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Abstract: The application of cybersecurity knowledge graphs is attracting increasing attention. How-
ever, many cybersecurity knowledge graphs are incomplete due to the sparsity of cybersecurity
knowledge. Existing knowledge graph completion methods do not perform well in domain knowl-
edge, and they are not robust enough relative to noise data. To address these challenges, in this paper
we develop a new knowledge graph completion method called CSEA based on ensemble learning
and adversarial training. Specifically, we integrate a variety of projection and rotation operations
to model the relationships between entities, and use angular information to distinguish entities.
A cooperative adversarial training method is designed to enhance the generalization and robustness
of the model. We combine the method of generating perturbations for the embedding layers with the
self-adversarial training method. The UCB (upper confidence bound) multi-armed bandit method is
used to select the perturbations of the embedding layer. This achieves a balance between perturbation
diversity and maximum loss. To this end, we build a cybersecurity knowledge graph based on
the CVE, CWE, and CAPEC cybersecurity databases. Our experimental results demonstrate the
superiority of our proposed model for completing cybersecurity knowledge graphs.

Keywords: cybersecurity knowledge graph; knowledge graph completion; ensemble learning; adver-
sarial training

1. Introduction

As the application of computer networks becomes more widespread, cybersecurity
issues are posing a serious threat to people’s work and life. In recent years, cybersecurity
attacks such as denial of service (DoS), phishing, and others have increased. Realizing
cyberspace security situational awareness [1] by using existing cyber-threat knowledge is
of great significance. Vulnerabilities are critical to cybersecurity, as they can allow hackers
to gain unauthorized access or destroy computer systems. Hackers take advantage of
vulnerabilities as soon as they discover them. This results in enormous losses, because
individuals and enterprises are not be able to use effective protective measures imme-
diately. Therefore, comprehensive vulnerability information can help individuals and
enterprises to reduce cybersecurity risks. Many cyberattacks are implemented against soft-
ware or system weaknesses. Software reliability is often affected by a variety of complex
factors [2]. Mastering software weakness information can help individuals and enterprises
to understand the possible cyberattacks they may encounter. Individuals and enterprises
can use effective preventive measures to reduce potential losses by mastering the attack
patterns of hackers. In the process of dealing with cyber-threats, people have accumulated
much valuable experience. To better address existing cybersecurity threats, the MITRE
Corporation maintains the CVE (common vulnerability and exposure), CWE (common
weakness enumeration), and CAPEC (common attack pattern enumerations and classifica-
tions) cybersecurity knowledge databases for describing cybersecurity threats in real-world
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scenarios. CVE contains a variety of computer security vulnerabilities that have been
disclosed publicly, while CWE contains a number of software defect descriptions and
classifications and is a community-developed list of software and hardware weakness
types. CAPEC provides a public classification of common attack patterns used by hack-
ers, and has become an important public standard for the software community to share
attack patterns. These cybersecurity knowledge databases contain important empirical
information. For example, CWE-266 (incorrect privilege assignment) may be threatened by
CVE-2005-2741 (product allows users to grant themselves certain rights that can be used to
escalate privileges). CAPEC-234 (hijacking a privileged process) can follow CAPEC-242
(code injection). Despite the fact that existing cyber-knowledge databases are already
very large, new vulnerabilities, software weaknesses, and cyberattack patterns continue to
emerge. At the same time, important relationships in existing knowledge databases have
been discovered. For example, the mapping of CAPEC-698 (install malicious extension)
to CWE-507 (trojan horse) was not added until CAPEC List Version 3.8, while CWE-1357
(reliance on uncontrolled component) was not added until CWE List Version 4.7. This is an
important reason knowledge databases must be constantly updated and maintained.

In recent years, knowledge graph technology has developed rapidly. A knowledge
graph is a semantic network composed of entities, relationships, and their related attributes.
It has been widely used in the medical [3], financial [4], and transportation fields [5], among
others [6–9]. However, due to the variety of network states and low data value density,
the development of cybersecurity knowledge graphs remains in its infancy. Introducing
knowledge graphs to the field of cybersecurity can make effective use of previous experi-
ences [10], help to show the cybersecurity situation, and support security decision making
and early warning predictions. Because people have limited cognitive abilities, the existing
cybersecurity knowledge is clearly not flawless.

To address this problem, we propose a model for cybersecurity knowledge graph
completion. This model can infer unknown facts from existing facts to realize and com-
plement existing cybersecurity knowledge. First, we define ontologies and relationships
based on existing cybersecurity knowledge. The knowledge graph can then be used to
store cybersecurity entities, relationships, and associated attributes. By mining associations
on the basis of existing security vulnerabilities, software weaknesses, and attack patterns,
a model familiar with the relevant rules can be obtained. If software weaknesses are known,
it becomes possible to predict potential attack patterns and the relationships between
various software weaknesses based on learned relationship patterns, such as sequential
and parent–child relationships. When the model learns abstract and complex relationships
between existing entities and relationships, it is able to realize unknown knowledge by min-
ing information on known entities and relationships, then use them to provide assistance
with situation awareness.

In summary, the main contributions of this paper are as follows:

• We propose a new knowledge graph completion model that uses a variety of projec-
tion and rotation operations to model relationships between entities. In addition, it
represents entities and relationships based on angle information. The utilization of
ensemble learning improves the generalization of the model.

