this section, the effective stress distribution maps for both plate configurations,
simply supported and clamped plate, and both numerical method, FEM and RPIM, will
be presented. The FEM and RPIM results were once again obtained assuming the full
Newton–Raphson nonlinear solution algorithm (KT-All). After extrapolating the stress
state from the integration points near the plate’s top layer to its closest nodes (belonging
to the plate’s top surface), the (extrapolated) von Mises equivalent stress on each of those
nodes was calculated:

σ̄eq =

√
1
2

[
(σxx − σyy)2 + (σyy − σzz)2 + (σzz − σxx)2 + 6(σ2

yz + σ2
zx + σ2

xy)
]
. (62)

The obtained FEM von Mises equivalent stress maps for the simply supported plate
are presented in Figure 10, and the RPIM results are shown in Figure 11. The load increment
is in [kN/m2], and the maximum and minimum stress values of each incremental load
(subfigure) are the ones indicated in the caption of the corresponding subfigure. It is
possible to observe that both FEM and RPIM produce very similar results. As expected,
the simply supported plate forms a rupture line along the plate diagonal, connecting the
plate’s centre and the plate’s corner. Notice that the material enters the plastic regime along
that diagonal line first, and then expands from that line to the remaining area as the load
increment increases.

Regarding the clamped plate results, the corresponding von Mises equivalent stress
maps are presented in Figures 12 and 13 for FEM and RPIM, respectively.

Both FEM and RPIM solutions are again very similar. It is clear that the initiation of
material yields at the boundaries of the plate, and then it starts to yield at the centre of
the plate. Afterward, the yielding advances to a diagonal line merging the boundary yield
material to the yield material of the plate’s centre.

Both the rupture paths observed in the simply supported and clamped plates are the
ones described in the literature for these two benchmarks [26].
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(a) (b)

(c) (d)

(e)

Figure 10. Effective von Mises stress distribution maps obtained with FEM for five load increments
considering the simply supported plate. For each load increment, the minimum and maximum
effective stresses are: (a) f = 814.89 KN/m2: σmin = 0 MPa; σmax = 170 MPa. (b) f = 998.25 KN/m2:
σmin = 0 MPa; σmax = 205 MPa. (c) f = 1181.60 KN/m2: σmin = 0 MPa; σmax = 210 MPa.
(d) f = 1364.95 KN/m2: σmin = 0 MPa; σmax = 215 MPa. (e) f = 1487.18 KN/m2: σmin = 0 MPa;
σmax = 220 MPa.
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(a) (b)

(c) (d)

(e)

Figure 11. Effective von Mises stress distribution maps obtained with RPIM for five load increments
considering the simply supported plate. For each load increment, the minimum and maximum effec-
tive stresses are: (a) f = 807.13 KN/m2: σmin = 0 MPa; σmax = 170 MPa. (b) f = 988.79 KN/m2:
σmin = 0 MPa; σmax = 205 MPa. (c) f = 1170.34 KN/m2: σmin = 0 MPa; σmax = 210 MPa.
(d) f = 1351.95 KN/m2: σmin = 0 MPa; σmax = 215 MPa. (e) f = 1473.02 KN/m2: σmin = 0 MPa;
σmax = 220 MPa.
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(a) (b)

(c) (d)

(e)

Figure 12. Effective von Mises stress distribution maps obtained with FEM for five load increments
considering the clamped plate. For each load increment, the minimum and maximum effective
stresses are: (a) f = 1053.52 KN/m2: σmin = 0 MPa; σmax = 170 MPa. (b) f = 1527.61 KN/m2:
σmin = 0 MPa; σmax = 205 MPa. (c) f = 2001.69 KN/m2: σmin = 0 MPa; σmax = 210 MPa.
(d) f = 2475.78 KN/m2: σmin = 0 MPa; σmax = 215 MPa. (e) f = 2791.83 KN/m2: σmin = 0 MPa;
σmax = 220 MPa.
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(a) (b)

(c) (d)

(e)

Figure 13. Effective von Mises stress distribution maps obtained with RPIM for five load increments
considering the clamped plate. For each load increment, the minimum and maximum effective
stresses are: (a) f = 1251.68 KN/m2: σmin = 0 MPa; σmax = 170 MPa. (b) f = 1814.94 KN/m2:
σmin = 0 MPa; σmax = 205 MPa. (c) f = 2378.19 KN/m2: σmin = 0 MPa; σmax = 210 MPa.
(d) f = 2941.45 KN/m2: σmin = 0 MPa; σmax = 215 MPa. (e) f = 3316.95 KN/m2: σmin = 0 MPa;
σmax = 220 MPa.
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5. Conclusions

In this work, the radial point interpolation method (RPIM) was combined with an
elastoplastic formulation to analyse 3D plates. Original nonlinear RPIM and FEM codes
were written in order to have a more detailed comprehension of the differences and
similarities between both numerical methods (at the formulation and results levels). This
process allowed us to directly compare performances (global computational times and
efficiency) and the results accuracy.

Concerning the nonlinear solutions algorithms tested, it was found that using the
KT-All algorithm is more efficient. Although it recalculates the stiffness matrix in every
iteration, it required many fewer iterations than KT0 or KT1 when a large part of the
material starts to yield. Thus, the overall computation time is less than the one required by
KT0 or KT1 algorithms to achieve the same solution.

Regarding the stress distribution along the thickness of the plate, the results show
that generally FEM and RPIM produce similar normal stresses distributions. However,
concerning shear stresses, the results are not as close. In opposition to FEM, RPIM is
capable of producing the expected parabolic shear stress distribution along the thickness,
demonstrating an higher accuracy. The stress distributions shown were acquired at the
nodes. Therefore, such results are an extrapolation of the stress values on the integration
points. This explains why shear stress obtained with FEM and RPIM is not null at the top
and bottom layers of the plate (as it should be).

The presented stress distribution maps allowed us to visualise the expected rupture
lines of both benchmarks. In the simply supported plate, the diagonal rupture line can
identified, as well as in the clamped plate the boundary rupture lines at first, and then the
central rupture and, in the end, the diagonal lines. Such results indicate that the nonlinear
solution algorithm was successfully combined with the linear RPIM formulation.

The main advantage of RPIM is its potential to be directly integrated in existing
FEM software. For instance, the RPIM can assume the finite elements as integration
cells, distributing inside them the required integration points (following the most appro-
priated scheme). Moreover, the element nodes can be utilised to form the global nodal
discretization. Then, by using the influence-domain concept, the nodal connectivity can be
established. Afterward, the process moves on, constructing the RPI functions, establishing
the system of equations, obtaining the displacement, strain and stress fields and following
the elastoplastic analysis. The final results can then be depicted in existent FEM software.
Moreover, because RPIM is an interpolating numerical method, it can be combined with
FEM. Allowing to use meshless methods in parts of the domain in which higher accuracy is
required (for instance, the vicinity of cracks or other locations in which stress concentration
is expected) and the FEM can be applied in the remaining part of the solid (to speed-up
the analysis).
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