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Abstract: More bridges today require maintenance with age, owing to increasing structural loads from
traffic and natural disasters. Routine inspection for damages, including in the aftermath of special
events, is conducted by experts. To address the limitations of human inspection, deep-learning-based
analysis of bridge damage is being actively conducted. However, such models exhibit deteriorated
performance in classifying multiple classes. Most existing algorithms do not use in situ images. Hence,
the results of the model training do not accurately reflect the actual damage. This study utilizes an
extant method and proposes a new model of combination training by bridge member. By integrating
the two approaches, we propose a bridge damaged-object-detection deep-combination framework
(BDODC-F). To ensure variety in the type of damaged objects and enhanced model performance,
a deep-learning-based super-resolution module is employed. For performance improvement and
optimization, a deep-learning combination model based on individual training by bridge member
is proposed. The BDODC-F improved the mean average precision by 191.6% and 112.21% in the
combination model. We expect the framework to aid engineers in the automated detection and
identification of bridge damage.

Keywords: deep learning; aging bridge management; image analysis; image processing; classifier
combination

1. Introduction

Civil infrastructure is regularly inspected to prevent accidents after structural damage.
However, the structures requiring maintenance outnumber the available maintenance
personnel, leading to difficulties in the systematic maintenance of these facilities [1–3].
Bridges are an integral part of the transportation system as they improve road connectivity
over inaccessible terrain. These structures carry heavy vehicular loads throughout their
service life, which may result in premature or end-of-life structural failure and a safety risk
to the public. Therefore, regular and meticulous monitoring of bridges is imperative.

In most cases, including special events such as extreme weather and disasters, per-
sonnel routinely inspect bridges to detect and identify damage [4]. This type of manual
inspection is expensive and requires professional input on bridge damage. Damage detec-
tion is also affected by the parameters of devices used to collect image data, such as the
camera angle, and the location. These limitations hinder the achievement of a reliable level
of detection and identification accuracy.
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To address these problems, active research using various approaches is underway.
The early stages of research were aimed at detecting cracks on the surface of bridges,
because most of the other types of damage to aging bridges result from these cracks. Thus,
algorithms such as canny and crack-forest and machine-learning techniques such as graph
convolutional network (GCN) were used to detect crack edges [2]. More recently, intelligent
bridge testing systems and inspection technologies exploiting unmanned aerial vehicles
and image-processing techniques have been developed [1,4–6]. However, these are still
fledgling technologies. Technologies for identifying different shapes and segmentations
in captured images require further development. Currently, professional input is still
required for manually identifying the damage type through visual inspection of captured
images. Although studies have implemented deep learning (DL) algorithms [7–9], many of
them were based on precise measurement at the laboratory scale, or their results were not
commercially viable owing to the limited availability of data. Furthermore, as these studies
did not use field-inspection images, the results of their model training did not accurately
reflect the real-world bridge damage.

Recently, studies have investigated techniques to assess facility structures using DL
models [1,2,5,8–11]. The convolutional neural network (CNN) has reportedly exhibited
excellent performance in classifying and detecting objects using training image datasets.
Hoskere et al. applied deep convolutional neural networks (DCNN) to detect six types of
damage, including cracks, concrete scaling, and corrosion, in facility structures [11]. In the
Republic of Korea, studies have utilized AlexNet for the detection of concrete spalling [8]
and the analysis of railway bridge damage using faster regions with a convolutional neural
network (Faster-RCNN) [1]. The limitations of DL-based algorithms are (1) the variation
of detection performance with the training image, and (2) difficulty in classifying damage
types when the classes have few features or when the features are unclear. Owing to
the nature of DL technology, the greater the volume of data for training, the higher the
classification accuracy. In terms of the dependence of classification performance on the clear
representation of features, for the classification of damage types for bridges, into categories
such as efflorescence, corrosion, cracks, concrete scaling, and spalling, the distinction
between efflorescence, which appears white in color on the bridge, and cracks is highly
accurate as they appear distinct, whereas the classification between scaling, spalling, and
cracks is inaccurate as these are similar types of damage.

A previous study proposed a preprocessing technique for training images [3]. It
allowed for the use of low-resolution bridge images from collected data for training. The
method obtained images suitable for the learning model by employing super-resolution
(SR) for normalization and data augmentation. The technique enhanced the resolution of
the images, and through proper labeling, could detect small objects, achieving similar or
superior performance to the existing bridge damage detection models.

In this study, we utilized that method and proposed a new model of combination train-
ing with bridge members. Subsequently, by integrating the two approaches, we proposed
the bridge damaged-object-detection deep-combination framework (BDODC-F). In Step 1,
to ensure diversity in the type of damaged objects and model performance improvement,
a DL-based SR module was employed to improve the performance of individual models.
In Step 2, for better performance and optimization of the integrated models, we proposed
the bridge damage-detection DL combination model by individually training the models
with bridge members. To accurately reflect the similarities and differences of shapes and
features between the classes to be classified, the model was trained with bridge members
such as abutment and slab for the damage type. Then, a combination model structure
was designed, resulting in a single DL combination model. Consequently, to maximize
the model detection performance, a framework was proposed to encompass the entire
process of data input, dataset construction, training, model deployment, and detection. The
proposed framework exhibited improved accuracy, i.e., the mean average precision (mAP),
by 191.6% in image quality enhancement and 110.6% in the combined model.

The contributions of this study include:
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- a framework capable of automated bridge damage safety diagnosis through image capture,
- an SR-based image pre-processing process suitable for identifying bridge damaged objects,
- a damaged-object-detection model framework optimized for each member of the bridge,
- research and development of a damaged-object-detection model with high accuracy.

