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Abstract: Computational color constancy (CCC) is to endow computers or cameras with the capability
to remove the color bias effect caused by different scene illuminations. The first procedure of CCC
is illuminant estimation, i.e., to calculate the illuminant color for a given image scene. Recently,
some methods directly mapping image features to illuminant estimation provide an effective and
robust solution for this issue. Nevertheless, due to diverse image features, it is uncertain to select
which features to model illuminant color. In this research, a series of artificial features weaved into
a mapping-based illuminant estimation framework is extensively investigated. This framework
employs a multi-model structure and integrates the functions of kernel-based fuzzy c-means (KFCM)
clustering, non-negative least square regression (NLSR), and fuzzy weighting. By comparing the
resulting performance of different features, the features more correlated to illuminant estimation
are found in the candidate feature set. Furthermore, the composite features are designed to achieve
the outstanding performances of illuminant estimation. Extensive experiments are performed on
typical benchmark datasets and the effectiveness of the proposed method has been validated. The
proposed method makes illuminant estimation an explicit transformation of suitable image features
with regressed and fuzzy weights, which has significant potential for both competing performances
and fast implementation against state-of-the-art methods.

Keywords: computer color constancy (CCC); illuminant estimation; kernel-based fuzzy c-means
clustering (KFCM); non-negative least square regression (NLSR); image enhancement

1. Introduction

The human vision system possess an innate “color constancy” capability, i.e., to
dismount effects from the illuminant color and perceive the true color of an object [1,2].
Unfortunately, computers and imaging signal processors in vision applications do not have
this capability if not to perform specific algorithms. To this end, varieties of computational
color constancy (CCC) algorithms have been developed to compensate for the effects of
illumination on objects’ color perception in the past decades. Once an estimated illuminant
color is obtained for a captured image, the color deviation can be corrected by using the
von Kries model [1–3]. Therefore, illuminant estimation is the key for CCC.

To date, many approaches have been proposed to estimate illuminant color by many
researchers. These approaches can be roughly classified into three groups. Gray world
(GW) [4,5], White patch (WP) [6], Shades of gray (SoG) [7], Gray edge (GE) [8], etc., belong
to the first group—statistics-based methods, which take account of some image statistical
features that are kept consistent in the image captured under canonical illuminating envi-
ronments. Natural Image Statistics [9], machine learning [10], and deep learning [11–16],
etc., are included in the second group—learning-based methods, which need a learning
procedure utilizing various image information to pre-train models and estimate illuminant
color. The third group is the combination version of the first two groups [11,17–19]. The
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unitary algorithms (i.e., the first two groups) just use a single strategy for illuminant es-
timation by assuming some color distribution features or learning general models from
the training dataset, while the combination methods integrate the estimates from unitary
algorithms into a single, final estimate. All these three groups of estimation methods
usually suffer from either estimation accuracy, or computational efficiency, and result in
better performances just for some specific image scenes. The overwhelming method does
not appear yet.

Recently, some methods directly mapping image features to illuminant color are given
rise to notice due to their simplicity and robustness [20–23]. These methods usually extract
some specific features and then train a regression to capture the relationship between
image features and illuminant ground truth. Although with a learning or model regression
procedure, they do not need massive computation efforts and complicated model structures
like deep learning. However, due to it is not clear which features are more correlated to
illuminant estimation, the selection of image features for model regression remains arbitrary
in the eye of the beholder. To our knowledge, there have still been no sufficient studies on
how to select suitable features for the model regression of illumination estimation.

In this study, some typical image features in illuminant estimation literature are col-
lected into a feature set. A framework with image clustering, multi-model constructing, and
illuminant prediction is established to estimate illuminant color and assess the estimation
performance of different features. The main contributions of this study are given as follows.
(1) We develop an approach to estimate illuminant color, which includes kernel-based fuzzy
c-means clustering (KFCM), optimization-based model regression, and fuzzy weighting
combination. Using this method, we can easily investigate different features’ influences on
illuminant estimation. (2) An optimal combination of image features is obtained by many
effective experiments and analyses. Using the chosen composite feature covering a range
of image characteristics as wide as possible, the performance of illuminant estimation is im-
proved and the regression model becomes more robust. (3) KFCM and optimization-based
model regression enhance the generalization ability of the proposed method; moreover,
the multi-model fuzzy weighting scheme employed boosts the proposed approach to be
more suitable for various image features and diverse light source characteristics.

The rest of this paper is organized as follows. Section 2 introduces the related back-
ground. The proposed method is presented in Section 3, where feature extraction, KFCM
clustering, model regression, and fuzzy weighting are described in detail. Afterwards, in
Section 4 many experimental results are provided to validate the proposed method, and
for some remarkable issues, further discussions are given. Finally, Section 5 concludes
the work.

2. Background
2.1. Imaging Model

The most commonly used imaging model for CCC is the one under the assumption of
Lambertian reflection [9]. According to this model, the camera’s raw intensity response
fc(x) is given by [9,16]:

fc(x) =
∫

Ω
I(λ, x)R(λ, x)ρc(λ)dλ, (1)

where c is a RGB color channel, c ∈ {R, G, B}, x is a pixel location of the given image, λ
is the wavelength of the light, Ω is the spectrum range of the visible light, λ ∈ Ω, I(λ, x)
denotes the spectral distribution of light source, R(λ, x) denotes the surface reflectance of
imaging objects, and ρc(λ) denotes the camera sensitivity function of color channel c.

To make the problem straightforward, it is commonly assumed the image is uniformly
illuminated by a single light source. Considering the case that the image scene is an ideal
white surface, it yields R(λ, x) = 1, then the observed illuminant color ˆ̀ = [ ˆ̀R, ˆ̀G, ˆ̀B]

T

will be obtained as:
ˆ̀ =

∫
Ω

I(λ)ρc(λ)dλ. (2)
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Once we know ˆ̀, the image can be successfully chromatically adapted under the help
of von Kries diagonal transformation [3]. However, with only image pixel responses fc
given, but both I(λ) and ρc(λ) unknown, the estimation of ˆ̀ is an under-determined issue,
which needs additional assumptions to be taken.

