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Abstract: This paper aims to design a compact broadband antenna for wireless local area network
(WLAN) and worldwide interoperability for microwave access (WIMAX) applications. The suggested
antenna consists of an octagonal radiator with Vicsek fractal slots and a partial ground plane, it is
printed on FR-4 dielectric substrate, and its global dimension is 50 × 50 × 1.6 mm3. The antenna is
designed and constructed using both CST MICROWAVE STUDIO® and CADFEKO electromagnetic
solver, and in order to validate the acquired simulation results, the antenna is manufactured and
tested using vector network analyzer E5071C. The measurement results show that the designed
antenna attains a broadband bandwidth (S11 < −10 dB) from 2.48 to 6.7 GHz resonating at 3.6 and
5.3 GHz, respectively. The broadband bandwidth covers the two required bands: WiMAX at the
frequencies 2.3/2.5/3.3/3.5/5/5.5 GHz and WLAN at the frequencies 3.6/2.4–2.5/4.9–5.9 GHz. In
addition, the suggested antenna provides good gains of 2.78 dBi and 5.32 dBi, omnidirectional
measured radiation patterns in the E-plane and the H-plane and high efficiencies of 88.5% and 84.6%
at the resonant frequencies. A close agreement of about 90% between simulation and measurement
results is noticed.

Keywords: broadband; octagonal microstrip patch antenna; Vicsek fractal; WLAN; WiMAX

1. Introduction

With fast progress in wireless technology systems, there is a strong request for antennas
with low profiles, compact dimensions, planar geometry and especially the ability to
provide a large impedance bandwidth for WLAN and WiMAX applications in several
bands, such as 2.4–2.5/3.6/4.9–5.9 GHz and 2.3/2.5/3.3/3.5/5/5.5 GHz, respectively [1–3].
Microstrip antennas are the best type of antennas that meet these requirements due to their
low weight, easy miniaturization, portability, installation flexibility, good performance and
low manufacturing costs [4,5].

In the literature, various structures of microstrip antennas are suggested to shield
WLAN and WiMAX applications. Most of these antennas are slotted patch antennas fed by
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a coplanar waveguide (CPW) technique, such as CPW-fed monopole antennas, or a fractal
antenna approach. A monopole antenna with a slot and dual ring resonator in the ground
plane was proposed in [6] to achieve a triple band at 2.5, 3.7 and 4.6 GHz for WLAN and
WiMAX applications. According to [7], a CPW-fed hexagonal shaped patch antenna was
designed to achieve three bands i.e., 0.4, 1.2 and 1.75 GHz. These bands were obtained by
inserting H-tree fractal slots in the radiating elements. Similarly, in [8], a Hilbert fractal slot
was inserted in an octagonal radiator to operate in WLAN and WiMAX applications, and
it offered a dual band at 2.48 and 5.68 GHz with a bandwidth of about 0.7 and 3.55 GHz,
respectively. A novel CPW rectangular antenna with a cantor fractal slot was developed
in [9]; it shielded two bands of about 1 and 1.7 GHz at resonant frequencies 3 and 5.1 GHz.
Likewise, in [10], a compact antenna for UWB notched applications was developed; it
covered a bandwidth from 3.1 to 10.6 GHz, with a rejected band from 2.4 to 2.484 GHz, for
WLAN applications.

On the other hand, the defected ground structure DGS approach can be applied. A
monopole antenna consisting of a rectangular ring and a fork-shaped strip with a defected
ground plane was developed in [11] to generate three bands for WLAN and WiMAX
applications at 2.5, 3.5 and 5.5 GHz. Thereafter in [12], a rectangular radiator with defected
ground structure was suggested, offering three resonant frequencies of 2.40, 3.5 and 5.8 GHz
which shield the WLAN and WiMAX bands.

References [13–15] additionally propose antennas for WLAN and WiMAX applica-
tions using an asymmetrical feed line. In ref. [13], a compact antenna consisting of three
monopoles with different lengths and an asymmetrical feed line was suggested to achieve
four bands of about 0.17, 0.16, 0.17 and 0.15 GHz for WLAN and WiMAX applications.
Naik, in [14], developed an asymmetric CPW antenna with a split ring for two bands for
WLAN and WiMAX at 2.46 and 3.51 GHz with bandwidths of about 0.17 and 0.15 GHz,
respectively. An inverted L- shaped strip in the radiator, fed by an asymmetric CPW, was
proposed in [15]; it offered a wide bandwidth of about 3.3 GHz which covers the WLAN
and WiMAX bands at 5.725–5.85 GHz and 3.3–3.7 GHz, respectively.