The features of the proposed framework can be used to construct a system that can
automatically identify damaged objects in situ in real time by collecting images through
mobile devices based on the proposed framework.

The structure of the rest of the paper is organized as follows. In Section 2, the extant
literature related to this work is reviewed. Section 3 presents the theoretical and experimen-
tal aspects of the proposed technology. Section 4 describes the results of the experiments
conducted to evaluate the performance of the technology. Section 5 concludes the research
with a summary of the study, limitations, and outlook.

2. Background
2.1. Existing Work on Bridge Damage

A previous study [8] used a web scraping technique to collect various concrete images
(damaged or intact concrete images) for training an artificial neural network (ANN), and
thus constructed a training image dataset. AlexNet—a DL-based image classifier—was
utilized as the initial model to develop an ANN that enabled the automatic detection of
spalling in an image using data learned by applying the concept of transfer learning. This
model detected concrete scaling/spalling.

In a study on the automatic damage analysis of railway bridges based on a UAV and a
DL model [1], damage types such as cracks, scaling, spalling, water leakage, and reinforced
concrete (RC) exposure were detected using a deep-learning model. For training image data,
approximately 26,476 images of a level C bridge structure or lower with several defects were
collected using a camera. As conventional image-processing techniques, such as pattern
recognition and edge detection, erroneously detected defects due to contamination of the
damaged surfaces, the study applied a DL-based model. Tools such as sharpening, blurring,
and hue/saturation were used to perform image preprocessing, and DL algorithms such
as Light Head-RCNN, FPN, PSPNet, and U-Net were used for the investigation. Out of
approximately 26,476 images of bridge damage, 80% were randomly selected for model
training, and the remaining 20%, 5295 images, were used for testing. When U-Net was
used, the detection recall was as follows: cracks 96%, concrete scaling/spalling 98%, rebar
exposure 98%, and water leakage 92%. In the study, similar types of damage were grouped
into a single type, and one model was trained with multiple types of damage.

Another study that used DL to evaluate the condition of a bridge [2] highlighted its
limitations in identifying multiple types of bridge damages, such as cracks, spalling, and
corrosion. To overcome this, methods of training a model for a specific type of damage
and applying techniques such as clustering or building a large amount of training data,
including a wide range of damage types for classification, were considered as solutions.
The study employed a data augmentation technique that increased the volume of training
data by applying transformation methods such as image segmentation and rotation, along
with transfer learning, to address the problem. As for the DL models used, Mask R-CNN
and U-Net were compared in terms of model performance. For training image data, up to
1024 × 1024-pixel images were used, and the sliding window method was used to address
the problems of damage exposure and quantification. Through experiments, Mask R-CNN
was determined suitable for damage detection, as the input size was 1000 × 800 pixels,
which is relatively large. The model also allowed transfer learning with a limited volume
of training data. A final total of 5140 images were used for training in the experiments, and
a precision of 95.2% and recall of 93.8% were obtained. The study presented a solution
to the limitations in classifying multiple types of damage by increasing the volume of
training data, which exhibited robust performance. In contrast, our approach presents a
method of model combination after classifying into each type of bridge member. Because
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our approach creates a detection model optimized for each bridge member, high accuracy
of detection can be expected.

2.2. Super-Resolution Convolution Neural Network (SRCNN)

The super-resolution convolution neural network (SRCNN) was the first model that
applied DL in the field of super-resolution [12]. It used traditional bicubic interpolation was
used for low-resolution images to increase their size to that of high-resolution images. The
model involved passing through a convolution network thrice to enhance image quality.
Traditional bicubic interpolation estimates the pixel value from the weighted average of the
16 closest neighboring pixels to expand the image pixels. The technique improved image
quality while passing through a CNN during training [13].

SRCNN is methodologically simple, yet it performs well and is the most basic DL
model in the field of SR. As it is based on a CNN model, it requires supervised learning; that
is, it requires high-resolution images for training. The model is trained using low-resolution
images and ground-truth (GT) images. When trained to minimize the difference between
the unscaled image and the GT image, it outputs a high-resolution image. In a recent study,
SRCNN was redesigned as a faster SRCNN (FSRCNN) [14] with accelerated speed and
superior restoration quality. The new structure is illustrated in Figure 1.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 4 of 17 
 

the problems of damage exposure and quantification. Through experiments, Mask R-
CNN was determined suitable for damage detection, as the input size was 1000 × 800 pix-
els, which is relatively large. The model also allowed transfer learning with a limited vol-
ume of training data. A final total of 5140 images were used for training in the experi-
ments, and a precision of 95.2% and recall of 93.8% were obtained. The study presented a 
solution to the limitations in classifying multiple types of damage by increasing the vol-
ume of training data, which exhibited robust performance. In contrast, our approach pre-
sents a method of model combination after classifying into each type of bridge member. 
Because our approach creates a detection model optimized for each bridge member, high 
accuracy of detection can be expected. 

2.2. Super-Resolution Convolution Neural Network (SRCNN) 
The super-resolution convolution neural network (SRCNN) was the first model that 

applied DL in the field of super-resolution [12]. It used traditional bicubic interpolation 
was used for low-resolution images to increase their size to that of high-resolution images. 
The model involved passing through a convolution network thrice to enhance image qual-
ity. Traditional bicubic interpolation estimates the pixel value from the weighted average 
of the 16 closest neighboring pixels to expand the image pixels. The technique improved 
image quality while passing through a CNN during training [13].  