• We design a cooperative adversarial training method, which plays an important role
in the training process of the model. The UCB multi-armed bandit method is used to
set the adversarial perturbations, which improves the robustness of the model.

• A cybersecurity knowledge graph is built based on the CVE, CWE, and CAPEC
databases. We measure the performance of our model using experiments, finding
that it can effectively discover unknown facts through the creation of a cybersecurity
knowledge graph.

The remainder of this paper is organized as follows: Section 2 describes the related
work on cybersecurity knowledge and knowledge graph completion; Section 3 introduces
our method of completing the knowledge graph construction task; Section 4 describes
the completed cybersecurity knowledge graph and demonstrates the performance of our
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model by comparing it with other excellent models. Finally, our conclusions are provided
in Section 5.

2. Related Work

Cybersecurity knowledge. It is very important to master knowledge on cybersecurity.
There is a gap in knowledge between cybersecurity education and industrial needs [11].
The use of existing cybersecurity knowledge can provide strong knowledge support for
cybersecurity operations. With the continuous accumulation of cybersecurity knowledge,
many researchers have conducted valuable studies based on the existing knowledge. Xiang
Li et al. [12] designed an effective datamining algorithm to obtain the basic characteristics
of vulnerabilities based on the CVE and CWE databases. Zhuobing Han et al. [13] de-
signed a knowledge graph embedding method that combined descriptions and structural
knowledge. Their method embeds the relationship between software weaknesses in a
low-dimensional vector space in order to help infer the consequences of common software
weaknesses. Hongbo Xiao et al. [14] embedded the relationship information and descriptive
information of software security entities into the continuous vector space. This method
combines the translation-based embedding model and a CNN encoder to predict the re-
lationship of software security entities based on the CVE, CWE, and CAPEC databases.
Liu Yuan et al. [15] proposed a text-enhanced graph attention network model. They built
a cybersecurity knowledge graph based on the CVE, CWE, and CAPEC databases and
predicted the relationship between entities in the knowledge graph. Yichao Zang et al. [16]
used association rule mining technology to mine the semantic knowledge of a penetration
test hidden in a large amount of original penetration test data, which is very helpful for the
automated penetration test. In addition to using existing structured cybersecurity data, re-
searchers have extracted information from unstructured cyber-threat intelligence. Robert A.
Bridges et al. [17] designed a method of labeling cybersecurity texts, and provided a corpus
for information extraction in the field of cybersecurity. T. Satyapanich et al. [18] proposed
the CASIE model, which can extract events from cybersecurity texts. Peipei Liu et al. [19]
designed multifeature-based semantic augmentation networks able to extract cybersecurity
entities from unstructured texts for further analyses. Information extraction models based
on neural networks have made great progress in processing threat intelligence. All of the
above studies excavate existing security knowledge from different perspectives, and can
provide important guidance for future network protection measures.

Knowledge graph completion. Due to the limitations of knowledge extraction and
other technologies, most advanced knowledge graphs are usually incomplete. However,
incomplete knowledge graphs usually contain rich semantic information. Knowledge
graph completion technology can be used to supplement this knowledge. By mining the
existing information in knowledge graph, it is usually possible to find unknown facts.
This process can predict whether there are missing relationship edges between entities
in the knowledge graph in order to expand the knowledge graph and correct errors [20].
This procedure is helpful for further applications of the knowledge graph. Rule-based
models are basic knowledge graph completion methods with good interpretability. Simon
Ott et al. [21] proposed a rule-based model called SAFRAN. However, it is difficult for
a rule-based model to learn abstract features. As such, distance-based models have an
important influence on the completion of knowledge graphs, as they map entities and
relationships into low-dimensional space vectors and then perform relevant calculations.
TransE [22] uses the classical calculation expression, h + r = t, to carry out the knowledge
graph completion task; h, r, and t represent the embedding of the head entity, relation-
ship, and tail entity, respectively. This method has obvious advantages, including fewer
parameters and low computational complexity, and it has powerful abilities in solving
knowledge graphs with various relationship attributes. In recent years, researchers began
to map models to different complex vector spaces for modeling in order to better cope
with the diversity of relationship attributes. TransH [23] uses a hyperplane to solve the
above problems. TransR [24] uses a projection matrix to project the source vector to the
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entity space with specific relationships on the basis of TransH. RotatE [25] completes the
rotation from head entities to tail entities based on the complex vector space, although the
rotation ability is limited. CHolE [26] models the entities and relationships with their type
constraints in the complex vector space. A few effective models [27–29] even project entities
and relationships into quaternion or octet spaces, which greatly increases computational
complexity. HAKE [30] uses a polar coordinate system to solve the problem and to model se-
mantic hierarchies. Because its rotation of the radial coordinate is limited, simlar to RotatE,
its hierarchical modeling abilities are limited. HousE [31] uses householder transformation
to realize projections and rotations. Although this method has good interpretability, it
has shortcomings when mining potential semantic knowledge. Compared with the above
models, semantic matching models can be used to mine potential semantic knowledge.
Semantic matching models calculate semantic similarity to complete the knowledge graph.
RESCAL [32] uses low-dimensional vectors to represent entities and a matrix to represent
relationships. The scoring function fr(h, t) = hT Mrt is used to evaluate semantic similarity.
Distmult [33] simplifies the matrix into a diagonal matrix on the basis of RESCAL, reducing
the number of parameters and maintaining good performances. ComplEx [34] enhances
Distmult in a complex vector space, although it incurs a high cost. Yihong Chen et al. [35]
used relation prediction as an auxiliary training objective; however, the performance of
this approach is limited when the number of relationships is small. With the develop-
ment of neural networks, researchers have used neural networks to complete knowledge
graphs. ConvE [36], ConvKB [37], and ConvR [38] all use convolutional neural networks
to represent entities and relationships for information interaction. R-Men [39] uses a rela-
tional memory neural network to encode the internal dependencies of a triple. RGCN [40],
SACN [41], and KBGAT [42] use graph neural networks to fuse the information of the
surrounding entities. Rui Wang et al. [43] used graph-attenuated attention networks to
complete the knowledge graph, although this was insufficient to deal with relationships.
With the development of pretrained language models, many researchers have used such
models to complete knowledge graphs. SimKGC [44] introduces contrastive learning and
pretrained language models into the knowledge graph completion process. However, when
the distribution difference between the pretrained language models and the target is large,
the experimental effect is limited. Other knowledge graph completion models [45–47]
obtain information from texts. Therefore, when there is no text that can accurately de-
scribe entities or relationships, the models cannot obtain sufficient reasoning basis, and the
reasoning effect is poor.