2.2. Illuminant Estimation

This section briefly introduces the three typical methods (statistics-based, learning-
based, and combinational) for illuminant estimation, and additionally, discusses some
methods most related to the topic of this paper.

Statistics-based methods. These algorithms take account of certain assumptions or
physical observations, and directly compute some statistical metrics of a given image to
obtain the illuminant color. The advantages of these methods lie in low computational
efforts, although occasionally the estimation accuracy cannot be assured. Weijer et al. [24]
developed a GE framework to unify most of these algorithms, which includes n-order
partial derivatives and the Minkowski p-norm given as:

(
∫
∣∣∣∣∂nfσ(x)

∂xn

∣∣∣∣pdx
) 1

p

= ken,p,σ, (3)

where f(x)σ = f(x)⊗Gσ(x) is defined as convolving the image f(x) by a Gaussian filter
G(x) with scale parameter σ, k is a scaling, and en,p,σ is the estimated illuminant color. The
framework is denoted as GEn,p,σ with the choices of n, p and σ. Some special instantiations
of this framework [18,19,24–26] include GW (GE0,1,0), WP (GE0,∞,0), SoG (GE0,6,0), 1-order
gray edge (GE1) (GE1,1,6), 2-order gray edge (GE2) (GE2,1,5), General gray world (GGW)
(GE0,13,2), etc.

Learning-based methods. In these methods, a training process is needed and then a
pre-trained model is obtained to estimate the illuminant. Commonly, these methods can be
further classified into two types: low-level and high-level ones [16]. The typical low-level
methods are gamut mapping algorithm [27] and its extensions [28]. Other examples include
some methods using probabilistic models [29], Classification-based algorithm selection [17],
and machine learning algorithms [10,30], etc. Some regression-based methods [19,20,22,23]
are also included in this group. These methods learn a mapping relationship between image
features and illuminant ground truths from massive training data. Following the recent
blooming of deep learning, high-level methods based on convolutional neural network
(CNN) [11,12,14–16,31–35] have received state-of-the-art performances on various color
constancy datasets. Although these methods commonly are more accurate than statistics-
based algorithms, their structural complexities and computational efforts on model training
hinder their applications for fast and real-time tasks.

Combination methods. Most unitary algorithms just use a single strategy that usually
cannot work well for all types of images. To this end, many algorithms try to use mul-
tiple model strategies where the model set of illumination estimation is acquired from
some unitary algorithms. Then by weighting the multiple estimates, a final estimate is
obtained. According to whether the weights used are fixed or not, combination methods
can be grouped into static weight combination and dynamic weight combination. Static
weights are not suitable for diverse image features [18,36] and commonly can not ensure
the robustness of illuminant estimation. Conversely, dynamic weights are more effective,
but they need to tune the combination of unitary estimates against varying image fea-
tures [11,17,18]. There are many examples [9,17,37–39] to produce the dynamic weights
and find the best combination.

Related methods. In the paper [40], Zeinab Abedini provided a new explanation to
some statistics-based methods from the perspective of the percentage of pixels involved in
illuminant estimation. In these methods, all pixels equally attend in illuminant estimation
(e.g., GW), or some pixels are radically selected for processing and the others are ignored
(e.g., WP, Bright Pixel [41], PCA-based method [21], Gray Pixels [42], Gray Index [43]).
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Naturally, the explanation can be extended as a weight-based technique, i.e., all pixels
are used, but the weights for different pixels are not the same. And, the weights can be
implicitly or explicitly presented. GGW, GE, and SoG are included in this explanation since
they can be explained to have implicit weights with the structure of the p-th Minkowski
norm. Local surface reflectance (LSR) [44] which uses WP to weight GW can also be
seen to have implicit weights [40]. According to this explanation, illumination estimation
becomes the regression function of the pixels distribution features and the corresponding
weights. Similarly, in learning-based methods, some direct regression-based methods
have been proposed [20,21,23,40,45] in recent years, which simply map image features to
illuminant. One of the remarkable methods is based on the Corrected Moment (CM) [20].
The CM-based method provides an efficient methodology to yield the illuminant estimation
using a polynomial regression from multiple low-level-based methods. Other techniques,
e.g., regression tree [30], fuzzy logic [19], deep learning [46,47], also can be regarded as
regression-based methods with complex structures. Although these algorithms can achieve
outstanding performances, their disadvantage is that they make illuminant estimation
work in a black box without further considering the specific features of different images.
These methods can be improved if the regression or weighting model is adjusted with
image intrinsic features. So it is very important to assess the impacts of selected image
features on illuminant estimation and determine which features are more correlated to
illuminant estimation. The optimal combination of selected features will make illumination
estimation regression more efficient.

2.3. Color Correction

For a given image, once the illuminant color is estimated as a illumination vector
ˆ̀ = ( ˆ̀R, ˆ̀G, ˆ̀B), the image should be corrected by the von Kries diagonal transformation [3].
All the colors of the color-biased image under the unknown light source (u) should be
mapped to the colors under a canonical illuminant (c), which is demonstrated as follows: Rc

Gc
Bc

 =

 ˆ̀−1
R 0 0
0 ˆ̀−1

G 0
0 0 ˆ̀−1

B

 Ru
Gu
Bu

, (4)

where (Ru, Gu, Bu)T and (Rc, Gc, Bc)T denote the image colors under the unknown light
source and a canonical illuminant, respectively.

3. Proposed Method

In the proposed method, illuminant estimation is achieved by a serial of linear or
nonlinear transformation of suitable image features. The proposed method also can be
easily used to assess the illuminant estimation performance by utilizing different features
to construct more efficient feature substitutes. The flowchart of the proposed framework is
illustrated in Figure 1.

In the training phase, the training dataset is classified into different clustering using
the KFCM algorithm. For each cluster, the illuminant estimation models M1, M2, · · · , MK
are obtained using a non-negative least square regression (NLSR) method. For a given test
image that has been removed dark level and saturation level in the linear RGB space, the
corresponding image features will be extracted and then the final estimated illuminant will
be produced by fuzzy weighting all outputs of multiple regression models.
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Figure 1. The framework of the proposed method. For a given test image, the related image features
are extracted and used for estimating candidate illuminant colors and obtaining fuzzy weights, then
the final estimated illuminant can be produced by weighting all outputs of multiple models.