SRCNN is methodologically simple, yet it performs well and is the most basic DL 
model in the field of SR. As it is based on a CNN model, it requires supervised learning; 
that is, it requires high-resolution images for training. The model is trained using low-
resolution images and ground-truth (GT) images. When trained to minimize the differ-
ence between the unscaled image and the GT image, it outputs a high-resolution image. 
In a recent study, SRCNN was redesigned as a faster SRCNN (FSRCNN) [14] with accel-
erated speed and superior restoration quality. The new structure is illustrated in Figure 1.

 
Figure 1. Super-resolution convolution neural network (SRCNN) model structure. 

2.3. Classifier Combination 
Classifier combination is an effective method to improve the performance of pattern 

recognition [15]. It has been applied in various fields, including economic decision-mak-
ing, forecasts of natural phenomena, and military decisions in national defense. The com-
binations can be categorized into mathematical and behavioral approaches. Mathematical 
approaches construct models and derive combination rules using logic and statistics to 
combine different classification models and outputs. Behavioral approaches assume dis-
cussions between experts in the applicable fields to combine multiple decisions into a sin-
gle one. 

Classifier combination has garnered great interest in the field of optical character 
recognition and biometric applications in the last decade. It has been widely applied in 
image classification for text recognition, voice recognition, facial image recognition, fin-
gerprint recognition, and biometric applications. The combination function accepts N-

Figure 1. Super-resolution convolution neural network (SRCNN) model structure.

2.3. Classifier Combination

Classifier combination is an effective method to improve the performance of pattern
recognition [15]. It has been applied in various fields, including economic decision-making,
forecasts of natural phenomena, and military decisions in national defense. The combi-
nations can be categorized into mathematical and behavioral approaches. Mathematical
approaches construct models and derive combination rules using logic and statistics to
combine different classification models and outputs. Behavioral approaches assume dis-
cussions between experts in the applicable fields to combine multiple decisions into a
single one.

Classifier combination has garnered great interest in the field of optical character
recognition and biometric applications in the last decade. It has been widely applied
in image classification for text recognition, voice recognition, facial image recognition,
fingerprint recognition, and biometric applications. The combination function accepts
N-dimensional vectors from M classifiers and outputs N final classification scores. Results
for the problem can be finally redefined through combination rules or model definition.
The combination allows for the determination of the optimal model, thus minimizing the
misclassification cost. Several different types of classifier combinations exist, e.g., score
combination function, ensembles, operating level of classifiers, classifier combination based
on output types, and classifier combination based on complex types. A study proposed a
feature combination network model [16] (Figure 2) in the field of DL to improve the model
prediction accuracy.
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3. Materials and Methods

We proposed a DL framework to detect damages in bridges. In Step 1, the image
quality was enhanced and normalized through SR to improve the detection performance
by object, achieve more diversity in the dataset, and increase consistency. In Step 2, opti-
mized detection member-specific models are developed through a bridge-damage-detection
DL combination module based on individual learning by bridge members. These were
aggregated into a single model, thus presenting an optimized bridge-damage-detection
model. The proposed framework is a DL framework optimized for six types of bridge
damage: efflorescence, concrete scaling, concrete spalling, crack, corrosion, and water leak.
A schematic of the framework is depicted in Figure 3. We present a detailed description for
each step in the following subsections.
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3.1. Step 1: Image Quality Enhancement Module through SR

In the preprocessing stage (Figure 4), an SR model trained using low- and high-
resolution image training datasets was constructed to construct a model for image qual-
ity enhancement. Finally, the model was deployed. The deployed model received low-
resolution images as input and converted them into high-resolution ones through the SR
process (Figure 4). In the damaged-object-detection stage, the preprocessed images were



Appl. Sci. 2022, 12, 12868 6 of 17

labeled using a labeler. The labeled images (training set) were used to train the detection
model. The detection model was deployed, and when an image captured from field inspec-
tion was input to it, the high/low-resolution condition of input data was determined and
appropriately preprocessed. The preprocessed image was input to the detection model,
and a damaged object in the image was automatically detected. In the case of the CNN
model, which was applied in the detection model, the detection performance improved
when the image size was fixed and as the filter size increased. Thus, we considered that
the proposed process could develop an optimized model to detect and identify damaged
objects. The bridge damage was allotted to six classes: efflorescence, water leak, concrete
scaling, concrete spalling, cracks, and RC corrosion. To construct the bridge-damage image
net, a labeler was used to label damaged objects in the images. The detection accuracy can
be improved by enhancing the image quality.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 6 of 17 
 

3.1. Step 1: Image Quality Enhancement Module through SR 
In the preprocessing stage (Figure 4), an SR model trained using low- and high-reso-

lution image training datasets was constructed to construct a model for image quality en-
hancement. Finally, the model was deployed. The deployed model received low-resolu-
tion images as input and converted them into high-resolution ones through the SR process 
(Figure 4). In the damaged-object-detection stage, the preprocessed images were labeled 
using a labeler. The labeled images (training set) were used to train the detection model. 
The detection model was deployed, and when an image captured from field inspection 
was input to it, the high/low-resolution condition of input data was determined and ap-
propriately preprocessed. The preprocessed image was input to the detection model, and 
a damaged object in the image was automatically detected. In the case of the CNN model, 
which was applied in the detection model, the detection performance improved when the 
image size was fixed and as the filter size increased. Thus, we considered that the pro-
posed process could develop an optimized model to detect and identify damaged objects. 
The bridge damage was allotted to six classes: efflorescence, water leak, concrete scaling, 
concrete spalling, cracks, and RC corrosion. To construct the bridge-damage image net, a 
labeler was used to label damaged objects in the images. The detection accuracy can be 
improved by enhancing the image quality. 

