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Abstract: The vigorous development of Time Series Neural Network in recent years has brought
many potential possibilities to the application of financial technology. This research proposes a
stock trend prediction model that combines Gate Recurrent Unit and Attention mechanism. In the
proposed framework, the model takes the daily opening price, closing price, highest price, lowest
price and trading volume of stocks as input, and uses technical indicator transition prediction as a
label to predict the possible rise and fall probability of future trading days. The research results show
that the proposed model and labels designed by this research can effectively predict important stock
price fluctuations and can be effectively applied to financial commodity trading strategies.
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1. Introduction

Machine Learning (ML) is one of the branches of Artificial Intelligence (AI) [1]. It gener-
ally refers to the method of inferring and summarizing data through a certain mathematical
rule through a program, and finally obtaining a predictive model [2,3]. Machine learning
methods can be divided into supervised learning, unsupervised learning, semi-supervised
learning, reinforcement learning, etc., according to whether the data is labeled or not [4,5].
Among many different types of machine learning algorithms, supervised learning is widely
used in various classification problems due to its accuracy in target prediction. Common
supervised learning algorithms include Genetic Algorithm [6], Bayes Classifier [7], Regres-
sion Analysis [8], Support Vector Machine (SVM) [9], Entropy-based method [10], Deep
Learning (DL) [11], etc. Nowadays, various deep learning and machine learning algorithms
have been widely used in various fields, such as communication networks, QoS Control,
4G/5G communications, Internet of Things and Natural Language Processing [12–15].

Among various neural network models, Recurrent Neural Network (RNN) [16], Long
Short-Term Memory (LSTM) [17], Gate Recurrent Unit (GRU) [18], Attention Mecha-
nism [19] and other time series DNN models are particularly good at processing con-
tinuous data, such as natural language processing, machine translation, speech recognition,
financial index prediction, etc.

The popularization of financial digitization and the vigorous development of artificial
intelligence have also driven the future trends of mobile financial management and new
Financial Technology (FinTech). In theoretical research, Nelson [20] proposed the concept
of using LSTM Neural Networks to predict the future trend of stocks. The model label is a
binary classification: Compared with the previous day’s closing price, the current day’s
price is up/down. The experimental targets were four stocks selected from the Brazilian
Stock Exchange, and the result achieved a forecast accuracy up to 55.9%.

Chen et al. [21] used the LSTM model to estimate the price trend of WTI Crude Oil.
The experiment compared LSTM, deep believe network, Autoregressive Moving Average
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model (ARMA) model and Random Walk model, and the results showed that the LSTM
model is more sensitive to changes in crude oil futures prices.

Fabbr and Moro [22] used the RNN-LSTM model to perform regression and clas-
sification analysis for Dow Jones Industrial Average (DJIA). The training data included
2000–2017 Dow Jones Index, and the backtest time included 2009–2017. The results showed
that the model predicts the trend can be clearly close to the real material.

Chen et al. [23] proposed an RNN-boost combined with Latent Dirichlet Allocation
(LDA) for feature selection of data. The experimental target is the Shanghai–Shenzhen
300 Stock Index (HS300), and the objective function is to predict the ups and downs of the
index. The results show that the time series model performs better than other traditional
methods, such as Support Vector Regression (SVR) [24].

Li et al. [25] first proposed the MI-LSTM (Multi-Input) prediction model based on the
Attention mechanism. In the proposed model, the Attention Layer accepts the output of
the LSTM layer, and finally uses Softmax to obtain the index rise and fall prediction results.
The target is the Shanghai–Shenzhen CSI 300, which is the top 300 stocks with the largest
weights in the Shanghai and Shenzhen stock markets. The results show that the sequence
model with the Attention mechanism is better than the general sequence model.

Rui et al. [26] used the DNN, LSTM and CNN models to achieve real-time trading
prediction analysis before betting games. The experimental subject is UK Betfair betting
exchange, which is the largest betting trader in the UK. Data attributes contained the
followings: integral of the price change of the runner and competitor runner, liquidity
variation in both ask/bid sides, volume variation and direction. At the theoretical level,
LSTM is more suitable for real-time time series analysis and prediction; however, the
experimental result shows that CNN achieved higher accuracy in prediction before the
betting game.

Feng et al. [27] proposed a new Temporal Graph Convolution (TGC) concept. Given
the sequence features of N stocks and the multi-dimensional binary relationship, TGC
can relearn and obtain new sequence features. This research combines LSTM and TGC to
perform correlation calculation and ranking to weighted stocks and uses this correlation to
predict the return on investment of the market. Its research has obtained a very high return
on investment in the backtest of NASDAQ and NYSE.