3.1. Features Extraction

The image features can be used as representatives of an original image, just with a
compact data length. Since it is not clear which features will affect the illuminant estimation
much more, in this paper a series of features are gathered into a candidate set to explore
the suitable feature selections and better illuminant estimation. The features in the feature
set are derived from the up-to-date literature that provides some effective learning-based
methods of illuminant estimation. These features are low-level, or middle-level [38]; here
we do not use high-level or semantic features, since semantic features are commonly specific
to different images and may have small effects on illuminant estimation [38]. Several image
features are extracted for each image as follows.

Corrected moments (CM) [20,48]. They are the polynomial expansions of the 2nd,
3rd, and 4th degree, which are described by the following vectors:

CM9 =
(

r, g, b, r2, g2, b2, rg, gb, rb
)T

, (5)

CM19 =
(

r, g, b, r2, g2, b2, rg, gb, rb, r3, g3, b3, rg2, gb2, rb2, gr2, bg2, br2, rgb
)T

, (6)

CM34 = (r, g, b, r2, g2, b2, rg, gb, rb, r3, g3, b3, rg2, gb2, rb2, gr2, bg2, br2, rgb,

r4, g4, b4, r3g, r3b, g3r, g3b, b3r, b3g, r2g2, g2b2, r2b2, r2gb, g2rb, b2rg)T .
(7)

Here r, g, and b are the illuminant components estimated by some general methods,
such as GW, SoG, etc. According to the above expressions, the element numbers recorded
in a CM feature are 9, 19, and 34, respectively.

RGB-uv histogram (RGBuv). The paper [49] extracted a histogram from the log-
chrominance space to represent the bulk of information in a color image. This feature is
called RGB-uv histogram, which describes the color distribution feature of an image as
a m×m× 3 tensor. The works in [49] have validated the effectiveness of this feature to
illuminant estimation. To short the length of this feature, a PCA-based dimensionality
reduction step is applied to get a compact representation for each RGBuv histogram. As
a result, the RGBuv of any image I can be expressed by a serial of primary component
coefficients vi, (i = 1, 2, · · · , p):
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RGBuv(I) = [v1, v2, · · · , vp]. (8)

where p is the number of primary components, and p� m×m× 3.
Color moments (ClrM) can characterize the color distribution in an image. Commonly,

three central moments, i.e., first-order moments (Mean), second-order moments (Standard
deviation), and third-order moments (Skewness), are sufficient to express the main color
distribution of an image. Considering the size of image, each image is evenly divided into
3 × 3 sub-blocks in this study; therefore, 81 moments for an image I can be obtained if the
moments are calculated for each RGB channel:

ClrM(I) = [ϕ1, ϕ2, · · · , ϕ81]. (9)

Cheng’s simple features (ChengSF) [30]. These features are a group of intensity-
invariant features based on normalized chromaticity. There are four color chromaticity
features extracted from an image, i.e., average color chromaticity [ra, ga], brightest color
chromaticity [rb, gb], dominant color chromaticity [rd, gd], and chromaticity mode of the
color palette [rm, gm]. Here r and g are the normalized chromaticity components of RGB
color [30]. For an image I, ChengSF can be expressed as follows:

ChengSF(I) =
[
ra, ga, rb, gb, rd, gd, rm, gm

]
. (10)

Color distribution features (CDF). In paper [19], Luo proposed a compact color
distribution feature for illuminant estimation, which is a combination of the number of
image colors nc, chromaticity features in Equation (10), and color moments in Equation (9).
For an image I, the obtained CDF vector is as follows:

CDF(I) =
[
nc, λ1ra, λ1ga, λ1rb, λ1gb, λ1rd, λ1gd, λ1rm, λ1gm, λ2 ϕ1, λ2 ϕ2, · · · , λ2 ϕ81

]
, (11)

where the two adjustable factors, λ1 and λ2, control the influences of different components
on the illuminant estimation.

Initial illuminant features (IIF). In paper [19], some unitary algorithms, i.e., GW, WP,
SoG, GE1, GE2, GGW, PCA, and LSR, are applied to get eight initial illuminant estimates
for an image. These initial estimates are integrated into a vector, i.e., IIF, as a metric of
illuminant characteristics. For an image I, the IIF vector is expressed as follows:

I IF(I) = [γ(ei, ej)], i = 1, 2, · · · , 8, j = (i + 1), (i + 2), · · · , 8, (12)

where γ(ei, ej) is defined as the Euclidean distance between initial illuminant estimates ei
and ej.

3.2. KFCM Clustering

In the training stage, a better classification can achieve the appropriate divisions of the
training dataset. In each division the features will be close each other and fit for illuminant
modeling. We use some above-mentioned features to classify the training dataset by the
KFCM method.

KFCM is derived from fuzzy c-means (FCM). FCM is a classification algorithm based
on fuzzy sets, which results in clustering partitions with the maximum similarity among
samples in the same cluster, while the minimum similarity among different clusters [50].
As an improved version of the common c-means algorithm, FCM provides flexible fuzzy
partitions since the training samples are clustered in terms of the membership functions.
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For the standard FCM, a cost function based on the Euclidean distance is minimized to
solve the cluster centroids and the membership degrees of all samples:

JFCM(U, V) =
n

∑
k=1

c

∑
i=1

µm
ki |xk − νi|2, (13)

where |.| is the Euclidean norm to measure the similarity between sample data and cluster
centroid; µki is the degree of membership for the sample xk in the cluster i, U = [µki];
νi is the centroid of the cluster i, V = [νi]; n is the total number of samples; m is the
exponent of the membership; and c is the cluster number. Furthermore, a kernel function
can be introduced into FCM by a nonlinear mapping Φ : x → Φ(x), which maps the low
dimension vector x into a high dimension space. Then the kernel-based FCM, i.e., KFCM,
is to minimize the following cost function:

JKFCM(U, V) =
n

∑
k=1

c

∑
i=1

µm
ki |Φ(xk)−Φ(νi)|2, (14)

where
|Φ(xk)−Φ(νi)|2 = K(xk, xk) + K(νi, νi)− 2K(xk, νi). (15)

Here K(x, ν) is an inner product kernel function, and K(x, ν) = Φ(x)TΦ(ν). In this

study, we adopt the Gaussian function as a kernel function, i.e., K(x, ν) = exp
(
−|x−ν|2

σ2

)
,

where σ is the kernel width; then we can get K(x, x) = 1 and K(ν, ν) = 1. According to
Equation (15), Equation (16) can be rewritten as:

JKFCM(U, V) = 2
n

∑
k=1

c

∑
i=1

µm
ki(1− K(xk, νi)). (16)

From Equation (16), we can see that the cost function is minimized when the first-
order partial derivatives with respect to µki and νi both are zeros. By these two necessary
conditions, the final clusters and their centroids are iteratively obtained as follows:

µki =

(
1

1−K(xk ,νi)

) 1
m−1

∑c
j=1

(
1

1−K(xk ,νj)

) 1
m−1

, (17)

νi =
∑n

k=1 µm
kiK(xk, νi)xk

∑n
k=1 µm

kiK(xk, νi)
. (18)

Here i = 1, 2, · · · , c, and k = 1, 2, · · · , n.
It is worthy to mention that the clustering performance of KFCM will be influenced by dif-

ferent kernel functions and their parameters. Although the results of Equations (17) and (18)
are deduced using the Gaussian kernel function, other kernel functions just satisfying
K(x, x) = 1 also can be used here. In the Gaussian kernel function, the kernel width is
commonly used as the key tuning parameter. Due to the Gaussian kernel being a typical
local kernel function, the function value is largely affected by the data closer to the test point.
Hence we can determine the kernel width according to the average distance between the
sample data and the cluster centroid. This will ensure that the data in the same cluster play a
dominant role in the corresponding kernel function values, while the data out of this cluster
make a slight impact on the corresponding kernel function values. In additions, different
from single-model methods, multi-model ones used in this study can select different kernel
parameters for different clusters.
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3.3. Model Regression

In this study, to avoid complicated structures of deep neural networks, we just em-
ploy the least-square-based method since we focus on finding more suitable features for
illuminant estimation rather than aiming for high performance. The precision of model
regression is sacrificed somewhat, but the speed and robustness of illuminant estimation
can be attained substantially.

We construct the regression relationship directly from image features to illuminant
ground truths as follows:

FM = L, (19)

where L =
[

e1 e2 · · · eN
]T is the vector of illumination ground truths of the training

samples, M is the regression model matrix, and F is the feature matrix of all sampling
images. In general, we obtain the solution of Equation (19) as M = F−1L, where F−1 is
the Moore-Penrose inversion of the feature matrix F . But some elements in the resulting
M might be negative, which may deteriorate the robustness of the model. To address
this problem, we seek the solution to minimize ‖M‖ with each element in M no less
than zero. Therefore, we can train a regression model to minimize the L2-norm loss
between the reconstructed and ground truth illumination by solving the non-negative least
square problem:

min
M
‖FM−L‖2

2, (20)

Therefore, for all partitions of the training set from KFCM, we can get a series of
models and construct a model set as follows:

Ms = { M1 M2 · · · MK }, (21)

where K is the number of the obtained multiple models for the training dataset.

3.4. Fuzzy Weighting

For a test image Iin, the final output of the illuminant estimation is synthesized by
fuzzy weighting the outputs of all models, which is given as:

ˆ̀ =
K

∑
i=1

(FIin Mi)wi, (22)

where wi is the weight of the i-th model Mi, and FIin denotes the extracted features of the
test image Iin. For an image sample in the training set, wi is known (it is the membership
of degrees for this sample); while for a new test image not included in the training dataset,
wi is needed to be computed by determining what degree the test sample belongs to each
cluster obtained via KFCM. That is to say, all possibilities that an image falls into each
cluster should be acquired by calculation. To this end, we define a variable d f ,i = ‖ f − νi‖2

as the squared Euclidean distance between the test image’s feature vector f and the cluster
centroid νi, (i = 1, 2, · · · , K). Then a radial basis function is constructed to represent the
probability for the test image belonging to the cluster i:

wi =
e−d f ,i

/
2σ2

f

K
∑

l=1
e−d f ,l

/
2σ2

f

, i = 1, 2, · · · , K, (23)

where σf denotes the radial fall-off factor. In this way the weights are obtained, and the
illuminant color of the test image can be predicted by Equation (22).
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4. Experimental Results
4.1. Experimental Set-Up

Dataset. The proposed framework should be verified on a mass of image examples
that have a wide scale of color distributions and diverse illuminant characteristics. In this
study, the two datasets (Gehler-Shi [51] and Cube+ [15,52]) are employed as the training
and testing datasets. Both datasets are suitable for the evaluation of illumination estimation
algorithms due to they include typical real-world images with varieties of illumination. In
each image of the Gehler-Shi dataset, there is a color-checker board added into the lower
right corner for calculating the ground truth illumination, while in the Cube+ dataset, a
SpyderCube color target is used in each scene for the same purpose. These color-checker
boards and color targets are masked when the images are utilized in the procedures of
our experiments. The proposed method performs the standard 3-fold cross-validation for
the training and testing procedures, which is commonly used in existing learning-based
illuminant estimation literature.

Implementation details. We conducted three types of experiments to test our pro-
posed approach, i.e., (1) Experiment A, training and testing on an individual image dataset
from different cameras; (2) Experiment B, training and testing on an image set from an
identical camera; and (3) Experiment C, training and testing on different image datasets or
a combination of several image datasets. Since an image from a certain camera or dataset
might contain some unique information of this camera or dataset, it is necessary to perform
Experiment A and Experiment B. Both experiments will help to investigate on selecting
suitable features of illuminant estimation for our method under the circumstances ruling
out the influence of camera or dataset. On the other hand, considering the training/testing
across datasets is the most common situation for learning-based illuminant estimations,
Experiment C is employed to validate our method’s effectiveness on a combination of
multiple datasets.