 
Figure 4. SR process. 

SR improves the image quality. The first objective of the proposed framework was to 
normalize the various types of input images. This is because the DL model performs well 
when the input image is consistent. Second, pixel data were detailed owing to image ex-
pansion, and feature data for learning were precise. Detection performance might be im-
proved using an image extended through SR, with small objects in an image that were 
difficult for the model to detect. 

3.2. Step 2: DL Combination Model by Member 
3.2.1. Dataset Extraction by Member 

In the step of dataset extraction by member (Figure 5), data to be used to train the DL 
model underwent optimization and preprocessing. The collected bridge images were la-
beled according to the type of damage and member, and based on the annotation, the 
labeled image data were extracted into the npz file format for transformation into a data 
type suitable for the graphic processor unit (GPU). Labeling was performed using 
Labelme [17], an open-source annotation tool. Thus, the final member dataset in the form 
of an image set with annotations was constructed. 

Figure 4. SR process.

SR improves the image quality. The first objective of the proposed framework was
to normalize the various types of input images. This is because the DL model performs
well when the input image is consistent. Second, pixel data were detailed owing to image
expansion, and feature data for learning were precise. Detection performance might be
improved using an image extended through SR, with small objects in an image that were
difficult for the model to detect.

3.2. Step 2: DL Combination Model by Member
3.2.1. Dataset Extraction by Member

In the step of dataset extraction by member (Figure 5), data to be used to train the
DL model underwent optimization and preprocessing. The collected bridge images were
labeled according to the type of damage and member, and based on the annotation, the
labeled image data were extracted into the npz file format for transformation into a data type
suitable for the graphic processor unit (GPU). Labeling was performed using Labelme [17],
an open-source annotation tool. Thus, the final member dataset in the form of an image set
with annotations was constructed.
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3.2.2. Combination Training and Detection Module

In this step (Figure 6), a DL model optimized for detection was developed by analyzing
the features of the bridge damage by member. Through effective training using the member-
specific image networks constructed as above, the derived model was optimized to develop
a model with excellent detection performance. Mask R-CNN [18,19], Yolo (R-CNN) [20,21],
and Blendmask [22], which are DL models based on R-CNN, were used as models for
the detection of damaged objects. This is because these models were reported to exhibit
rapid detection and large input image size. We combined it with high-resolution image
optimization and normalization through image-quality enhancement using the upscaling
technique described in a previous study [3]. The detection model developed after complet-
ing the training was applied to detect damaged objects. As new bridge images were input,
the model automatically detected the damaged objects. Based on the measured values of
processing speed and accuracy, the optimal model was used as the detection model. DL
models based on the R-CNN experience detection speed limitations due to a bottleneck
in the process caused by separation between the object region proposal and detection
processes, and the scale of network parameters increases. Therefore, a high-performance
GPU was required to ensure maximum detection speed [3]. The combination method of the
proposed model is not a fusion method between network layers or a combination method
of features. Even with the same type of damage (e.g., white stain), the shapes that appeared
in the images were distinct; therefore, we constructed optimized models for each member.
Members with similar feature maps were grouped to build the optimal model. For one
image input, the model for each member identified the damaged object in the image and
derived the result through aggregation.
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The number of detection models trained with each bridge member was n, which is the
number of members, and these models were aggregated through an aggregation module.
The member-specific detection models were trained using member-specific datasets. When
an image was input, it passed through the combination detection model framework by
member, and the final combined detection result was output.

4. Experiments and Results
4.1. Experimental Setup

The system setup used in the experiment is as follows. To test the performance of the
developed detection model, experiments were carried out on a system with a built-in GPU.
Python was used as the programming language.

• CPU: Intel(R) Core(TM) i7-10900k CPU 2.90 GHz
• RAM: 96 GB
• GPU: NVIDIA GeForce RTX3090

4.2. Results of Image Quality Enhancement

The parameters of the model used in the experiment are summarized in Table 1.
The experiments were performed using a Resnet-based model with a backbone depth of
101 layers. The detection model needs pixel-based detection for each damage type, so it
must be detected with instance segmentation. We studied the optimal model based on
mask-R CNN [18], which is a popular method in instance segmentation, and Blendmask
capable of real-time detection.
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Table 1. SRCNN, Blendmask, and Mask-RCNN main parameters.

SRCNN Blendmask Mask-RCNN

epoch: 300
batch size: 100

loss rate: 1 × 10−4

BACKBONE:
NAME: “build_fcos_resnet_fpn_backbone”

DEPTH: 101
ROI_HEADS:

BATCH_SIZE_PER_IMAGE: 512
SOLVER:

BASE_LR: 0.01
BIAS_LR_FACTOR: 1.0

MOMENTUM: 0.9
WARMUP_METHOD: linear

WEIGHT_DECAY: 0.0001

MODEL:
BACKBONE:

NAME: “build_resnet_fpn_backbone”
DEPTH: 101

ROI_HEADS:
NAME: “StandardROIHeads”

IN_FEATURES: [“p2”, “p3”, “p4”, “p5”]
ROI_BOX_HEAD:

NAME: “FastRCNNConvFCHead”
NUM_FC: 2

POOLER_RESOLUTION: 7
ROI_MASK_HEAD:

NAME: “MaskRCNNConvUpsampleHead”
NUM_CONV: 4

POOLER_RESOLUTION: 14
SOLVER:

IMS_PER_BATCH: 4
BASE_LR: 0.01

4.2.1. Measurement Method

• Measurement of SR performance

In the blind/referenceless image spatial quality evaluator (BRISQUE) [23], when mean
subtraction and contrast normalization (MSCN) is applied, the histogram of pixels follows
a Gaussian distribution, the generalized Gaussian distribution is mapped to the image
histograms that undergo MSCN processing, and the shape information is used as features
to assess the image quality.