Lee et al. [28] proposed a Deep Q network (DQN) combined with a convolutional
neural network. The model takes stock trading volume and closing price graphs as input
and is trained on data from different countries. The results show that the proposed model
has the characteristic of transfer learning and can be trained on relatively large data and
tested on a small market. In terms of return on investment and model adaptability, Feng
et al. and Lee et al. are the current state-of-the-art models.

Subsequently, more in-depth network models were applied to different trading mar-
kets and financial commodity price predictions [29–34]. In our previous research [35], we
explored the effectiveness and practicality of various financial analysis technical indicators
in the time series deep learning network. This research uses well-known Moving Average
(MA) technical indicators to design the feature selection algorithm, and uses the four-layer
LSTM to conduct the actual measurement. The experimental target is TWSE 0050 ETF,
and the results confirm that the technical indicators can effectively improve the model
prediction accuracy in the time series deep network.

Based on the above literature discussion, it can be found that most of the current
research on the application of deep network to financial products is mainly based on price
forecasting. Most of the models do not use financial technical indicators, nor do they
focus on trading strategies. This study introduces technical indicators into the deep neural
network, and studies whether the model output is effective as a trading strategy reference
directly. This research combines Back-propagation Neural Network, GRU and Attention
Mechanism to design a deep learning-based stock trading strategy model, and combines
technical indicators for empirical analysis.
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The remaining chapters of this study are as follows: The second section discusses
time series DNN models, the third section introduces the proposed framework, the fourth
section is the experimental results and analysis, and the final section gives the conclusion
and future works.

2. Time-Series Deep Neural Networks

This section introduces the deep learning concepts used in this research, including
Deep Feedforward Neural Network, Backpropagation Neural Network, Recurrent Neural
Network (RNN), Gated Recurrent Unit (GRU), and Attention Mechanism.

2.1. Deep Neural Network

The Deep Neural Network (DNN) simulates the operation of human nerve conduction,
using training data to continuously learn and modify the weights between neurons to
achieve the correct output. The advantage of neural network over other machine learning
algorithms is that it does not need to assume the correlation and relative relationship
between input and output parameters. The network itself can automatically learn the deep
relationship between the label and each attribute, and rely on the ability of non-linear
mapping. The fundamental operation of DNN consists of two parts: (1) Feed-forward
Computing and (2) Gradient Back-propagation, which are described as follows:

Given the bias b of each layer, the input vector of the previous layer X = [x1, x2, . . . xi, . . .],
the weight vector of the previous layer to the target neuron W = [w1, w2, . . . wi, . . .], the
activation function f (a), the feedforward operation generates output based on the input
of the previous layer of neurons: h(X) = f (b + ∑i xiwi) = f

(
b + WTX

)
, where WTX is

the inner product of the weight vector W and the input vector X. The learning rule of the
neural network is mainly to give an error evaluation function E with N training samples,
DNN obtained the updated weight by the way of gradient-derived transmission by delta
rules [36–38]:

wt+1 = wt − γt∇wE (1)

bt+1 = bt − γt∇bE (2)

The error term of the (l + 1)-th layer can be obtained from the weight of the previous
layer, and weight and bias update are calculated as follows:

δl =
(

Wl+1
)T

δl+1 ◦ f ′
(

ul
)

(3)

∇W(l)E = xl−1
(

δl
)T

(4)

∇b(l)E = δl (5)

where ◦ represents element-wise multiplication, f (•) is the nonlinear transformation equa-
tion in a neuron, Wl+1 denotes the weight matrix from l-layer to (l + 1)-layer.

2.2. Recurrent Neural Network (RNN)

Recurrent neural network (RNN) is one of the neural network models. Compared
with the fundamental DNN, the calculated output of each hidden layer in DNN can only be
passed to the output of the next layer in one direction, and the interrelationships of context
cannot be analyzed. RNN transfers the weight of the hidden layer to the next time sequence
and can perceive the influence of the data before and after on the current data. Compared
with DNN and Convolutional Neural Networks (CNN), RNN is suitable for sequence-
related data, such as sentence generation, speech recognition, language translation, stock
forecasting, etc. [39,40]. The RNN structure is shown in Figure 1. In this architecture, U, V
and W are shared weights. There will be a non-linear transformation from U to the hidden
layer. The nonlinear transfer function is usually tanh, and the error function uses Cross
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Entropy. In addition, the multi-category output is converted through the Softmax Function
before V to output.
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Figure 1. Fundamental RNN Architecture.