Although the above models have achieved fine results, they ignore the comprehensive
utilization of entity information in the modeling process. In practice, a single model
usually has limitations. Ibomoiye Domor Mienye et al. [48] demonstrated that a single
model tends to produce large fluctuations in variance, bias, and accuracy during the
training process, while the ensemble method can effectively reduce the probability of
errors. Thomas G. Dietterich [49] found that a single model has important deficiencies
in the statistical, computational, and representational aspects. A single model is more
prone to fall into a local optimal solution than an ensemble model. Motivated by the
success of widely used ensemble models, we propose an ensemble model in which the
base models perform different projection and rotation operations. This model makes good
use of angle information to complete the knowledge graph. The model is often disturbed
during the training process, which results in unexpected results. Adversarial training
is one of the most promising defense methods for improving the robustness of a model.
The idea of adversarial training is to establish a robust model that can be well extended to
samples with small perturbations [50]. Researchers have used adversarial training to solve
many problems during the training process, such as reducing overfitting and improving
generalizations [51]. Thus, our model enhances generalization and robustness using the
cooperative adversarial training method. Our model shows good performances when
processing cybersecurity data.
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3. Methodology
3.1. Overview

Most existing knowledge graphs are incomplete, and it is necessary to supplement the
unknown facts in knowledge graphs [52]. Figure 1 shows the basic process of knowledge
graph completion. Here, we have a knowledge graph G, entity set H, and relationship set
R. The knowledge graph G contains a large number of triples, i.e., < head, relation, tail >,
where head ∈ H, tail ∈ H, and relation ∈ R. When the triple is incomplete, the missing
head entity or tail entity needs to be predicted. This section introduces CSEA—a Cyber
Security knowledge graph completion model based on Ensemble learning and Adversarial
training. CSEA uses multiple projections to handle sophisticated relation-mapping prop-
erties; this method allows relational patterns to be modeled based on rotations due to its
superior capacity. It uses angle information to distinguish entities. In addition, cooperative
adversarial training methods are used to enhance the robustness of the model.

Figure 1. An illustration of the knowledge graph completion process.

3.2. Ensemble Model

In the first part of the model, we use householder transformation to realize projections
and rotations. The householder transformation is an orthogonal transformation that can
transform an n-dimensional vector x to any n-dimensional vector x̂. From a geometric
perspective, the householder transformation reflects x relative to x̂ via the hyperplane
between x and x̂. Assuming that the source vector is x, given the unit vector e and identity
matrix E, a new vector, x̂, can be obtained using householder matrix Matrix(e), where
Matrix(e) = E− 2eeT . The matrix Matrix(e) takes e as a variable. The basic transformation
of the householder transformation is described as follows:

x̂ = Matrix(e)x = x− 2 < x, e > e, (1)

where < x, e > represents the dot product of x and e. Many research studies have
been conducted with respect to entity projection, and entity projections allow entities
to produce relationship-specific representations in order to solve complex relationship-
mapping properties. We use householder transformations to realize householder projec-
tions. The householder projection can be realized by fine-tuning the householder matrix
Matrix(e). We add a scalar, ω, to control the distance amplitude of the projection. The pro-
jection can better change the relative distance between two points and ensure that it
produces a robust relationship-specific representation. The projection matrix is modified
to PMatrix(e, ω) = E− ωeeT . We denote a head entity in the first part as h1, h1 ∈ Rk×m,
where k represents the embedding size and m represents the dimension of each row vector,
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while t1 represents a tail entity in the first part, t1 ∈ Rk×m. For each relationship, two types
of parameters are used to represent the projection of the relationship, namely, P ∈ Rk×c×m

and W ∈ Rk×c. Each row P[i] ∈ Rc×m comprises c m-dimensional unit vectors. Each row
of W consists of c real numbers. Each dimension of the projected head entity hproject and
tail entity tproject can be calculated in the following form:{

hproject[i] = Project(h1[i], P1[i], W1[i]) = ∏c
j=1 PMatrix(P1[i][j], W1[i][j])h1[i]

tproject[i] = Project(t1[i], P2[i], W2[i]) = ∏c
j=1 PMatrix(P2[i][j], W2[i][j])t1[i],