Furthermore, antennas for WLAN and WiMAX applications based on the metamate-
rial approach are presented in references [16–18]. In ref. [16], a compact antenna consisted
of a utilizing complementary split ring resonators (CSRRs) placed in the radiator to reject
four bands for WLAN and WiMAX applications at 3.4, 4.1, 4.8 and 5.6 GHz. Ken proposed,
in [17], a broadband antenna composed of two interspaced ring resonators as radiator ele-
ments printed on FR-4 substrate, and the overall size of the antenna was 60 × 90 × 1.6 mm3.
The antenna offered two bands of about 0.7 and 1.3 GHz at 2.4 and 5.8 GHz. A CPW-fed
metamaterial antenna was proposed in [18] to support WLAN and WiMAX applications at
2.4/5.5 GHz and 3.5 GHz bands, respectively.

The authors in [19] developed a MIMO antenna comprised of two spider-shaped
radiators printed on FR-4 substrate sized 50 × 37 mm2 to shield WLAN and WiMAX bands
at 2.43, 3.83, 4.4 and 5.8 GHz. According to [20], a 4× 4 MIMO antenna with dual operating
bands was modelled, with four elements positioned on both sides of the dielectric material
in the proposed MIMO antenna. Each element had a rectangular open-loop resonator
inserted into the ground plane. The antenna had bandwidths of 0.08 GHz and 0.17 GHz at
2.46 and 3.5, respectively. WLAN (2.4–2.485 GHz) and WiMAX (3.4–3.6 GHz) bandwidth
requirements were met.

The design in [21] was composed of two layers, one layer comprising an E-shaped
patch and the second comprising a U-slot. The proposed antenna covered the WLAN at
2.4 GHz and the WiMAX at 3.5 GHz. Altaf, in [22], designed a Y-shaped dielectric resonator
antenna with size of 120 × 70 mm2; it presented two bands from 2.401 GHz to 2.495 GHz
and from 3.4 GHz to 3.69 GHz which shielded WLAN and WiMAX bands, respectively.

In all the above analyses, it can be observed that these antennas had complex structures
with large areas, or they do not cover all the bands of WLAN and WiMAX applications.
This work is related to the design of a broadband octagonal microstrip patch antenna with
Vicsek fractal slots for WLAN and WiMAX applications. The investigated antenna offers a
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broadband of 4.22 GHz from 2.48 GHz to 6.7 GHz with two resonant frequencies at 3.6 GHz
and 5.3 GHz which shield both the WLAN and WiMAX bands.

The broadband characteristic is realized by using the fractal slots and partial ground
plane. The designed antenna has good gains of 2.78 dBi and 5.32 dBi, an omnidirectional
radiation pattern in both the E-plane and the H-plane and high efficiency of 88.5% and 84.6%
at the resonant frequencies. In the first section of this paper, the antenna geometry and the
design evolution procedure are described. A parametric analysis of critical dimensions
is presented in Section 2. The discussion of the simulated and experimental results is
elaborated upon in Section 3. The conclusion of this work is given in the last section.

2. Antenna Geometry Design
2.1. Antenna Geometry

The configuration of the suggested antenna is displayed in Figure 1. It comprises an
octagonal radiator loaded with the two first iterations of Vicsek fractal slot structure, and it
is engraved on a 1.6-mm-thick FR-4 dielectric substrate with relative permittivity εr = 4.4
and tan(δ) = 0.02. In addition, a partial ground plane with initial dimensions 50 × 15 mm2

is printed on the bottom side of the substrate. The antenna geometry has a complete size
of 50 × 50 × 1.6 mm 3 and a 50-Ω feed line of width ‘Wf’ and length ‘Lf’ with an inset of
length ‘d’, and gap ‘g’ is used to excite the antenna. The antenna has been designed and
performed using the CST MWS simulator, and the optimal dimensions of the investigated
antenna are listed in Table 1.
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Figure 1. The suggested antenna structure with notations: (a) top view and (b) back view.

Table 1. Dimensions of the suggested antenna.