Our MATLAB implementation is shown in https://github.com/yunhuiluo/if2ic (ac-
cessed on 28 December 2021). In the training stage, the training dataset will be clustered
according to the selected image features and the regression models will be constructed for
each cluster. Since the classification algorithm based on KFCM is not complex mathemati-
cally, it takes a very short time compared with other learning methods like deep learning.
For example, it requires approximately 12.6 seconds for classification and training 6 models
for the Cube+ dataset. Once the training is finished, the illuminant estimation process
costs an average time of 0.93 seconds for a new test image with 2601× 1732 pixels, 48 bits
depth, and PNG format; this process includes feature extraction, multiple model estimation,
weight computation, and fuzzy weighting output. All the runtimes above-mentioned were
obtained from a laptop computer with an Intel Core i5-2450M @ 2.50 GHz CPU.

By default, we set the cluster number K = 4 when using the combination of Gehler-Shi
and Cube+, and we set the fall-off factor σf = 0.25 mentioned in Section 3.4. We utilize
the KFCM algorithm to perform image clustering based on the features of IIF, and set the
kernel width σ to be 140. Our method requires 6.7 MB to store the classification parameters,
multiple model matrix, and some configurations. In our experiments, each PCA feature
vector was also represented by 53 primary component scores (the same with [49]) for
any RGBuv feature. Since each time the cluster iteration of KFCM algorithm begins from
some random initial center positions, the performances for each experiment with the same
configurations might be tinily different.

Evaluation Metrics. The two performance metrics widely used in color constancy
literature are employed in this paper. The first one is recovery angular error (recovery
AE) [9,18], which is defined as the angle in degrees between the illumination’s actual
3D-chromaticity ea and its estimated 3D-chromaticity ee: γ(ea, ee) = cos−1

(
ea ·ee
‖ea‖‖ee‖

)
. Here

the symbol of · denotes the scalar product (dot product), and the symbol of ‖ · ‖ indicates
the Euclidean norm of a vector. The second metric is called reproduction angular error
(reproduction AE) [53,54], which usually is more efficient than the traditional recovery AE.
The reproduction AE is defined as the angle in degrees between the true color of white

https://github.com/yunhuiluo/if2ic
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surface and the reproduced color of white surface: γ(ec, eu) = cos−1
(

ec ·eu
‖ec‖‖eu‖

)
. Here ec

denotes the white light source (true color of white surface), ec = [1, 1, 1]T , and eu indicates
the reproduced color of white surface, eu = ea/ee, which is the actual 3D-chromaticity ea
divided by the estimated 3D-chromaticity ee.

Since both recovery and reproduction AEs are not normally distributed, the Mean and
Median values along with the Trimean value are used to assess the statistical performance
of color constancy algorithms in this study. Trimean is defined as a weighted average
Trimean = (Q1 + 2Q2 + Q3)/4, where Q1(Best 25%), Q2, and Q3(Worst 25%) are the first,
second, and third quantiles of recovery or reproduction AE, respectively. In addition, the
maximums of both AEs are used as extra metrics to assess the robustness of the illuminant
models along with the metric of Q3(Worst 25%).

4.2. Experiment A: Individually Testing on Different Datasets (Within Dataset)

In this experiment, our method is independently applied to different datasets.
Tables 1 and 2 compare some performance metrics between our method and some conven-
tional algorithms on the Gehler-Shi dataset and the Cube+ dataset, respectively. In order to
illustrate the impacts of different features on illuminant estimation performances, all types
of features given in Section 3.1 are investigated using the proposed method.

Table 1. Comparative performance metrics between our method and some statistics-/learning-based
methods on the Gehler-Shi dataset. The statistical metrics of the conventional methods are cited
from [40] and the related literature.

Method
Recovery AE Reproduction AE

Mean Med. Tri. B25% W25% Max Mean Med. Tri. B25% W25% Max

WP [6] 7.55 5.68 6.35 1.45 16.12 - 8.1 6.5 7.1 - - -
Edge-based Gamut [28] 6.52 5.04 5.43 1.90 13.58 - - - - - - -

GW [4,5] 6.36 6.28 6.28 2.33 10.58 - 7.0 6.8 6.9 - - -
GE1 [8] 5.33 4.52 4.73 1.86 10.03 - 6.4 4.9 5.3 - - -
GE2 [8] 5.13 4.44 4.62 2.11 9.26 - 6.0 4.8 5.2 - - -
SoG [7] 4.93 4.01 4.23 1.14 10.20 - 5.8 4.4 4.9 - - -

Bayesian [29] 4.82 3.46 3.88 1.26 10.49 - 5.6 3.9 4.4 - - -
GGW [8] 4.66 3.48 3.81 1.00 10.09 - 5.3 4.0 4.4 - - -

Natural Image Statistics [9] 4.19 3.13 3.45 1.00 9.22 - 4.8 3.5 3.9 - - -
CART-based Combination [17] 3.9 2.9 3.3 - - - 4.5 3.5 3.8 - - -

WCS with partitioning [40] 3.66 2.05 2.45 0.44 9.49 - 4.83 2.52 3.24 - - -
PCA-based [21] 3.52 2.14 2.47 0.50 8.74 - 4.71 2.72 3.28 - - -

LSR [44] 3.31 2.80 2.87 1.14 6.39 - - - - - - -
CNN-based method [46] 2.63 1.98 2.10 0.72 3.90 - - - - - - -

FFCC [32] 1.61 0.86 1.02 0.23 4.27 - 2.12 1.07 1.35 - - -
C4-SqueezeNet-FC4 [55] 1.35 0.88 0.99 0.28 3.21 - - - - - - -