In the RNN architecture, the length of input and output is not fixed and synchronized.
Depending on the application category, there can be the following extensions:

1. One to one: fixed-length input/output. For example, input the stock price of the day,
and output the stock price of the next day.

2. One to many: single input, multiple output. For example, take the stock price of the
day as the input, and output the estimated stock price in the next few days.

3. Many to one: Multiple inputs, single output. For example, input the stock price in a
week, and output next week’s stock price.

4. Synchronization many to many: Both input and output are multiple. For example,
input one week’s stock price and synchronously output the next week’s stock price in
real time.

5. Asynchronous many to many: Input one week’s stock price, after the input is over,
output the next week’s stock price asynchronously.

6. Asynchronous sequence-to-sequence (Seq2Seq): This type of input and output are
sequence data, and before output is generated, the input message and the code are
encoded into a set of context vectors, and the output is to decode the feature vector.
The Seq2Seq model can obtain the context dependence of the input more accurately.

2.3. Gated Recurrent Unit (GRU)

GRU is basically a recurrent neural network. The main difference between GRU and
the fundamental RNN is that the memory of RNN will decrease as the data sequence
increases. From a theoretical point of view, the gradient feedback of the hidden layer will
decrease layer by layer as the sequence data increases. The GRU can effectively improve
this problem. GRU Cell is the structure of neurons in a recurrent neural network, as shown
in Figure 2. GRU replaces Forget Gate and Input Gate in LSTM with Update Gate, and the
intermediate calculation of Cell is as follows:

zt = σ(Wzxt + Uzht−1 + bz) (6)

rt = σ(Wrxt + Urht−1 + br) (7)

ĥt = tanh(Whxt + Uz(rt ◦ ht−1) + bz) (8)

ht = (1− zt) ◦ ht−1 + zt ◦ ĥt (9)
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Among them, σ is the Sigmoid Function, tanh(·) is Hyperbolic Tangent Function, ◦
represents the Element-wise Product (also known as Hadamard Product), and b is the cell
bias. At time t, the state ht−1 and the input xt of the previous time t − 1 are passed in, and
the two gates: Reset Gate rt and Update Gate zt are obtained through σ. Finally, the element
product and tanh are integrated into a new state ĥt of −1 to 1, which can simultaneously
forget and remember the state. The last update memory integrates ĥt and ht−1 to the next
time point. Compared with LSTM operation, GRU has less gateway control and can archive
higher performance.

2.4. Attention Mechanism

Attention mechanism was first proposed in the field of computer vision. The Google
Mind team applied the Attention mechanism to the RNN model for image classification and
achieved extremely high accuracy [41]. Subsequently, Bahdanau and Bengio, the winners
of the 2018 Turing Award, applied the Attention mechanism to synchronous machine
translation tasks and achieved extremely high performance [42].

The Attention-based Model is essentially a similarity measure. The more similar the
current input and the target state, the greater the weight of the current input, indicating
that the current output is more dependent on the current input. Technically, the Attention
mechanism is an improved version of the sequence-to-sequence model (Seq2Seq) in RNN.
In the Encoding Stage of the traditional time series RNN, the hidden state of each time
state is passed forward, and a set of vectors of uniform dimensions are generated before
Decoding. This approach results in each training data corresponding to the same set of
Context Vector. The Attention mechanism (shown in Figure 3) is aimed at improving this
situation. It transmits each hidden state to the back-end decoder, causing the important
state in the time period to be learned by the network, that is, the focus of attention.
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3. The Proposed GRU-Attention Architecture and Technical Indicators Normalization
3.1. The Proposed GRU-Attention Prediction Model

This section introduces the proposed GRU-Attention prediction model. The system
architecture of this research is shown in Figure 4. The model input is a set of 3D tensors
of time series: the dimensions represent daily transaction data (opening, closing, highest,
lowest, and trading volume), time sequence length, and the batch size. The architecture
can be regarded as a target function P(Y1, . . . , YT′ | X1, . . . , XT) = ∏T′

t=1 p(Yt |c, Y1, . . . , Yt−1),
where X1, . . . , XT are input tensors, Y1, . . . , YT′ are labels, c represents the context vector. The
hidden layer contains a GRU structure of 128 neurons. After outputting to the Attention
layer, the Decode vector is generated, and finally the probability of the target category is
output by the fully connected layer and the Softmax function.
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As shown in Figure 3, the sequence length and batch size are adjustable parameters,
and StockVec is the daily trading attributes of the input stock. The encoder of the model is
the GRU-RNN architecture. The GRU receives the input and executes the calculations of
Formulas (6)–(9), and then enter the Attention Layer to calculate the context vector of each
timestep. This research adopts the Luong style attention [43]; the detailed operations are
as follows:

αts =
escore(ht ,h̃s)

∑S
s′=1 escore(ht ,h̃s′ )

(10)

ct = ∑
s

αts h̃s (11)

at = f (ct, ht) = tanh(Wc[ct; ht]) (12)

score(ht, h̃s) = hT
t Wh̃s (13)
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Attention Weights αts: Use the hidden state ht of the current decoder to perform a
score operation on the hidden states of entire encoder to obtain the importance of ht to each
h̃s via Softmax function.

Context Vector ct: Use attention weight αts and original h̃s to perform weight averaging.
Attention Vector at: Concatenation the context vector and decoder of the hidden state

and perform nonlinear transformation.
After the encoding vector is generated through GRU-Attention, the latent features are

retained through a set of fully connected layers and the class probability is output through
Softmax [44], which predicts the probability for the j-th class from input vector X:

P(output = j |X ) =
eXTwj

∑S
s=1 eXTws

(14)

3.2. Technical Indicators Normalization

Technical Indicators (TI) are indicator data used by investors to implement technical
analysis (TA). TAs can simplify market information, such as investor trading intensity, short-
term trends, transactions cost, etc., and reflect it on the value or graph to help investors
make decisions. This study adopts Relative Strength Index (RSI) [45] and Bias Ratio
(BIAS) [46], which are the most commonly used TA tools used by analysts and securities
firms, as the estimated stock market signal turning labels to predict the possible ups and
downs of future trading days.

3.2.1. The Relative Strength Index (RSI)

The Relative Strength Index (RSI) is a kind of momentum indicator in the stock market.
RSI uses the strength of both buyers and sellers as a technical indicator for evaluation,
this indicator can be used to analyze the ratio of strengths between buyers and sellers in
a certain period of time. The value of RSI ranges from 0 to 100. If RSI > 70–80, it usually
means that the market is overheating, and the stock price may fall. RSI < 20–30 means that
market transactions have steadily converged and may rebound. This study uses this as
the basis for the ups and downs categories, and predicts possible stock price rebounds or
turning points in the future trading days. The RSI calculation method is as follows:

RS =
EMA(U,n)

EMA(D,n)
(15)

RSI = (1− 1
1 + RS

)× 100% (16)

Compared with the previous day’s rise, the stock price is set to U, and the fall is set to
D. EMA(U,n) refers to the average increase in n days, and EMA(D,n) is the average decline
in n days. This study takes 20–30 ≤ RSI ≤ 70–80 as the three-category labels, and details
will be discussed in the experiment.

3.2.2. Bias Ratio (BIAS)

BIAS uses the moving average as the benchmark and compares it with the intraday
price or the closing price of the day to obtain the value of the stock price deviation from
the average. The deviation rate can be divided into two categories. “Positive deviation”
means that the stock price is above the moving average, and “Negative deviation” means
that the stock price is below the moving average. The concept of BIAS is that when the
stock price rises sharply and the gap between the moving averages widens, it implies that
investors have made a lot of profits, and the stock price will be revised back at any time
due to the emergence of selling pressure. When the stock price drops sharply and the gap
between the moving averages widens, it implies that investors have suffered heavy losses.
After the stock price drops deep, it will attract buyers to enter the market. Therefore, the
market will soon rebound. BIAS is usually between +3% and −3%. If it exceeds the set
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range, the stock price may reverse. Therefore, this study also uses the same benchmark to
design three labels of up, down and flat. The BIAS calculation is as follows:

BIASn =
Close−MAn

MAn
× 100% (17)

BIASn is the deviation rate on n days, Close is the closing price of the day, MAn is the
moving average of the closing price on n days. In this study, n is set to 6, 12, 20, and the
details will be discussed in the experiment.