Parameters Dimensions
(mm) Parameters Dimensions

(mm)

Ws 50 W 13

Ls 50 L 10

Wf 3.5 a 1.3

Lf 15 g 2

Lg 15 d 1

2.2. Design Evolution Procedure

Figure 2 presents the evolutionary stages of the investigated antenna. The antenna
evolution process starts with a rectangular microstrip antenna excited by a feed line.
Thereafter, four triangular parts are cut in the four angles of the rectangular radiator in
order to make an octagonal radiator. Subsequently, the octagonal patch is loaded with the
first and the second iterations of Vicsek fractal slots to achieve the final geometry.
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The first step in the design of the suggested antenna is displayed in Figure 2a. A
rectangular microstrip antenna of length Lp and width Wp was taken as a reference antenna
(simple microstrip patch). The dimensions of the rectangular radiator were determined
using the theory of transmission lines using the following Equations (1)–(4) [23]:

The width of a microstrip antenna can be calculated by:

W =
c

2 fr

√
2

εr + 1
(1)

where c and εr are the speed of light (3 × 108 m/s) and relative permittivity of the medium,
respectively, and fr represents the resonant frequency at which the antenna is designed.
The effective dielectric constant of the substrate is yielded by [23]:

εre f f =
εr + 1

2
+

εr − 1
2
×
[

1 + 12
h

W

]− 1
2

(2)

where h is the substrate thickness. Finally, the length of the rectangular radiator is given
by [24]:

L =
c

2 fr
√

εe f f
− 2∆L (3)

In Equation (3), ∆L corresponds to the increase in length of the antenna due to fringing
effects and is given by [23]:

∆L = 0.412× h×

(
εre f f + 0.3

)
+
(

W
h + 0.264

)
(

εre f f − 0.258
)
+
(

W
h + 0.8

) (4)

The corresponding simulated S11 of the different steps of the design process of the
investigated antenna is depicted in Figure 3. The simple microstrip patch antenna generates
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one resonant frequency at 7.4 GHz, and it provides a bandwidth of 1.5 GHz. The truncated
patch antenna structure is obtained by cutting four triangular shapes in the four angles of
the radiating element to obtain an octagonal patch antenna as depicted in Figure 2b. It is
noticed from Figure 4 that the truncated patch antenna provides a broadband of 3.91 GHz
from 2.29 to 6.2 GHz with one resonant frequency at 3.8 GHz.
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In the third step, the first iteration of Vicsek fractal slots is incorporated in the radiating
element (slotted patch) as presented in Figure 2c.

The construction of Vicsek fractal slots is based on square rotated by π/4 and decom-
posed into nine squares. The four corner squares and the middle square are kept, while the
remaining squares are eliminated, as illustrated in the Vicsek fractal [24] with:

ai =
ai−1

3
(5)

The Hausdorff dimension of the Vicsek fractal is presented by Equation (5) [24]:

d =
ln(n)
ln(R)

=
ln(5)
ln(3)

= 1.46496 (6)

The slotted patch antenna presents a broadband of 4.3 GHz from 2.3 to 6.6 GHz
with two resonant frequencies at 3.55 and 5.3 GHz with reflection coefficients −42 dB
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and −40 dB, respectively. Finally, the geometry of the suggested antenna is obtained by
introducing the second iteration of Vicsek fractal slots on the octagonal patch antenna, as
shown in Figure 2d. The suggested antenna achieves a broadband of 4.35 GHz from 2.3 to
6.65 GHz with good impedance matching at resonant frequencies 3.6 and 5.2 GHz.

2.3. Parametric Analysis of the Suggested Antenna

The broadband characteristics of the suggested antenna are achieved with the help of
parametric study. This study is used to obtain the optimal values of the antenna dimensions
and the best performance by modifying one parameter and fixing the other parameters.

2.3.1. The Feed Line Length Lf and Width Wf Variation Effects

The effect of the microstrip feed line length Lf on the suggested antenna performance
is studied by changing the Lf from 13 to 15 mm and the feed line width from 2.6 mm to
3.5 mm. Figure 5 illustrates the variation of S11 versus frequency for various lengths and
widths of the feed line, Lf and Wf. It can be noticed from the figure that by increasing the
length of the feed line, the bandwidth increases from 3.8 GHz to 4.35 GHz. The simulations
confirm that to obtain good impedance matching and the desired broadband, the optimal
values for the length and width of the feed line are Lf = 15 mm and Wf = 3.5 mm.
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2.3.2. The Ground Plane Length Lg Variation Effects