Proposed

ClrM 2.59 1.35 1.76 0.00 7.53 19.28 3.34 1.57 2.13 0.00 9.82 25.43
CM19 3.33 2.62 2.76 0.69 7.26 19.94 4.29 3.30 3.50 0.85 9.53 23.42
CM34 3.62 2.95 3.05 0.80 7.72 20.43 4.67 3.55 3.81 0.98 10.25 33.69
CDF 8.65 2.60 3.11 0.00 29.53 177.12 9.64 3.05 3.82 0.00 32.31 177.44
IIF 4.14 3.03 3.37 0.97 9.06 22.34 5.40 3.68 4.28 1.13 12.37 36.04

RGBuv 3.25 2.35 2.55 0.67 7.35 24.81 4.39 2.98 3.22 0.79 10.48 110.51
ChengSF 4.17 3.03 3.41 0.85 9.29 19.04 5.47 3.63 4.30 0.98 12.72 30.84

RGBuv+ChengSF 3.06 2.20 2.40 0.68 6.85 18.25 3.98 2.73 2.99 0.79 9.27 29.51
RGBuv+ChengSF+IIF 3.01 2.24 2.40 0.67 6.70 19.48 3.94 2.75 2.97 0.79 9.17 47.80

RGBuv+ChengSF+IIF+CM34 2.99 2.17 2.36 0.68 6.68 19.16 3.90 2.80 3.02 0.80 9.12 45.81
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Table 2. Comparative performance metrics between our method and the previous methods on the
Cube+ dataset. The statistical metrics of the previous methods are selected from [15,19].

Method
Recovery AE Reproduction AE

Mean Med. Tri. B25% W25% Max Mean Med. Tri. B25% W25% Max

WP [6] 9.69 7.48 8.56 1.72 20.49 - - - - - - -
GW [4,5] 7.71 4.29 4.98 1.01 20.19 - - - - - - -

Gray pixels [42] 6.65 3.26 3.95 0.68 18.75 - - - - - - -
Color Tiger [52] 3.91 2.05 2.53 0.98 10.00 - - - - - - -

SoG [7] 2.59 1.73 1.93 0.46 6.19 - - - - - - -
GE1 [8] 2.50 1.59 1.78 0.48 6.08 - - - - - - -
GE2 [8] 2.41 1.52 1.72 0.45 5.89 - - - - - - -

GGW [8] 2.38 1.43 1.66 0.35 6.01 - - - - - - -
Attention CNN [56] 2.05 1.32 1.53 0.42 4.84 - - - - - - -

Lighting classification DL [15] 1.86 1.27 1.39 0.42 4.31 - - - - - - -
Luo [19] 1.69 1.12 1.24 0.31 4.06 - - - - - - -

Color Beaver (GW) [57] 1.49 0.77 0.98 0.21 3.94 - - - - - - -

Proposed

ClrM 2.45 1.76 1.95 0.47 5.53 143.54 3.36 2.39 2.61 0.61 7.73 76.69
CM19 2.16 1.52 1.71 0.41 4.97 20.51 2.88 1.96 2.26 0.52 6.69 25.38
CM34 2.36 1.73 1.92 0.47 5.23 18.19 3.36 2.34 2.60 0.61 7.84 121.57

IIF 2.28 1.58 1.73 0.46 5.32 21.22 3.31 2.13 2.37 0.58 8.17 113.33
RGBuv 1.95 1.39 1.51 0.35 4.48 15.72 2.63 1.86 2.02 0.44 6.15 22.12

ChengSF 2.24 1.49 1.68 0.41 5.36 33.70 3.08 1.97 2.25 0.51 7.49 42.90
RGBuv+ChengSF 1.92 1.37 1.50 0.38 4.37 15.02 2.58 1.85 2.03 0.47 6.01 19.88

RGBuv+ChengSF+IIF 1.79 1.31 1.41 0.36 4.06 14.22 2.43 1.74 1.90 0.44 5.62 20.04
RGBuv+ChengSF+IIF+CM34 1.80 1.31 1.42 0.36 4.08 14.33 2.44 1.73 1.89 0.45 5.64 20.18

Table 1 shows that our results (except for the one using CDF features) outperform
most unitary algorithms on the Gehler-Shi dataset. For example, the Mean of recovery
AE is 4.66 for GGW, and 4.17 for our method using ChengSF; The Trimean of recov-
ery AE is 3.81 for GGW, and 3.41 for our method using ChengSF. There is a significant
performance improvement near 10% from GGW to our method using ChengSF. Table 1
also shows that our method with some combined features (i.e., RGBuv+ChengSF, RG-
Buv+ChengSF+IIF, and RGBuv+ChengSF+IIF+CM34) is superior to some learning-based
methods, e.g., Bayesian [29], Natural Image Statistic [46], and WCS with partitioning [40],
etc. What’s more, we can notice that the proposed method with the combined features
is better than most previous methods in terms of the metrics of Best 25% and Worst 25%.
This validates that the proposed method can achieve a outstanding illuminant estimation
regardless of image features.

Table 2 gives the results for the Cube+ dataset. Most metrics of our results in Table 2 are
better than those in Table 1, since the Cube+ dataset contains more images than the Gehler-
Shi dataset. It can be seen that the statistics of our method with the combined features are
almost all better than one of learning-based methods—Attention CNN [56]. These results
further indicate the proposed method is effective to achieve a better regression accuracy
using optimally selected feature combinations. It should be noticed that the composite
features of RGBuv+ChengSF+IIF can obtain outstanding performances using our method.
More comparisons of statistical metrics are provided in our GitHub repositories.

4.3. Experiment B: Testing on Image Set from Identical Camera (Within Camera)

This experiment uses some images from an identical camera as the training and testing
data, which is to verify the estimation accuracy within the camera using the proposed
method. Tables 3 and 4 compare the performance metrics for some conventional methods
and our method with different features within an identical camera. Here Canon 5D is one
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of the cameras used by the Gehler-Shi dataset, and Canon EOS 550D used by the Cube+
dataset, respectively. For Canon 5D, 482 images are picked out from the Gehler-Shi dataset,
and for Canon EOS 550D, 853 images are randomly selected from the Cube+ dataset. The
standard 3-fold cross validation is independently applied to the constructed datasets to
train and test the proposed method.

Table 3. Comparative performance metrics between the proposed method and some conventional
methods for Canon 5D.