3.3. Model Complexity Analysis

This section presents the complexity of the model proposed in this study. In the model
complexity analysis of the deep network, the training phase and the testing phase will be
discussed separately. In the training phase, let the input sequence length = S, hidden state
dimensions = Dh, input dimensions = DI, the time complexity for one gradient step in GRU
is O(SDh

2 + SDhDI) according to [47] and Equations (1)–(9). The Attention layer takes the
input vector d directly from GRU layer; thus, the complexity of Attention layer is O(S2d).
The total complexity of the proposed model would be O(SDh

2 + SDhDI + S2d) according
to the selected sequence length, hidden state dimensions, and input attribute dimensions.
In the testing phase, since the feedforward of the neural network is a linear operation, the
time complexity is O(1).

4. Experimental Results and Analysis
4.1. Experimental Environment Settings

The experimental environment of this research uses Asus Esc8000 G3 Host, Xeon
E5-2600 v3 processor, 4 GB memory, NVIDIA GeForce GTX 1080 ti × 8 GPUs with Ubuntu
18.04 LTS OS. The research target is Taiwan Semiconductor Manufacturing Co., Ltd. (TSMC,
code TPE:2330), and the experimental range is selected from 4 January 2016 to 11 May 2021,
with a total of 1300 trading days, and the data source is taken from public information of
Taiwan Stock Exchange (TWSE). Considering that the stock trading attribute used in this
study is in days, the total trading days are not many. To avoid potential underfitting, the
proportion of training data is increased in the experimental settings. In this study, 70% of
the data was set as the training set, 20% as the validation set, and 10% as the test set. The
model is trained for 50–200 Epochs, the batch size is uniformly set to 32, and finally the
weight with the highest validation accuracy is used as the prediction model. The measures
used in this study are Recall, Precision, F1 and Accuracy:

Precision =
TP

TP + FP
(18)

Recall =
TP

TP + FN
(19)

F1 = 2× Recall× Precision
Recall + Precision

(20)

Accuracy =
TP + TN

TP + TN + FP + FN
(21)

where TP, TN, FP and FN represent the True Positive, True Negative, False Positive and
False Negative, respectively. F1 measure is the is the harmonic mean of Recall and Precision.
In the presentation of the experimental results, Recall can show the ratio of the actual
categories that are successfully predicted, and Precision shows the proportion of successful
predictions in the prediction results. The accuracy can perform an overall evaluation of
the correct and incorrect prediction results. In addition, to explore potential causes of
mispredictions in multi-class predictions, the resulting presentation will include confusion
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matrices to clearly depict the mispredicted classes. The loss function uses categorical cross
entropy, which is defined as follows:

Loss = −
n

∑
i=1

ŷi1logyi1 + ŷi2logyi2 + . . . + ŷimlogyim (22)

where n is the number of samples, m is the number of categories.

4.2. Experimental Result of the Relative Strength Index

In this experiment, according to Formulas (15) and (16), three labels of prince rising
(Up), prince falling (Down) and flat (Flat) are set for 20–80 RSI and 30–70 RSI, respectively.
The experimental results are shown in Figures 5 and 6 and Table 1. Figure 5a demonstrates
the 100 epochs versus model loss, while Figure 5b shows the data of training accuracy at
100 epochs. Table 1 and Figure 6 show the Recall, Precision, F1, average Accuracy and
Confusion Matrix of three categories in the test set. During the training process, the loss
of the training data decreases steadily, but the loss of the verification data converges at
about 10–20 epochs, and increases when it exceeds 80 epochs, indicating that too many
training epochs may cause the model to overfit. The result in Figure 6a shows that in
20_80_RSI, most of the ‘Flat’ category can be correctly predicted, but a certain proportion
of ‘Up’ and ‘Down’ categories will be misjudged as ‘Flat’. It can be clearly seen from the
experimental result in Figure 6b that, compared with 20_80_RSI, 30_70_RSI has a slightly
lower proportion of false positives for the ‘Up’ and ‘Down’ categories. The experimental
results show that the estimated accuracy of the 20–80 RSI in three categories is 79.2%, which
is higher than 76.4% of the 30–70 RSI. In the data of Recall, Precision and F1 measure,
20–80 RSI is also slightly better than 30–70 RSI. Among them, Precision and Recall in the
‘Flat’ category reach up to 91.3% and 83.2%. In the three categories of predictions, the
‘Flat’ prediction performs best, and the ‘Up’ and ‘Down’ prediction has a phenomenon of
misjudgment of each other in few cases. In addition, the Recall of the proposed model is
between 64.2% and 83.2%, and the average is 71.66%, which means that more than 70% of
the turning signals can be correctly estimated.
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Table 1. Precision, Recall, F1 Measure and Accuracy of the RSI TI.