(2)

where 1 ≤ i ≤ k and 1 ≤ j ≤ c. Based on Formula (1), the rotation matrix is set to
RMatrix(e) = E − 2eeT . The householder rotation operation can be performed on the
source vector. Rui Li et al. [31] proved that the composition of 2bm/2c householder
reflections can realize any m-dimensional transformation; thus, we denote a relation in the
first part as r1, r1 ∈ Rk×2n×m, where n = bm/2c and each row of r1 consists of a series of
m-dimensional unit vectors. Formula (3) shows the rotation of each row vector hproject[i]:

hrotate[i] = Rotate(hproject[i], r1[i]) =
2n

∏
j=1

RMatrix(r1[i][j])hproject[i], (3)

where 1 ≤ i ≤ k and 1 ≤ j ≤ 2n, while hrotate represents the rotation of the projected entity
hproject. Relation-specific householder rotations are applied to each row of the projected
head embedding. There is an expectation that the rotated result hrotate should be close to
the projected tail embedding tproject; thus, dist1 can be calculated as follows:

dist1 =
k

∑
i=1
‖hrotate[i]− tproject[i]‖2. (4)

In addition to using householder reflections, we achieve projection and rotation
operations in a complex vector space. In the second part, we share similar operations with
Rot-Pro [53]. The projection matrix for each dimension of an entity is defined as follows:

Pro_Matrix(i) =
[

cosθi −sinθi
sinθi cosθi

]−1[ xi 0
0 yi

][
cosθi −sinθi
sinθi cosθi

]
, (5)

where 1 ≤ i ≤ k, xi ∈ {0, 1} and yi ∈ {0, 1}, while θi is the rotation phase in each dimension.
We use a complex number to represent an entity; thus, the projection is described as follows:[

Re(hc_pro[i])
Im(hc_pro[i])

]
= Pro_Matrix(i)

[
Re(h2[i])
Im(h2[i])

]
, (6)

where 1 ≤ i ≤ k, h2 is a head entity embedding in the second part, h2 ∈ Ck; Re(h2[i])
represents the real number of its ith dimension, and Im(h2[i]) represents the imaginary
number of its ith dimension. Tail entity embedding t2 in the second part performs similar
projection operations, i.e., t2 ∈ Ck. After carrying out these projections, we obtain the
projected head entity hc_pro and projected tail entity tc_pro. Then, we rotate the projected
head entity hc_pro. The rotation for each dimension of hc_pro is as follows:[

Re(hc_rot[i])
Im(hc_rot[i])

]
=

[
cosφi −sinφi
sinφi cosφi

][
Re(hc_pro[i])
Im(hc_pro[i])

]
, (7)

where 1 ≤ i ≤ k and φi is relational rotation phase in each dimension. The rotated result
hc_rot is expected to be close to the projected tail embedding tc_pro, and the distance function
in the second part is defined as follows:

dist2 = ‖hc_rot − tc_pro‖2. (8)
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Semantic hierarchies usually exist in the field of cybersecurity. For example, for entities
at different levels of the hierarchy, CWE-345 (efficient verification of data authentication)
is the parent of CWE-352 (cross-site request forgery). For entities at the same level of the
hierarchy, CWE-345 (dfficient verification of data authentication) is the peer of CWE-20
(improve input validation). While rotations can distinguish entities at different levels of
the hierarchy, there are nonetheless inadequacies in distinguishing entities at a hierarchy
of the same level. HAKE demonstrates that angular information is well able to capture
differences between entities at the same level of the hierarchy. For entities at the same
level of the hierarchy, their measurement scores at different levels of the hierarchy can be
considered very similar. Due to different points on the same circle possessing different
phases, the difference in phases is used to distinguish them. The phase mapping of the
head entity h3, relationship r3, and tail entity t3 satisfies the following relationship:

(h3 + r3)mod 2π = t3, (9)

where h3, r3, t3 ∈ [0, 2π)k. Because the phase difference in the same plane changes periodi-
cally, we use periodic function sin(x/2) to calculate the difference between the head entity
and tail entity at the same level of the hierarchy. The formula is as follows:

dist3 = ‖sin(
h3 + r3 − t3

2
)‖1. (10)

The dynamic adjustment of the weights of various rotation and projection meth-
ods during training can improve the effectiveness of ensemble learning. The process of
dynamically adjusting weights is shown in Algorithm 1.