The structural similarity index (SSIM) [24] is a representative full-reference image-
quality assessment method designed to evaluate the difference and similarity between the
image quality of human visual perception, and not the numerical errors. For comparison of
an original image A and a distorted image B, the SSIM compares the luminance, contrast,
and structure of the two images. A value close to −1 indicates high image quality, and a
value close to 0 indicates low image quality.

• Evaluation of model accuracy

To evaluate the model accuracy, we employed general accuracy and average precision
(AP), which is a representative measure of the prediction accuracy of DL detection models.
By measuring the intersection over union between the ground truth object area and the
area predicted by the model, we determined the classification performance according to the
ratio of agreement between the prediction and the ground truth. AP 50 indicates that the
classification was considered successful when the ground truth and prediction concurred
by 50% or more. For AP 75, the ratio of agreement should be 75% or more. The notations
APs/APm/APl represent the value of AP measurements for s (small)/m (medium)/l
(large) objects, respectively, based on the size of the object to be detected, and success in the
classification of classes is determined for all results with 50% to 95% agreement between
the ground truth area and the predicted area. mAP represents the average performance of
the model based on the mean of all AP values.

4.2.2. Measurement of SR Performance and Experiments and Evaluation for Improved
Detection Model Performance

In the first experiment, the SR performance of each model was tested and verified
using image sets typically used in SR research. Figure 7 illustrates the five images used in
this study. The resolution of each image was 640 × 480, which was the result of upscaling
the resolution by four times through SR and enhancing the image quality to 2560 × 1920.
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As indicated in Table 2, the result of SRCNN exhibits a high SSIM value, while that of the
super-resolution generative adversarial network (SRGAN) demonstrated a high BRISQUE
value. This result confirmed that an image of quality close to that of visual perception or
high-resolution original image was derived.
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Next, as illustrated in Figure 8, the SR values of five images selected from the bridge
image set collected during field inspection are measured. For this image set, unlike other
general image sets, no original high-resolution image exists for comparison. Therefore, in
this case, the SSIM could not be calculated. Nevertheless, the image quality was assessed
based on the measurement of BRISQUE value alone, which is a method of measuring
the image quality without comparison. Figure 9 displays the results of image quality
enhancement. Table 3 presents the values of BRISQUE measurement.

Table 3. BRISQUE measuring result: real bridge image.

Image
BRISQUE

SRCNN Fast-SRGAN

001_2018.png 62.016 44.832
002_2018.png 58.563 29.667
003_2018.png 59.600 37.275
004_2018.jpg 51.470 27.746
005_2018.jpg 60.091 39.898

Next, to verify the improvement of the damaged-object-identification performance
due to image quality enhancement, the Mask R-CNN model was constructed to perform
experiments to detect damaged objects. In this experiment, low- and high-resolution images
with image quality enhanced by the SRCNN were used as the input to the damaged-object-
identification model. The experiment to identify efflorescent objects was performed among
various damaged objects in the image. The parameter values used in the experiment are
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summarized in Table 4. The images used in the experiment and experimental results are
presented in Table 5. There are a total of five images.
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Table 4. Mask R-CNN parameter setting.

Mask R CNN

Epoch: 200, batch size: 100, train: training with images from actual inspection site
(low-resolution + high-resolution) [type: coco weight]

Test: low-resolution, SRCNN high-resolution [type: coco weight], loss rate: 1 × 10−4
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Table 5. Bridge damaged-object-detection result.

Image

Image Detection Result [Accuracy]

LR SRCNN

DIC DIA FDI TDIA DIC DIA FDI TDIA

001.jpg 0 0 0 0% 1 [0.9012] 0 100%

002.jpg 2 [0.9230
0.9108] 1 50% 2 [0.9662

0.9060] 1 50%

003.jpg 1 [0.9067] 1 0% 3
[0.9688
0.9558
0.9371]

2 33.3%

004.jpg 2 [0.9230
0.9175] 1 50% 1 [0.9538] 0 100%

005.jpg 1 [0.9464] 0 100% 1 [0.9658] 0 100%

DIC: detected image count, DIA: detected image accuracy, FDI: falsely detected image, TDIA: truly detected
image accuracy.

The results of efflorescent object identification in the image are summarized in Table 6.
Comparing the accuracy of the experimental results between high- and low-resolution
images, the specific type of object identification performance was improved in the image
converted to high resolution over the low-resolution image. In terms of the true image
detection accuracy for the detection of efflorescence, the high-resolution image obtained
using the SRCNN performed vastly better than the LR image without requiring image
quality enhancement. Compared with the SRGAN, the result of the SRCNN outputting
an image similar in quality to the original is appreciable. The SRGAN is more usable as
a data-augmentation model that generates similar images when no original is available.
The experiment revealed that the model using the image output by the SRCNN had a high
detection accuracy. The size of the image was normalized through quality improvement,
and pixel data were refined through pixel expansion, which appeared to improve the
detection accuracy of the model.

Table 6. Efflorescence object identification result.

Image Original
Image

Image Detection Result

LR SRCNN Fast-SRGAN

002.jpg
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To evaluate the improvement in performance after optimization of the respective 
member-specific models, an existing model trained with the damaged-object images of all 
members without differentiation by member was used for comparative performance as-
sessment. First, the experimental results of the existing model are presented as follows. 
Figure 11 shows the result of object detection using the model trained for each type of 
bridge damage. 