Method
Recovery AE Reproduction AE

Mean Med. Tri. B25% W25% Max Mean Med. Tri. B25% W25% Max

GW [4,5] 4.90 3.59 3.99 0.96 10.82 20.02 6.23 4.75 5.14 1.17 13.65 24.81
WP [6] 3.82 2.49 2.89 0.50 9.37 23.44 4.81 3.10 3.59 0.61 11.70 31.12
SoG [7] 6.34 3.89 4.72 0.76 15.56 35.75 7.16 4.89 5.69 0.92 16.73 25.69
GE1 [8] 5.89 4.08 4.69 0.75 14.00 32.43 6.74 5.20 5.69 0.89 15.41 27.41
GE2 [8] 6.43 3.83 4.66 0.92 16.05 37.27 7.18 4.77 5.64 1.06 17.15 31.32

PCA-based [21] 6.94 4.36 5.33 1.05 16.69 45.97 7.62 5.28 6.19 1.20 17.39 32.77
GGW [8] 4.11 2.51 2.96 0.52 10.23 28.60 5.15 3.16 3.82 0.64 12.75 40.59
LSR [44] 3.94 2.99 3.30 1.36 7.96 17.92 4.84 3.88 4.16 1.61 9.69 20.08

Proposed

ClrM 2.32 0.68 1.24 0.00 7.20 16.46 3.23 0.84 1.66 0.00 10.23 44.45
CM19 2.83 2.14 2.34 0.53 6.32 15.04 3.67 2.69 3.00 0.65 8.32 21.28
CM34 3.06 2.28 2.45 0.58 6.74 14.88 4.14 2.96 3.20 0.70 9.49 35.81
CDF 8.49 1.54 2.19 0.00 29.92 179.08 9.87 1.63 2.66 0.00 34.39 178.91
IIF 3.00 2.12 2.32 0.73 6.80 25.02 4.00 2.56 2.95 0.82 9.53 42.86

RGBuv 2.97 2.17 2.27 0.58 6.84 51.56 4.14 2.67 2.91 0.73 10.10 112.29
ChengSF 3.23 2.21 2.48 0.60 7.57 30.31 4.35 2.88 3.23 0.71 10.62 38.42

RGBuv+ChengSF 2.85 2.15 2.23 0.57 6.51 33.46 4.08 2.72 2.88 0.69 10.05 115.51
RGBuv+ChengSF+IIF 2.83 2.08 2.18 0.57 6.51 39.05 4.02 2.68 2.86 0.68 9.90 116.17

RGBuv+ChengSF+IIF+CM34 2.78 1.99 2.13 0.61 6.31 32.80 4.02 2.51 2.75 0.72 9.91 120.15

Tables 3 and 4 show that the proposed method using image feature regressions
achieves better performances than some traditional methods such as WP, GW, PCA-based,
LSR, etc. Using the individual feature in the proposed method, the feature of RGBuv
receives the best results. According to the discussion in the paper [49], the RGBuv feature
can effectively cover the color distribution of an image. The results in Tables 3 and 4 also
validate this viewpoint. It can be seen that compositing several features will provide better
results, e.g., RGBuv+ChengSF, RGBuv+ChengSF+IIF, and RGBuv+ChengSF+IIF+CM34.
For the camera of Canon 5D, the composite of RGBuv+ChengSF+IIF has a 25.9% per-
formance improvement in recovery AE Mean, and a 25.4% performance improvement
in recovery AE Trimean, compared with WP. For the camera of Canon EOS 550D, the
same improvements reach 42.3% and 32.3% (ours versus GGW), respectively. In our experi-
ments, the optimal feature combination is RGBuv+ChengSF+IIF, which obtains outstanding
performances compared with other feature selections.

The combination of image features affects the illuminant estimation since the proposed
method is to directly map the extracted features to illuminant color. Except for the results
listed in Tables 3 and 4, we conducted many other experiments for the proposed method
with more feature combinations. We find that it is not the more combined features the better
performance. Just the correlated features are effective for illuminant estimation. Thus, it is
significant to find which features are more correlated to the illuminant estimation. In this
study, we just investigated several features and their combinations. From the experimental
results given, there are reasons to believe that if we find more effective features, the
performance can be even more improved by the proposed method.
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Table 4. Comparative performance metrics between the proposed method and some conventional
methods for Canon EOS 550D.

Method
Recovery AE Reproduction AE

Mean Med. Tri. B25% W25% Max Mean Med. Tri. B25% W25% Max

GW [4,5] 4.36 2.73 3.11 0.61 10.82 39.54 5.45 3.63 4.09 0.77 13.11 42.57
WP [6] 3.62 2.37 2.59 0.55 8.93 20.65 4.42 3.02 3.33 0.71 10.53 24.99
SoG [7] 4.48 2.66 3.20 0.47 11.39 22.91 5.31 3.36 4.03 0.60 13.02 25.28
GE1 [8] 4.02 2.80 3.14 0.55 9.58 20.31 5.05 3.61 4.03 0.67 11.82 24.59
GE2 [8] 4.40 2.55 3.07 0.60 11.24 24.58 5.22 3.26 3.94 0.78 12.86 27.53

PCA-based [21] 4.98 2.99 3.55 0.75 12.35 26.80 5.85 3.88 4.50 0.94 13.83 27.84
GGW [8] 3.28 1.97 2.26 0.44 8.49 20.40 4.07 2.57 2.95 0.57 10.20 26.87
LSR [44] 5.25 4.15 4.58 1.34 10.79 17.17 6.51 5.51 5.84 1.57 13.09 20.80

Proposed

ClrM 2.64 2.13 2.25 0.61 5.50 26.98 3.68 2.87 3.06 0.81 7.89 36.12
CM19 2.30 1.69 1.84 0.55 5.06 22.16 3.06 2.22 2.44 0.70 6.78 27.69
CM34 2.52 1.98 2.11 0.62 5.32 18.27 3.61 2.54 2.83 0.81 8.07 113.87
CDF 49.20 6.49 40.98 1.36 173.44 179.68 50.28 8.62 41.39 1.85 171.63 179.64
IIF 2.50 1.78 1.95 0.57 5.74 21.02 3.64 2.30 2.60 0.71 8.89 110.91