Algorithm 1: Weight optimization algorithm
Input: The weights of previous training step Initial_α, Initial_β, Initial_λ

The weight growth directions Direct_α, Direct_β, Direct_λ
The big fixed constant T
The small fixed constant η, 0 ≤ η ≤ 1
The loss of previous training step losst−1
The loss of current training steps losst

Output: The optimized weight α, β, λ
1 if losst−1 < losst then

2 σ = 1− e
−|losst−losst−1 |

T

3 θα ← Generate a random number from 0 to 1
4 if θα > σ then
5 if Direct_α == ” + ” then
6 Direct_α = ”− ”
7 α=Initial_α− η · Initial_α

8 else
9 Direct_α = ” + ”

10 α=Initial_α + η · Initial_α

11 end
12 else
13 α=Initial_α
14 end
15 β and λ are obtained by performing operations similar to α

16 else
17 α=Initial_α, β=Initial_β, λ=Initial_λ.
18 end
19 return α, β, λ
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Inspired by the simulated annealing algorithm, we use information from the training
process to continuously optimize the weight. In the training process, the goal is to minimize
loss; thus, we use the change in loss as the judgment condition of weight changes. At the
beginning of the training process, we initialize the weights; in addition, we randomly set
the value growth direction (+ or −) for each weight. If the loss of the previous step is
greater than the loss of the current step, this means that the weight’s settings and the value’s
growth direction are appropriate, and the current weights do not need to be changed. If the
loss of the previous step is less than the loss of the current step, the value’s growth direction
should be changed, then the weight’s value in the new value growth direction should be
changed. To prevent falling into the local optimal solution, there is a small probability that
the weight and direction may remain unchanged when the loss of the current training step
is greater than that of the previous training step; this probability is controlled by the loss
change in two steps.

The basic process of CSEA is shown in Algorithm 2. The final evaluation function of
the triple is described as follows:

score = γ− (α.dist1 + β.dist2 + λ.dist3), (11)

where γ is a fixed constant and α, β, and λ are weights.

Algorithm 2: Forward procedure of CSEA

Input: The triple (head, relation, tail)
The fixed constant γ
The weights: α, β, λ
Parameters of size: k, c, m, n

Output: The score of triple (head, relation, tail)
1 Initialize h1, r1, t1, P1, W1, h2, t2, θ, x, y, φ, t2, h3, r3, t3 for triple

(head, relation, tail).
2 for i = 1 to k do
3 hproject[i] = Project(h1[i], P1[i], W1[i]) = ∏c

j=1 PMatrix(P1[i][j], W1[i][j])h1[i]
4 tproject[i] = Project(t1[i], P2[i], W2[i]) = ∏c

j=1 PMatrix(P2[i][j], W2[i][j])t1[i]
5 hrotate[i] = Rotate(hproject[i], r1[i]) = ∏2n

j=1 RMatrix(r1[i][j])hproject[i]
6 end
7 dist1 = ∑k

i=1 ‖hrotate[i]− tproject[i]‖2

8 for i = 1 to k do

9

[
Re(hc_pro[i])
Im(hc_pro[i])

]
= Pro_Matrix(i)

[
Re(h2[i])
Im(h2[i])

]
[

Re(tc_pro[i])
Im(tc_pro[i])

]
= Pro_Matrix(i)

[
Re(t2[i])
Im(t2[i])

]
10

[
Re(hc_rot[i])
Im(hc_rot[i])

]
=

[
cosφi −sinφi
sinφi cosφi

][
Re(hc_pro[i])
Im(hc_pro[i])

]
11 end
12 dist2 = ‖hc_rot − tc_pro‖2

13 dist3 = ‖sin( h3+r3−t3
2 )‖1

14 score = γ− (α.dist1 + β.dist2 + λ.dist3)
15 return score

General distance-based models usually treat the relationships between entities as shifts
between vectors, which is too idealized to accommodate complex and variable relation-
ships. Rotations have stronger representations than normal translations. The householder
transformation effectively expands the rotation to a higher-dimensional space, and it com-
bines projection operations to produce relationship-specific representations. In addition,
projection and rotation in complex spaces are considered to be simple and effective, and



Appl. Sci. 2022, 12, 12947 9 of 18

can cooperate with projections and rotations in higher-dimensional space. Ensemble learn-
ing can implement multiple projections and rotations in parallel. When a single learning
algorithm produces calculation errors, other learning algorithms can reduce the error range
and retain final results that are stable.

3.3. Cooperative Adversarial Training

In order to improve the generalization and robustness of the model, many adversarial
training methods [54–57] were used. In this section, we design an effective model training
method, namely, the cooperative adversarial training method. Most current knowledge
graph completion algorithms set and use negative sampling, which improves the recog-
nition ability of a model in the face of negative samples. For this reason, researchers
have designed a general framework for self-adversarial training using negative samples.
Formula (12) describes the self-adversarial training process:

sel f _adv_loss =− logsigmoid(µ− score(h, r, t))

−
l

∑
i=1

p(h′i, r, t′i)logsigmoid(score(h′i, r, t′i)− µ),
(12)

where (h, r, t) is a positive triple, µ is a constant, (h′i, r, t′i) is one of the negative triples, and
p(h′i, r, t′i) is the probability distribution of negative sampling. However, it is insufficient to
only set negative samples. Most current methods use representation learning to represent
entities and relationships. Therefore, accurate embedded expressions have important im-
pacts on the performance of a model. During the training process, it is easy for poor-quality
samples to prevent a model from achieving the best fit. Because the embedding layer can
directly represent entities and relationships, adding perturbations to the embedding layer
trains the model in being able to accurately represent them in the presence of perturbations.
Adversarial training needs to maximize the internal loss, and this form of training tries its
best to reduce external losses to ensure that the model can effectively resist perturbations.
Taking the classification task as an example, we can suppose that x is the input sample
and y is the corresponding label; the well-known min–max formula [58] provides a good
description of this idea:

Min{Max{Loss(x + η, y; ψ)}}, (13)

where η is the value of the interference and ψ includes the parameters of the model.
The machine learning model mainly relies on the gradient descent method to help

the model converge to the optimal value. Inspired by the FGSM (Fast Gradient Sign
Method) [54], we adjusted the perturbations based on the same backpropagation gradient
in order to maximize the loss. In other words, we considered adding perturbations to the
embedding layers of the model along the direction of the negative gradient. The perturba-
tions are expressed as follows:

η = τ · sign(∇xLoss(x, y; ψ)), (14)

where η is the added perturbation, τ denotes the numerical value of the perturbation, and
sign() is a symbolic function.