Table 7 shows the performance results of the existing model. The existing model ex-
hibited an accuracy of 92.675 (Blendmask), 98.679 (Mask-RCNN) based on AP 50, and 
94.013 (Blendmask), 91.372 (Mask-RCNN) for a large object (Apl) and 76.414 (Blendmask), 
88.051 (Mask-RCNN) for a small object (APs). The existing model also demonstrated a fair 
level of overall performance. The overall performance is slightly better with Blendmask. 
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To evaluate the improvement in performance after optimization of the respective 
member-specific models, an existing model trained with the damaged-object images of all 
members without differentiation by member was used for comparative performance as-
sessment. First, the experimental results of the existing model are presented as follows. 
Figure 11 shows the result of object detection using the model trained for each type of 
bridge damage. 

Table 7 shows the performance results of the existing model. The existing model ex-
hibited an accuracy of 92.675 (Blendmask), 98.679 (Mask-RCNN) based on AP 50, and 
94.013 (Blendmask), 91.372 (Mask-RCNN) for a large object (Apl) and 76.414 (Blendmask), 
88.051 (Mask-RCNN) for a small object (APs). The existing model also demonstrated a fair 
level of overall performance. The overall performance is slightly better with Blendmask. 

Consequently, through the experiment, the results demonstrated that the proposed
technology improved the damaged-object-identification performance. In the case of images
containing damaged objects with complex structures, the experimental results verified that
the identification performance was further improved.
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4.2.3. Experiment and Evaluation of the Model Performance Optimized by Member

This study focused on six types of damage: efflorescence, concrete scaling, concrete
spalling, cracks, water leak, and RC corrosion. However, excluding the objects that were
not observed in all members, and those objects that were too few, we analyzed individual
models by member for efflorescence, concrete scaling, and concrete spalling. However, the
detection performance value (mAP, etc.) represents performance for all types. Models for
the road pavement/abutment and pier/slab/rail were constructed to conduct performance
testing. Fifty images of each member were used for training, 80 images for the aggregated
model, 20 images for validation. For each member, 75,000 epochs were completed, and the
performance was evaluated with the derived model for each member. Figure 10 shows the
types of bridge members.
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To evaluate the improvement in performance after optimization of the respective
member-specific models, an existing model trained with the damaged-object images of
all members without differentiation by member was used for comparative performance
assessment. First, the experimental results of the existing model are presented as follows.
Figure 11 shows the result of object detection using the model trained for each type of
bridge damage.

Table 7 shows the performance results of the existing model. The existing model
exhibited an accuracy of 92.675 (Blendmask), 98.679 (Mask-RCNN) based on AP 50, and
94.013 (Blendmask), 91.372 (Mask-RCNN) for a large object (Apl) and 76.414 (Blendmask),
88.051 (Mask-RCNN) for a small object (APs). The existing model also demonstrated a fair
level of overall performance. The overall performance is slightly better with Blendmask.
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Table 7. Damaged-object-detection performance results for existing models (all members integrated).

Measure

Existing Model
(Model without Detection Training by Member)

Blendmask Mask-RCNN

AP50 92.675 98.679
AP75 92.121 96.341
eps 76.414 79.006

Apm 92.508 88.051
Apl 94.013 91.372

mAP 83.965 83.977

Table 8 presents the results of testing the detection performance of the member-
specific models. The overall performance indices improved for each model, compared
to the existing integrated model. As each member yielded different structures or shapes
according to the type of damage, the results confirmed that the proposed model, which
was trained separately on individual members followed by model optimization, displayed
markedly better performance than the existing model. However, because of the small
volume of collected image data, we observed overfitting of the results in a few types
of damage. This demerit must be addressed by acquiring sufficient data. In terms of
consideration of the performance indices for member-specific models, the value of mAP
improved by 11.31 (Blendmask), 8.893 (Mask-RCNN) percent points over the existing
model (all members integrated).



Appl. Sci. 2022, 12, 12868 15 of 17

Table 8. Damaged-object-detection performance results for member specific models.

Measure

Abutment/
Pier Model Road Pavement Slab Model Rail Model Model Average

by Member

Blendmask Mask-
RCNN Blendmask Mask-

RCNN Blendmask Mask-
RCNN Blendmask Mask-

RCNN Blendmask Mask-
RCNN

AP50 92.871 100.00 98.020 91.412 100 98.613 94.257 100.00 96.96 97.506
AP75 92.871 96.923 98.020 100.00 100 93.069 94.257 100.00 96.96 97.498
Aps 70.677 80.387 89.318 100.00 94.718 81.638 80.889 92.885 84.90 88.727
Apm 94.326 88.861 94.685 90.915 97.949 86.380 86.888 97.764 95.65 90.980
Apl 98.389 91.088 97.789 92.429 100 93.676 98.195 98.985 98.73 94.044

mAP 90.470 87.426 91.703 92.446 96.426 86.347 86.409 95.277 92.87 90.374

Table 9 illustrates the detection performance for member-specific models categorized
into the four damage types. Overall, the model detected concrete scaling/spalling accu-
rately. For the slab model, the mAP value was higher for the detection of efflorescence
than for the detection of abutment/pier or rail, because the shape of efflorescence is more
consistent across the images than other damage types. In the case of road pavement, cracks
were the only type of damage, and this model cannot detect multiple damaged objects. The
shape of the damaged object for each member is distinct. Application of the same model
to all members is not an optimal detection approach. As the optimized detection model
for each member was constructed through learning, precise detection was possible, and
the accuracy performance demonstrably improved by 11.31% (Blendmask), and 8.893%
(Mask-RCNN). In experimental model for each member, the overall performance of the
Blendmask (mAP 92.87) is better than that of the mask-RCNN (mAP 90.374). In the case of
rail and road pavement models, the mask-RCNN performance is higher, so mask-RCNN
can be used as the optimal model for this member. In conclusion, the optimal model for
each member could be verified through experiments.