Trend 20_80_RSI 30_70_RSI

Precision
Up 60.3% 57.4%
Flat 91.3% 87.2%

Down 49.4% 44.2%

Recall
Up 64.2% 57.0%
Flat 83.2% 82.4%

Down 67.6% 58.3%

F1 Measure
Up 62.2% 57.2%
Flat 87.1% 84.7%

Down 57.1% 50.3%

Accuracy 79.2% 76.4%

4.3. Experimental Result of the Bias Ratio

In this experiment, three labels of prince rising (Up), prince falling (Down) and
flat (Flat) are set for 6, 12 and 20 BIAS according to Formula (17). The experimental
results are shown in Figures 7 and 8 and Table 2. Figure 7a demonstrates the variation of
model loss at 100 epochs. Figure 7b shows the accuracy variation at 100 epochs. Table 2
shows the Recall, Precision, F1 measure and average Accuracy of the 6, 12 and 20 BIAS.
Figure 8a–c demonstrates the Confusion Matrices of the 6, 12 and 20 BIAS, respectively.
In this experiment, the loss of the training data decreased rapidly within 10 epochs, and
then showed a steady downward trend. The loss of the validation data converged at
about 10–20 epochs. In Figure 8a–c, 6 BIAS has higher prediction accuracy than 12 BIAS
and 20 BIAS. However, similar to RSI, most of the misjudgments of ‘Up’ and ‘Down’ are
misjudged as ‘Flat’. The reason is probably that ‘Flat’ is the most common case in stock
market trading, and its data volume is also greater than the sum of the ‘Up’ and ‘Down’
categories. In summary, the forecast accuracy of 6 days BIAS is 75.6%, which is slightly
higher than BIAS based on 12 days, and a large extent better than 20 days BIAS. The average
Recall and Precision of 6 BIAS in the three categories are higher than 12 BIAS and 20 BIAS.
Twenty days is roughly equivalent to one month trading. Considering the adaptability
of the deep network, the results show that long-term BIAS statistics did not increase the
accuracy of predictions. Similar to RSI, BIAS’s estimates are mostly correct for the ‘Flat’
label, with Precision and Recall reaching up to 87.2% and 81.4%, and 84.2% in F1 Measure.
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Table 2. Precision, Recall, F1 Measure and Accuracy of the BIAS TI.

Trend 6 BIAS 12 BIAS 20 BIAS

Precision
Up 59.2% 55.6% 52.2%
Flat 87.2% 86.0% 84.3%

Down 41.6% 37.2% 31.3%

Recall
Up 61.0% 57.5% 50.0%
Flat 81.4% 79.6% 74.3%

Down 56.6% 53.3% 50.3%

F1 Measure
Up 60.1% 56.5% 51.1%
Flat 84.2% 82.7% 79.0%

Down 48.0% 43.8% 38.6%

Accuracy 75.6% 73.2% 68.0%

4.4. Experimental Results of Applying to Backtest of Trading Strategies

Based on the above experiments, it can be found that the prediction performance
of the proposed model for RSI technical indicators is slightly higher than that of BIAS.
However, a certain number of labels that are rising or falling are misjudged to be flat. From
the perspective of the deep network classification model, the prediction category is limited
by the output of Softmax. Therefore, the proposed GRU-Attention model subsequently
derives the probability output of Softmax as a reference for investors’ trading strategies.
In this study, the stock price fluctuations of TSMC between 20 April 2020 and 5 May 2021
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were backtested based on the parameters with higher accuracy in the aforementioned
experiments, and set the rising probability value greater than a certain threshold as the
estimated buying point. The results are shown in Figures 9–15.
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Figure 9 shows the results of the experiment where the probability of RSI turning
upward is between 30% and 40%, and the trading range is between 20 April 2020 and 30
December 2020. The model has a total of 11 suggestions for stock market entry points in the
interval. Figure 10 shows the results of the transaction date 1 January 2021–11 May 2021,
and there is only one forecast with an increase probability within 30–40%. The volatility
of stocks from March to May in 2021 slows down, and the model also yields reasonable
predictions. The volatility between April 2020 and January 2021 is relatively large, and
the proposed model also gives relatively more positive market entry estimates value.
Figure 11 shows the results of the experiment where the probability of RSI turning upward
is greater than 40%, and the trading range is between 20 April 2020 and 30 December 2020.
During this time period, the GRU-Attention model suggested a total of eight entry points.
Compared with the previous experiment, using a 40% increase probability as the trading
time point can more effectively ensure a positive return on investment. In addition, in the
experiment of the RSI label, there is no more than 40% increase prediction probability in
the interval between 1 January 2021 and 11 May 2021.