The above-mentioned adversarial training method generates perturbations for the em-
bedding layer. This method can cooperate with the self-adversarial training method,
thereby effectively realizing cooperative adversarial training and improving the anti-
interference ability of the model. The final loss can be calculated as follows:

loss =ρ · sel f _adv_loss + ω · FGSM_sel f _adv_loss

+
ε

|H| · ∑
e∈H

(L2(House_emb(e)) + L2(Comp_emb(e)) + L2(Phase_emb(e))), (15)
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where sel f _adv_loss is the loss of the triples, FGSM_sel f _adv_loss is the loss of the triples
after adding perturbations, ρ and ω are weights, ε is the regularization coefficient, H is
the entity set, L2 is the L2 normalization, House_emb is the householder entity embedding,
Comp_emb is the complex entity embedding, and Phase_emb is the phase entity embedding.

The selection of perturbations. The selection of perturbations has an important
influence on the effect of adversarial training. If the perturbation is too small to produce
effective interference, achieving the purpose of adversarial training is difficult. If the
perturbation is too large, the model does not encounter similar intensity perturbations
during training, and the anti-interference ability of the model is not effectively enhanced.
Here, we determine the amplitude of perturbations according to the parameter range
of the embedding layer and select the best perturbation within this range. If a fixed
perturbation value is used, determining the optimal parameter becomes difficult. Even
small perturbations may sometimes cause greater loss, and the perturbations are irregular
and diverse in the actual training process. In order to simulate this type of irregularity, we
use the UCB multi-armed bandit method to select perturbations and obtain the dynamic
balance between loss maximization and perturbation diversity to ensure that the model
can resist both large and small perturbations.

The multi-armed bandit method [59] is a classical reinforcement learning algorithm
that effectively solves the balance problem of exploration and utilization. Figure 2 shows
the basic process of the multi-armed bandit method. The traditional multi-armed bandit
method has multiple rocker arms, and the user can obtain certain benefits by shaking each
rocker arm. However, as the user does not know the specific values of the rewards, they
must estimate the rewards of the rocker arm based on previous experience. Because our
goal is to maximize loss, we regard each perturbation value as a rocker arm and we treat
the loss generated by each perturbation value as a profit. We record the mean loss produced
by each perturbation as the estimated reward, and the user selects the perturbation with
the largest estimated reward.

Figure 2. An illustration of the multi-armed bandit method. The agent can sense the state and
obtain rewards by shaking the rocker arms. This process updates the estimated reward according to
past rewards.

The number of times each rocker arm is used varies, and the more frequently used
rocker arm tends to estimate gains more accurately; thus, we need to make each arm
application as balanced as possible while ensuring that the maximum loss is selected. More-
over, in the actual training processes the model is subject to a variety of interference types.
In order to obtain accurate estimated benefits and simulate the irregularity of perturbations,
we use the UCB (upper confidence bound) algorithm to optimize the multi-armed bandit
method. We set a factor ε to balance the loss maximization with the disturbance diversity.
The balance formula is as follows:

Estimated_Qi = Avg_lossi + ε

√
logT

2(ti + 1)
, (16)
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where T is the total number of times all rocker arms are used, ti denotes the number of
times a single rocker arm is used, and Avg_lossi is the average loss value considering the
previous instances. To enhance the exploratory ability of the algorithm and avoid obtaining
local optimal solutions, we set a small factor, δ; when the probability is smaller than this
factor, we randomly select the perturbation. When the probability is larger than this factor,
we select the perturbation according to Formula (16). The perturbation selection process is
shown in Algorithm 3.

Algorithm 3: Perturbation selection algorithm
Input: A set of perturbed values S and its set size K

A balance factor ε and a small random factor δ
The total number of times all perturbations are used T
The set of times each perturbation is used ti, 1 ≤ i ≤ K

Output: Perturbation value P
1 Initialize T = 0, ti = 0, 1 ≤ i ≤ K.
2 q← Generate a random number from 0 to 1
3 if q < δ then
4 Random select si in S
5 index ← Get_index(si)

6 else
7 for si ∈ S do

8 Estimated_Qi = Avg_lossi + ε
√

logT
2(ti+1)

9 end
10 index ← Get_index(max(Estimated_Qi)), 1 ≤ i ≤ K
11 end
12 tindex ← tindex + 1
13 T ← T + 1
14 P← sindex
15 return P

4. Experiment
4.1. Cyber Security Knowledge Graph

Because the CVE, CWE, and CAPEC databases are highly standardized and are open
sources for the public, they have been widely recognized by cybersecurity researchers.
The CVE, CWE, and CAPEC cybersecurity databases each contain a hierarchical structure
and sequential structure. These databases focus on the characteristics of cybersecurity
data in the cybersecurity space; thus, they are highly representative. The knowledge
graph completion model designed according to the characteristics of cybersecurity data
can be further extended to other cybersecurity data analysis tasks. Compared with other
cybersecurity data sources, these databases have more complete information and accurate
ground truth, and these properties are helpful for evaluating the quality of knowledge
graph completion models. Low-quality dirty data contain more error information, and they
are unsuitable for model evaluation. Therefore, information mining research using the
CVE, CWE, and CAPEC databases can help cybersecurity researchers in their studies.