Table 9. Damaged-object-detection performance results of member specific models by damage type.

Measure
(mAP)

Abutment/Pier Model Road Pavement
Model Slab Model Rail Model

Blendmask Mask-
RCNN Blendmask Mask-

RCNN Blendmask Mask-
RCNN Blendmask Mask-

RCNN

Efflorescence 90.614 88.875 - 92.525 91.507 84.050 95.050
Scaling 98.064 88.239 - 94.863 91.740 89.894 100.00
Spalling 98.069 92.003 - 100 91.740 90.470 91.854
Cracks 100 90.000 91.703 91.412 98.317 71.386 69.802 94.208

The experimental results confirmed that the proposed model exhibited better overall
performance in detecting various types of damages. As, in some cases, the occurrence of
the type of damage differs with the bridge member, constructing an optimized model for
each member could serve as an approach for improving the model performance for the
automatic detection of different types of damage.

5. Conclusions

The limitations of existing research on automatic detection of bridge damage using
DL technology are (1) the training image and (2) the shape of the target object. To address
these limitations, a modeling framework based on a DL model with a two-step process
was proposed as follows: (1) SR was used to enhance the image quality, thus ensuring
diversity in the images of bridge damage and constructing a detection model that enabled
the identification of damaged objects with complex structures. (2) Rather than performing
detection as a single integrated model, DL models optimized for each member and each type
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of damage were derived, which were finally aggregated. Thus, we proposed the BDODC-F,
which encompassed all processes, namely data input, dataset construction, model training,
detection, and output of results. As the shapes considerably differ with the type of damage
for each member, the use of a single model for all members to perform training and detection
would limit model performance. Therefore, in this model, we constructed individual
models optimized for each member. Further, through these member-specific models, each
type of damage was detected, and the results were aggregated. The experimental results
demonstrated an improvement in detection performance with an increase in the mAP
value of 110.6% over the existing model. However, as the model used an insufficient
number of images, more images must be collected to reduce overfitting and improve the
model’s generalizability. Nevertheless, the performance of the combination model based on
member-specific optimization is satisfactory. Thus, the proposed framework might emerge
as an intelligent technology for application in the field of damage inspection.

The framework was studied for small-scale bridges with concrete structures that can
be photographed by humans. Nonetheless, it can even be applied for suspension and
cable-stayed bridges, or large bridges, if the member is a concrete structure.

As the inference time of the proposed model is approximately 0.2 s, real-time detection
is possible. However, because it uses approximately 2.5 G of GPU memory (VRAM) per
model and 300~350 w power (case of RTX 3090), the model cannot be deployed on a mobile
device. However, using an edge computing device (e.g., jetson nano, etc.), it is possible to
immediately detect and analyze images input from the image sensor by loading the model
(requires 5~10w power). As another approach, the images collected by imaging equipment
(smartphone, UAV, etc.) can be transmitted to the network and detected at the DL server.
However, network latency must be considered.

Future research can investigate and develop a model capable of improving the instance
segmentation performance based on an ensemble of multiple models, as well as a model
to automatically detect damaged objects in a bridge optimized through parameter tuning
for each member/model. Furthermore, a quantification model that enables automatic
estimation of the size of damaged objects can be developed.

Author Contributions: Conceptualization, S.-S.H.; Software, S.-S.H. and C.-H.H.; Validation, S.-S.H.
and S.-W.C.; Resources, S.-W.C.; Data curation, C.-H.H.; Writing—original draft, S.-S.H. and C.-H.H.;
Writing—review & editing, S.-S.H., S.-W.C. and B.-K.K.; Supervision, B.-K.K.; Project administration,
B.-K.K.; Funding acquisition, B.-K.K. All authors have read and agreed to the published version of
the manuscript.

Funding: Research for this paper was carried out under the KICT Research Program (project no.
20220217-001, Development of DNA-based Smart Maintenance Platform and Application Technolo-
gies for Aging Bridges) funded by the Ministry of Science and ICT.

Data Availability Statement: DIV2K dataset—Super Resolution Benchmark Dataset (link: https:
//data.vision.ee.ethz.ch/cvl/DIV2K/, accessed on 30 October 2022).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Na, Y.H.; Park, M.Y. A study of railway bridge automatic damage analysis method using unmanned aerial vehicle and deep

learning-based image analysis technology. J. Soc. Disaster Inf. 2021, 17, 556–567.
2. Woo-Suk, N.; Jung, H.; Park, K.-H.; Kim, C.-M.; Kim, G.-S. Development of deep learning-based damage detection prototype for

concrete bridge condition evaluation. J. Civ. Environ. Eng Res. 2022, 42, 107–116.
3. Hong, S.-S.; Hwang, C.; Kim, H.-K.; Kim, B.-K. Deep learning-based bridge image pretreatment and damaged objects automatic

detection model for bridge damage management. J. Next-Gener. Converg. Inf. Serv. Technol. 2021, 10, 497–511. [CrossRef]
4. Zhang, C.; Chang, C.-C.; Jamshidi, M. Bridge damage detection using a single-stage detector and field inspection images. arXiv

2018, arXiv:1812.10590.
5. Young, C.D.; Hyun, P.S.; Kim, Y.K.; Jung, S.W.; Kim, D.-N. Deep-learning crack analysis for visual-safety inspection of bridge by

drones. J. Korean Inst. Inf. Technol. 2021, 19, 115–121.

https://data.vision.ee.ethz.ch/cvl/DIV2K/
https://data.vision.ee.ethz.ch/cvl/DIV2K/
http://doi.org/10.29056/jncist.2021.10.03


Appl. Sci. 2022, 12, 12868 17 of 17

6. Ellenberg, A.; Kontsos, A.; Bartoli, I.; Pradhan, A. Masonry crack detection application of an unmanned aerial vehicle. In
Proceedings of the 2014 International Conference on Computing in Civil and Building Engineering, Orlando, FL, USA, 23–25
June 2014; pp. 1788–1795.