Figures 12 and 13 show the results of the experiment where the probability of BIAS
turning upward is between 30% and 40% with trading intervals 20 April 2020–30 December
2020 and 1 January 2021–11 May 2021, respectively. In the entire experimental interval,
the proposed GRU-Attention model produced a total of 11 market entry opportunities.
In the results of this experiment, most of the entry points are relatively low points in
the entire stock band. Figures 14 and 15 depict the results of the experiment where the
probability of BIAS turning upward is greater than 40%, with trading intervals 20 April
2020–30 December 2020 and 1 January 2021–11 May 2021, respectively. In this time interval,
there are 13 prediction results with an estimated increase probability greater than 40%.
The forecast results in the 20 April 2020–30 December 2020 interval can obtain positive
investment returns, and a few of the forecast results from 1 January 2021 to 11 May 2021
have not obtained positive returns in a short period of time.

Based on the above experimental results, it can be found that using RSI and BIAS
as the labels for model training can achieve an average accuracy of more than 70% in
classification. The average prediction accuracy with the RSI is higher than the BIAS.
However, in importing the model into the trading strategy, the results show that the timing
point of BIAS’s estimation is relatively stable. In the result of the estimated stock price
increase, there are fewer short-term declines.
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4.5. Experimental Results Compared to the State-of-the-Art Models and Traditional Methods

In this section, we compare the model proposed in this research with other methods,
including state-of-the-art models [27,28]. Other commonly used machine learning models,
including k-nearest neighbors algorithm (KNN), SVM and Random Forest [48], are also
included. The above machine learning methods are commonly used in numerical data
classification problems. This study incorporates these models to explore their effectiveness
for time series classification problems. The source codes of [27,28] are provided in the
original papers, other approaches are implemented by this research. In the experimental
setting of [27], we selected 20 electronic stocks on the Taiwan Stock Exchange as the related
stocks of the target TPE:2330. The positive rate of return is estimated to price up, and vice
versa. In the experimental setting of [28], we adopted the CNN module with price volume
chart for training. The experimental results are shown in Table 3.

Table 3. Comparison of the Precision, Recall, F1 Measure and Accuracy. GRU-Att_B and GRU-Att_R
represent the BIAS and RSI TIs, respectively.

Trend GRU-
Att_B

GRU-
Att_R [27] [28] KNN SVM Random

Forest

Precision
Up 60.3% 59.2% 62.13% 54.37% 53.17% 47.08% 45.40%
Flat 91.3% 87.2% 83.75% 81.48% 80.46% 74.70% 73.62%

Down 49.4% 41.6% 52.47% 47.77% 49.59% 37.04% 32.95%

Recall
Up 64.2% 61.0% 45.07% 38.07% 39.63% 26.98% 24.16%
Flat 83.2% 81.4% 69.36% 66.94% 70.42% 62.25% 59.64%

Down 67.6% 56.6% 38.46% 32.47% 26.41% 23.90% 22.91%

F1 Measure
Up 62.2% 60.1% 52.24% 44.78% 45.41% 34.30% 31.53%
Flat 87.1% 84.2% 75.88% 73.50% 75.11% 67.91% 65.90%

Down 57.1% 48.0% 44.39% 38.66% 34.46% 29.06% 27.03%

Accuracy 79.2% 75.6% 71.58% 67.82% 68.63% 60.38% 58.01%

It can be seen from Table 3 that the architecture of GRU_ATT with technical indicators
proposed by this research, has a significant improvement in overall performance compared
with other algorithms. The BIAS normalization approach has an improvement of 7.62%
and 11.38% in the accuracy measure compared to [27,28], and the RSI approach has an
improvement of 4.02% and 7.78%, respectively. Among other machine learning methods,
KNN performs better and has a prediction accuracy close to 70%, while Random Forest
does not reach 60%. In the algorithms compared in this study, most models have low
precision and recall for price increases and declines, which indicates that these models are
less sensitive to time series data.