Due to the popularity of computer networks the number of security vulnerabilities
is increasing anually, and more software weaknesses are constantly exposed; it has been
observed that the attack methods of hackers are gradually becoming more complex and
diversified. The CVE, CWE, and CAPEC databases are being constantly updated as well.
The completion of knowledge graphs can effectively help researchers to supplement un-
known knowledge in attack patterns, vulnerabilities, and software weaknesses. Therefore,
in this paper we build knowledge graphs based on CVE, CWE, and CAPEC databases.
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The design of ontologies and relationships is of great significance for cybersecurity
knowledge graphs. The ontologies and relationships of network security should better
reflect the network environment and the technologies used by hackers. Because the CVE,
CWE, and CAPEC databases already contain relationships, many previous studies [14,15]
have constructed connections for the three data sources stated above; we reuse these
ontologies and relationships here to connect multi-source data. At the same time, we select
rich relationships and discard relationships with low values and small numbers. Selected
entities and relationships in the cybersecurity knowledge graph are shown in Figure 3.

Figure 3. Partial display of the cybersecurity knowledge graph.

Because the number of existing vulnerabilities is much larger than the number of
software weaknesses and attack patterns, we only select critical-level CVE data from 2021
in order to keep the number of relationships as balanced as possible. In summary, there are
nine relationships and 4095 entities for a final collection of 10,986 triples. The number of
triples for each relationship in the knowledge graph is shown in Table 1.

Table 1. Attribute description and quantity statistics of each relationship in the cybersecurity knowl-
edge graph.

Relationships Head→ Tail Number

InstanceOf CVE→ CWE 2298
ObservedExample CWE→ CVE 2298

PeerOf CWE→ CWE,CAPEC→ CAPEC 206
AttackTo CAPEC→ CWE 1145
TargetOf CWE→ CAPEC 1145

CanFollow CWE→ CWE,CAPEC→ CAPEC 293
CanPrecede CWE→ CWE,CAPEC→ CAPEC 293

Childof CWE→ CWE,CAPEC→ CAPEC 1654
ParentOf CWE→ CWE,CAPEC→ CAPEC 1654
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In order to prevent imbalance in the number of different relationships in the training
set, validation set, and test set, we disordered the triples and divided them into the training
set, validation set and test set according to a ratio of 7:1:2 relative to each relationship.
Table 2 describes the details of the cybersecurity dataset.

Table 2. The quantity statistics of CybersecurityKG; #E and #R represent the number of entities and
relations, respectively, while #TR,#VA, and #TE represent the size of the training set, validation set,
and test set, respectively.

Dataset #E #R #TR #VA #TE

CybersecurityKG 4095 9 7686 1100 2200

4.2. Results

In this section, we measure the performance of CSEA through experiments. We
compare CSEA with several recent excellent baselines: TransE is a representative distance-
based model; Distmult and ComplEx are excellent semantic matching models.; HAKE
possesses good hierarchical modeling abilities; and both Rot-Pro and HousE are excellent
models based on projection and rotation.

Evaluation metrics. In the cyber security link prediction task, we use MRR, MR, and
Hits@k as the evaluation metrics; MRR is the mean reciprocal rank of the correct entities,
MR is the mean rank of the correct entities, andHit@K is the proportion of correct entities
ranking in the top K. For Hits@K, we use Hits@1/3/10 to evaluate the performance of the
models. A higher MRR, lower MR, and higher Hits@1/3/10 indicate better performances.

Hyperparameters. The hyperparameter settings have an important impact on the
applied methods. We control the hyperparameters of each method to ensure the fairness of
the experiment. Table 3 shows common experimental hyperparameters.

Table 3. List of hyperparameter values of the models.

Hyperparameter Value

Max Steps 20,000
Valid Steps 1000

Learning Rate 0.00005
Batch Size 128

γ 6.0

Cybersecurity knowledge graph evaluation. Although our current cybersecurity
knowledge graph is relatively complete, it is intended to simulate the phenomenon of
having a lack of facts in the field of cybersecurity. We remove head entities or tail entities of
triples in the test set to form prediction tasks (<?, relation, tail > and < head, relation, ? >).
The removed head entities or tail entities can be used as standard answers to test the
completion performance of the models for the cybersecurity knowledge graph. Table 4
summarizes the experimental results of our CSEA model compared to the other models.

Table 4. Average evaluation results on CybersecurityKG; results in bold are the best.

Model MRR MR Hits@1 Hits@3 Hits@10

TransE [22] 0.713 308 0.673 0.734 0.777
DistMult [33] 0.690 622 0.639 0.735 0.760
ComplEx [34] 0.735 673 0.720 0.745 0.762

HAKE [30] 0.741 411 0.727 0.749 0.769
Rot-Pro [53] 0.745 377 0.730 0.753 0.770
HousE [31] 0.747 314 0.732 0.753 0.775

CSEA 0.756 148 0.735 0.764 0.793
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As shown in the Table 4, our model achieves good results in all indicators. The above
experimental results show that CSEA can complete missing information better than a single
model. Missing entities can be found more quickly among individuals with the highest
scores. CSEA produces more accurate predictions in practical applications.