7. Kim, H.; Sim, S.-H.; Cho, S. Unmanned aerial vehicle (UAV)-powered concrete crack detection based on digital image processing.
In Proceedings of the 6th International Conference on Advances in Experimental Structural Engineering 11th International
Workshop on Advanced Smart Materials and Smart Structures Technology, Urbana, IL, USA, 1–2 August 2015.

8. Lee, Y.-I.; Kim, B.; Cho, S. Image-based spalling detection of concrete structures using deep learning. J. Korea Concr. Inst. 2018, 30,
91–99. [CrossRef]

9. Jung, S.; Lee, S.K.; Park, C.; Cho, S.; Yu, J. A method for detecting concrete cracks using deep-learning and image processing.
J. Archit. Inst. Korea Struct. Constr. 2019, 35, 163–170.

10. Kim, A.; Kim, D.; Byun, Y.; Lee, S.W. Crack detection of concrete structure using deep learning and image processing method in
geotechnical engineering cracks. J. Kor. Geotech. Soc. 2018, 34, 145–154.

11. Hoskere, V.; Narazaki, Y.; Hoang, T.; Spencer, B., Jr. Vision-based structural inspection using multiscale deep convolutional neural
networks. arXiv 2018, arXiv:1805.01055v.

12. Dong, C.; Loy, C.C.; He, K.; Tang, X. Image super-resolution using deep convolutional networks. Trans. Pattern Anal. Mach. Intell.
2015, 38, 295–307. [CrossRef]

13. Kim, T.W. CNN, Summary of Convolutional Neural Network. Available online: http://taewan.kim/post/cnn/ (accessed on
4 January 2018).

14. Dong, C.; Loy, C.C.; Tang, X. Accelerating the super-resolution convolutional neural network. In European Conference on Computer
Vision; Springer: Cham, Switzerland, 2016.

15. Tulyakov, S.; Jaeger, S.; Govindaraju, V.; Doermann, D. Review of classifier combination methods. In Machine Learning in Document
Analysis and Recognition; Springer: Berlin/Heidelberg, Germany, 2008; Volume 90, pp. 361–386.

16. Webb, S.J.; Hanser, T.; Howlin, B.; Krause, P.; Vessey, J.D. Feature combination networks for the interpretation of statistical
machine learning models: Application to Ames mutagenicity. J. Cheminform. 2014, 6, 8. [CrossRef]

17. Russell, B.C.; Torralba, A.; Murphy, K.P.; Freeman, W.T. LabelMe: A database and web-based tool for image annotation. Int. J.
Comput. Vis. 2008, 77, 157–173. [CrossRef]

18. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the 2017 IEEE International Conference on Computer
Vision, Venice, Italy, 22–29 October 2017.

19. Jiao, L.; Zhang, F.; Liu, F.; Yang, S.; Li, L.; Feng, Z.; Qu, R. A survey of deep learning-based object detection. IEEE Access 2019, 7,
128837–128868. [CrossRef]

20. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.

21. Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767.
22. Chen, H.; Sun, K.; Tian, Z.; Shen, C.; Huang, Y.; Yan, Y. Blendmask: Top-down meets bottom-up for instance segmentation. In

Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19
June 2020; pp. 8573–8581.

23. Mittal, A.; Moorthy, A.K.; Bovik, A.C. No-reference image quality assessment in the spatial domain. IEEE Trans. Imag. Process.
2012, 21, 4695–4708. [CrossRef] [PubMed]

24. Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE
Trans. Imag. Process. 2004, 13, 600–612. [CrossRef] [PubMed]

http://doi.org/10.4334/JKCI.2018.30.1.091
http://doi.org/10.1109/TPAMI.2015.2439281
http://taewan.kim/post/cnn/
http://doi.org/10.1186/1758-2946-6-8
http://doi.org/10.1007/s11263-007-0090-8
http://doi.org/10.1109/ACCESS.2019.2939201
http://doi.org/10.1109/TIP.2012.2214050
http://www.ncbi.nlm.nih.gov/pubmed/22910118
http://doi.org/10.1109/TIP.2003.819861
http://www.ncbi.nlm.nih.gov/pubmed/15376593

	Introduction 
	Background 
	Existing Work on Bridge Damage 
	Super-Resolution Convolution Neural Network (SRCNN) 
	Classifier Combination 

	Materials and Methods 
	Step 1: Image Quality Enhancement Module through SR 
	Step 2: DL Combination Model by Member 
	Dataset Extraction by Member 
	Combination Training and Detection Module 


	Experiments and Results 
	Experimental Setup 
	Results of Image Quality Enhancement 
	Measurement Method 
	Measurement of SR Performance and Experiments and Evaluation for Improved Detection Model Performance 
	Experiment and Evaluation of the Model Performance Optimized by Member 


	Conclusions 
	References