Similar to Lf and Wf, Lg is also varied, as depicted in Figure 6. By changing the length
Lg from 13 to 16 mm, the bandwidth increases from 1.5 GHz to 4.35 GHz. Moreover, it is
seen that the optimal value of the length of the ground plane is Lg = 15 mm, for which the
suggested antenna achieves the desired broadband with good impedance matching.
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2.3.3. The Vicsek Slot Length Variation Effects

The parametric study in this section looks into the effect of the length of the Vicsek
fractal slot on the impedance bandwidth and on the resonant frequencies. Figure 7 depicts
the variation of S11 when the length a of the Vicsek fractal slot is changed and all other
dimensions remain constant. It can be claimed from the figure that the parameter a has no
effect on the suggested antenna’s impedance bandwidth but it does change the position
of the resonant frequencies. The range of this parameter (a) is between 0.7 and 1.6 mm.
Additionally, the value a = 1.3 mm is found to provide satisfactory impedance matching in
the 3.6 and 5.8 GHz frequencies corresponding to the WLAN and WiMAX bands.
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3. Results and Discussion

The simulation of the suggested antenna was carried out in both CST MICROWAVE
STUDIO®, which is based on finite integration technology (FIT), and the CADFEKO
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simulator, which uses the method of moments (MoM). The antenna was excited by a
waveguide port, and the boundary box had an area of 200 mm × 200 mm × 200 mm,
as shown in Figure 8, while the number of mesh cells was 374,088. To prove that the
simulation results are accurate, the suggested broadband antenna was manufactured as
depicted in Figure 9. The reflection coefficient S11 was measured using vector network
analyzer E5071C. The variation of the reflection coefficient S11 of the suggested broadband
antenna is illustrated in Figure 10. It is noticed from the measured results that the antenna
presents a broadband of 4.22 GHz from 2.48 GHz to 6.7 GHz with two resonant frequencies
at 3.6 and 5.3 GHz with reflection coefficients −41.3 dB and −57.2 dB, respectively. The
designed antenna provides a broadband which covers the WiMAX bands at frequencies
2.3/2.5/3.3/3.5/5/5.5 GHz and the WLAN at frequencies 3.6/2.4–2.5/4.9–5.9 GHz.

The simulated surface current distribution of the suggested broadband antenna results
acquired by CST MICROWAVE STUDIO® at resonant frequencies 3.6 and 5.3 GHz is
depicted in Figure 11. It is seen from the figure that the current distribution is concentrated
at the inset microstrip feed line, the ground plane and the extremity of the octagonal radiator
at 3.6 GHz. Similarly, in the 5.3 GHz frequency, the high current surface is concentrated at
the inset feed line, the ground plane.
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Figure 10. Measured and simulated S-parameters of the suggested antenna.
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The measurements of radiation pattern and peak gain of the proposed antenna were
made in an anechoic chamber, as shown in Figure 12. In addition, Figure 13 illustrates
the measured radiation pattern together with the simulated results acquired by CST MI-
CROWAVE STUDIO® and the CADFEKO simulator at resonant frequencies 3.6 and 5.3 GHz.
It can be claimed from the figure that the suggested antenna presents a good radiation
pattern performance since it achieves an omnidirectional pattern in the H-plane and in
the E-plane.

The measured peak gain and simulated peak gain obtained by CST MICROWAVE
STUDIO® and CADFEKO software are illustrated in Figure 14 and the simulated radiation
efficiency acquired by CST MWS is depicted in Figure 15. From the figures, it can be
revealed that the suggested antenna presents good performance in terms of peak gain
and radiation efficiency. The antenna offers considerable gains and radiation efficiencies:
2.78/5.32 dBi and 88.5/84.6% at the operating frequencies 3.6/5.3 GHz, respectively.
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Figure 13. Two-dimensional radiation patterns: (a) E-plane at 3.6 GHz, (b) H-plane at 3.6 GHz,
(c) E-plane at 5.3 GHz, (d) H-plane at 5.3 GHz.
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Figure 14. Simulated and measured peak gain of the suggested antenna versus frequency.
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The simulation results obtained by the CADFEKO and CST solvers, as well as the
measurement results, are collected and summarized in Table 2. The impedance bandwidth
is 4.15 GHz with two operating frequencies 3.5 and 5.1 GHz for CADFEKO, and the
impedance bandwidth is about 4.35 GHz with two resonant frequencies at 3.6 and 5.2 GHz
for CST. The measured impedance bandwidth is 4.22 GHz, with two operating frequencies
at 3.6 and 5.3 GHz. In addition, when evaluating gain values, the CST result is 2.75 and
5.37 dBi at 3.6 and 5.2 GHz, respectively. In addition, the CADFEKO result is 2.63 and
5.26 dBi at 3.5 and 5.1 GHz, respectively, and the measured gain value was around 2.78 and
5.32 dBi at 3.6 and 5.3 GHz. As a result, for the impedance bandwidth, resonant frequencies
and gain comparison, the CST produced results that were closer to the measured results.
The CST based on the FIT approach produced a better outcome for broadband antennas, as
predicted by the literature [25].
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Table 2. Summary of simulation and measurement results of the suggested antenna.