In addition, we performed the predict head and predict tail tasks for our model and the
other models. Table 5 records the average prediction results of the predict head and predict
tail tasks. Compared with the other models, our method achieves similar improvements in
the predict head and predict tail tasks.

Table 5. Average evaluation results in predicting head and tail tasks; results in bold are the best.

Prediction Model MRR MR Hits@1 Hits@3 Hits@10

Head Entity
<?, r, t>

TransE [22] 0.713 302 0.674 0.734 0.777
DistMult [33] 0.690 623 0.638 0.738 0.760
ComplEx [34] 0.735 670 0.720 0.745 0.760

HAKE [30] 0.740 400 0.725 0.750 0.769
Rot-Pro [53] 0.743 373 0.728 0.753 0.769
HousE [31] 0.747 309 0.731 0.754 0.774

CSEA 0.756 147 0.735 0.764 0.794

Tail Entity
<h, r, ?>

TransE [22] 0.713 313 0.672 0.733 0.777
DistMult [33] 0.689 621 0.640 0.732 0.759
ComplEx [34] 0.735 677 0.719 0.745 0.765

HAKE [30] 0.742 422 0.729 0.747 0.770
Rot-Pro [53] 0.746 382 0.731 0.754 0.770
HousE [31] 0.748 319 0.732 0.753 0.776

CSEA 0.756 148 0.736 0.765 0.793

Different models have different sensitivities to each relationship. The experimental
performance of the model may be too good for one relationship in the knowledge graph
completion task, while the performance of the model may be poor for other relationships,
greatly affecting the average prediction results. In this case, the average prediction results
are not be sufficiently representative; thus, we carried out knowledge graph completion
tasks for each relationship. Table 6 shows the average evaluation results (MRR) for each
relationship.

Table 6. Average evaluation results (MRR) for each relationship; results in bold are the best.

InstanceOf Observed
Example PeerOf AttackTo TargetOf CanFollow CanPrecede ChildOf ParentOf

TransE [22] 0.682 0.668 0.194 0.820 0.827 0.692 0.811 0.706 0.725
DistMult [33] 0.693 0.683 0.638 0.781 0.802 0.634 0.730 0.606 0.647
ComplEx [34] 0.694 0.683 0.553 0.777 0.794 0.734 0.827 0.752 0.784

HAKE [30] 0.689 0.679 0.655 0.810 0.821 0.742 0.848 0.753 0.778
Rot-Pro [53] 0.697 0.681 0.624 0.822 0.835 0.744 0.860 0.750 0.775
HousE [31] 0.699 0.688 0.614 0.822 0.832 0.746 0.856 0.754 0.780

CSEA 0.721 0.713 0.646 0.819 0.830 0.739 0.850 0.751 0.773

From the above experiments, it can be seen that the CSEA model achieves good results
in all tasks, indicating that it can help greatly in expressing and inferring knowledge.
The increase in MRR indicates that the knowledge expression learned by CSEA is more
universal. The increase in Hits@K indicates that the CSEA model has a higher recommen-
dation quality for knowledge graph completion tasks. Rot-Pro and HousE are effective
models based on projections and rotations; Rot-Pro mainly implements projection and
rotation in complex spaces, while HousE does so in higher dimension spaces. However,
the experimental results show that there are limitations to a single operation. Our CSEA
ensemble model can make more comprehensive use of information. For the overall task,
CSEA adopts ensemble learning to further reduce the fluctuations of information, achieving
good average results. In the relationship evaluation task, certain entity types appear more
frequently in the cybersecurity knowledge graph, meaning that the relationship types
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connected with the above entities appear more frequently as well. It can be observed
that when there are substantial amounts of relational data, many single models have a
propensity to fall into a local optimal solution; our results show that CSEA is better able
to avoid falling into a local optimal solution in scenarios involving large-scale data. Even
with insufficient amounts of data, CSEA is able to maintain its overall performance via
ensemble Learning.

5. Conclusions

In this paper, we design a cybersecurity knowledge graph completion model, which we
call CSEA. The model uses multiple projections to handle sophisticated relation-mapping
properties, and it has a superior capacity for modeling relation patterns based on rotations.
Angle information enhances the ability of CSEA to distinguish entities. In the training
process, the cooperative adversarial training method enhances the generalization and
robustness of the model. Our experiments prove that the model can be used for knowledge
graph completion. The CVE, CWE, and CAPEC databases we used can collectively reflect
the characteristics of security data in cyberspace, and have strong representativeness.

Currently, the cybersecurity knowledge graph designed by our model focuses on the
relationship between vulnerabilities, software weaknesses, and attack patterns. However,
certain attributes of vulnerabilities, software weaknesses, and attack patterns are incom-
plete. We can rely on named entity recognition technologies to extract relevant attributes
from the description text of CVE, CWE, and CAPEC. This method can enrich the types of
relationships and improve the quality of cybersecurity knowledge graphs. In addition, this
model can be migrated to other cybersecurity data analysis tasks, potentially playing an
important role in threat intelligence and other fields.
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