4.6. Experimental Results of Applying to Top 10 Weighted Stocks in TWSE

To verify the effectiveness and scalability of the proposed framework, we retrained
the proposed model and calculates the accuracy for TWSE Top 10 weighted stocks: Taiwan
Semiconductor Manufacturing Co., Ltd. (TPE:2330), MediaTek Inc. (TPE: 2454), Hon Hai
Precision Industry Co., Ltd. (TPE:2317), Formosa Petrochemical Corporation (TPE:6505),
Chunghwa Telecom (TPE:2412), Fubon Financial Holding Co., Ltd. (TPE:2881), Cathay
Financial Holding Co., Ltd. (TPE:2882), United Microelectronics Corporation (TPE:2303),
Evergreen Marine Corporation (TPE:2603), and Delta Electronics, Inc. (TPE:2308). Except
for TPE:2330, other models were trained with basic volume and price attributes to compare
the differences with and without technical indicators. The results are shown in Table 4. The
experimental results show that the accuracy of the model can still reach nearly 70% even
without the use of technical indicators. Among all the forecast results, the recall/precision
with a flat forecast is the highest, and there are individual differences in other categories.
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Table 4. Precision, Recall, F1 Measure and Accuracy of the top 10 weighted stocks in TWSE.

Trend
TWSE Stock Code

2330 2454 2317 6505 2414 2881 2882 2303 2603 2308

Precision
Up 60.3% 63.54% 55.25% 61.89% 60.96% 58.25% 58.48% 51.87% 57.14% 56.70%
Flat 91.3% 83.54% 78.18% 83.12% 85.33% 86.11% 80.24% 79.47% 80.26% 78.63%

Down 49.4% 51.87% 46.51% 52.62% 56.89% 54.95% 52.80% 47.86% 46.31% 46.25%

Recall
Up 64.2% 43.64% 35.91% 44.29% 49.90% 47.62% 38.83% 33.21% 39.64% 39.22%
Flat 83.2% 68.82% 64.18% 69.11% 67.65% 64.85% 69.25% 61.60% 64.19% 64.66%

Down 67.6% 40.72% 32.32% 38.34% 41.13% 42.37% 35.79% 37.11% 33.05% 30.52%

F1 Mea-
sure

Up 62.2% 51.74% 43.53% 51.63% 54.88% 52.40% 46.67% 40.49% 46.81% 46.36%
Flat 87.1% 75.47% 70.49% 75.47% 75.47% 73.99% 74.34% 69.40% 71.33% 70.96%

Down 57.1% 45.63% 38.14% 44.36% 47.74% 47.85% 42.66% 41.80% 38.57% 36.77%

Accuracy 79.2% 71.38% 65.38% 71.19% 72.25% 70.86% 69.31% 64.71% 66.64% 66.04%

5. Conclusions and Future Works

This research proposes a GRU-Attention deep neural network as a strategic reference
for stock trading. With the theoretical assistance of technical indicators, the effectiveness of
the deep network for forecasting financial commodity trends is not limited to the accuracy
of the forecast, and the probability of the forecast category can be directly applied to the
design of stock market trading strategies. The experimental target is Taiwan Semiconductor
Manufacturing Co., Ltd. (TSMC, TPE:2330), which is currently the world’s largest foundry
semiconductor manufacturer. The model uses the stock price data of 4 January 2016–11
May 2021 for training and testing, and the price of 20 April 2020–11 May 2021 for trading
strategy backtesting. The main contributions of this study are summarized as follows:

1. Famous financial commodity analysis tools such as Relative Strength Index and Bias
Ratio can effectively assist the prediction accuracy of time series neural networks.

2. Taking the TPE: 2330 as an example, the proposed GRU-Attention model can achieve
an average prediction accuracy of more than 70%.

3. With the aid of RSI and BIAS TIs, the rising points predicted by the model can be
positively paid in most cases.

4. Compared with other deep network and non-deep network models, the proposed
approach has a significant performance improvement in prediction accuracy.

The limitation of the conclusions of this study lies in the use of RSI and BIAS technical
indicators, which are combined in the GRU + Attention model. If other technical indicators
are used, the indicator normalization method must be redesigned and retrained. The future
works of this research include the following:

1. Extend the concepts proposed in this study to other non-sequential networks, such as
CNN, Transformer, etc.

2. Apply the proposed model to other types of financial products, such as futures,
options, day trading, etc.

3. Extend the deep learning trading strategies to the investment portfolio of different
financial products.

4. Future research on the use of deep networks for trading strategies can be extended to
investment portfolios.

5. Cryptocurrency is a popular commodity in the current investment market, and this
research can be extended to the analysis of cryptocurrency trends.
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