Antenna
Performance Simulated (CADFEKO) Simulated (CST) Measured

fr (GHz) 3.5 5.1 3.6 5.2 3.6 5.3

S11 (dB) −23.3 −23.9 −42.7 −50.06 −41.3 −57.2

Gain (dBi) 2.63 5.26 2.7 5.36 2.78 5.32

Bandwidth (GHz) 4.15 4.35 4.22

Table 3 compares the proposed broadband antenna for WLAN and WIMAX appli-
cations to various antennas previously reported in the literature. The antenna presented
in [17,22] did not shift all the resonant frequencies of WLAN and WiMAX applications
and had a large size. The antenna proposed in [18] provided a low gain compared to
our designed antenna. In ref. [19], the antenna had a large size and narrow impedance
bandwidth. In ref. [20], the antenna had a simple structure; moreover, it did not cover all
the required bands of WLAN and WiMAX and it provided a lower gain compared to our an-
tenna. In ref. [21], the antenna had a complex structure printed in Taconic RF-35, it achieved
a broadband, and it did not cover all the bands of WLAN and WiMAX. The suggested
broadband antenna has various advantages over previously reported antennas [8–22] in
terms of size, impedance bandwidth and gain, as shown by the comparison.

Table 3. Comparison of the suggested antenna performances with other antennas in the literature.

Ref No. Size (mm2)
Type of

Substrate
Frequency

Range (GHz)
Bandwidth

(GHz)
Resonant

Frequency (GHz)
Peak Gain

(dBi)

[17] 60 × 90 FR-4 2.3–3
4.7–6 0.7, 1.3 2.4, 5.2, 5.6 4.76, 2.9, 2.44

[18] 57 × 31.2 FR-4
2.3–2.6
2.9–3.8

4.8–5.65
0.3, 0.9, 0.85 2.45, 3.5, 5.5 1.19, 1.59, 2.39

[19] 56 × 37 FR-4

2.24–2.5
3.6–3.99
4.4–4.6

5.71–5.9

0.26, 0.39, 0.2,
0.19 2.43, 3.83, 4.48, 5.8 2.2, 2.8, 3.3, 4.2

[20] 60 × 60 FR-4 2.3–2.6
3.3–3.7 0.3, 0.4 2.46, 3.5 2.61, 2.7

[21] 120 × 70 Taconic RF-35 2.2–4.18 1.98 2.46, 3.5 4.11, 6.48

[22] 60 × 45 FR-4 2.25–2.95
3.35–3.61 0.7, 0.26 2.6, 3.5 7.1, 7.3

This work 50 × 50 FR-4 2.48–6.7 4.22 3.6, 5.3 2.78, 5.32

4. Conclusions

A novel broadband octagonal microstrip patch antenna with Vicsek fractal slots suit-
able for WLAN and WiMAX applications is proposed. This antenna is printed in FR-4
substrate with dimensions of 50 × 50 × 1.6 mm3. The measurement results confirm that
this antenna has a broadband 2.48 to 6.7 GHz and two resonant frequencies of 3.6 and
5.3 GHz, respectively, which cover the WiMAX bands (2.3/2.5/3.3/3.5/5/5.5 GHz) and
WLAN bands (2.4–2.5/3.6/4.9–5.9 GHz). This antenna achieves considerable peak gains,
2.78 and 5.32 dBi, and radiation efficiencies 88.5 and 84.6% at the resonant frequencies.
Moreover, the proposed antenna offers an omnidirectional radiation pattern in the H-plane
and in the E-plane.
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