RGBuv 2.04 1.45 1.59 0.43 4.63 28.63 2.79 1.96 2.15 0.54 6.42 44.16
ChengSF 2.44 1.59 1.83 0.47 5.83 34.98 3.34 2.13 2.45 0.58 8.12 47.04

RGBuv+ChengSF 2.00 1.43 1.57 0.43 4.49 22.39 2.71 1.95 2.12 0.53 6.20 32.05
RGBuv+ChengSF+IIF 1.88 1.41 1.50 0.41 4.16 20.35 2.54 1.82 2.00 0.51 5.77 26.24

RGBuv+ChengSF+IIF+CM34 1.87 1.44 1.53 0.42 4.14 20.52 2.53 1.86 2.02 0.51 5.74 27.23

4.4. Experiment C: Cross-Dataset, Cross-Camera Testing

To investigate the robustness of the proposed method, some cross-dataset testing
should be performed on multiple datasets. In this experiment, the combination dataset of
Gehler-Shi and Cube+ is used by these testing through the 3-fold cross-validation technique.
Table 5 provides the statistical metrics of the experimental results.

Since the combined dataset can cover a wider range of image features and illuminant
regions, the classification and models obtained by the proposed method commonly receive
better generality on illuminant estimation. Table 5 validates this viewpoint. It can be seen
that the obtained statistical metrics for all images in the Gehler-Shi and Cube+ datasets
reach the good performances, e.g., the Mean and Maximum of recovery AE respectively
are 2.13 and 14.83 for the selected optimal features of RGBuv+ChengSF+IIF. Figure 2 shows
the recovery and reproduction AEs’ distribution for some images from the Gehler-Shi and
Cube+ datasets using some conventional methods and the proposed method. These results
indicate the proposed method can work well and reach excellent performances. It should
be pointed out that the selected optimal features of RGBuv+ChengSF+IIF are prerequisites
for these results.

In real life, photographers usually cannot capture images under perfect or standard
illumination. A complex lighting environment results in changing brightness and contrast.
A robust color constancy algorithm should be able to deal with these challenges. Our
algorithm essentially is a weight-based method in which the features more related to
illuminant color are highlighted and used to deduce dynamic weights. Figure 3 shows
some visual results to face some challenging image scenes. As shown in this figure,
our algorithm with the feature combination of RGBuv+ChengSF+IIF reaches the better
performance compared with some conventional methods. Consequently, the proposed
method has the great potential to color constancy of a wide range of images. For more
examples, please refer to the related materials at our GitHub repositories.
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Table 5. Comparative performance metrics between the proposed method and some conventional
methods, with training and testing on the combination of the Gehler-Shi and Cube+ datasets.

Method
Recovery AE Reproduction AE

Mean Med. Tri. B25% W25% Max Mean Med. Tri. B25% W25% Max

GW [4,5] 4.41 3.05 3.36 0.68 10.53 39.54 5.56 4.00 4.39 0.88 12.89 42.57
WP [6] 3.57 2.30 2.57 0.52 8.89 23.44 4.39 3.00 3.30 0.66 10.58 31.12
SoG [7] 4.85 2.83 3.47 0.53 12.38 35.75 5.65 3.59 4.29 0.67 13.81 26.08
GE1 [8] 4.42 2.88 3.36 0.60 10.71 32.43 5.40 3.71 4.26 0.74 12.69 27.41
GE2 [8] 4.82 2.77 3.36 0.65 12.37 37.27 5.58 3.46 4.12 0.81 13.72 31.32

PCA-based [21] 5.39 3.15 3.87 0.81 13.49 45.97 6.19 4.01 4.74 1.00 14.69 32.77
GGW [8] 3.40 2.00 2.34 0.45 8.77 28.60 4.21 2.64 3.04 0.57 10.61 40.59
LSR [44] 4.80 3.78 4.10 1.35 10.00 20.48 5.96 4.79 5.17 1.59 12.22 21.47
Luo [19] 1.97 1.30 1.45 0.36 4.75 25.38 2.57 1.64 1.86 0.45 6.32 37.14

Proposed

ClrM 2.50 1.69 1.91 0.12 6.23 40.80 3.43 2.23 2.48 0.14 8.80 113.29
CM19 2.61 1.90 2.09 0.61 5.79 20.87 3.41 2.45 2.70 0.75 7.73 124.29
CM34 2.86 2.23 2.38 0.66 6.13 20.67 3.91 2.97 3.17 0.82 8.69 102.71
CDF 45.00 4.96 9.27 0.26 167.64 179.54 45.42 6.33 11.33 0.32 166.02 179.40
IIF 2.88 2.06 2.22 0.60 6.61 22.85 3.93 2.58 2.86 0.77 9.41 49.67

RGBuv 2.34 1.70 1.81 0.51 5.33 21.96 3.12 2.21 2.38 0.63 7.22 34.57
ChengSF 2.90 1.97 2.21 0.54 6.80 34.91 4.02 2.55 2.90 0.68 9.87 123.33

RGBuv+ChengSF 2.22 1.60 1.74 0.45 5.06 18.22 2.93 2.04 2.26 0.57 6.77 21.28
RGBuv+ChengSF+IIF 2.13 1.55 1.69 0.48 4.76 14.83 2.80 2.06 2.23 0.59 6.35 18.79

RGBuv+ChengSF+IIF+CM34 2.10 1.52 1.67 0.46 4.74 16.91 2.77 1.99 2.18 0.58 6.28 18.81
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Figure 2. The recovery and reproduction AEs’ distributions for some conventional methods versus
the proposed method with the combined features. In the two subfigures (a,b), the images of No. 1~50
refer to the first 50 images in the Gehler-Shi dataset, and the images of No. 51~200 refer to the first
150 images the Cube+ dataset.
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Figure 3. Comparison among the proposed, Luo’s [19], and conventional methods. The test images
are from the Gehler-Shi and Cube+ datasets, and the resulting images are shown here by column
corresponding to: (1) input images; (2) ground truths; (3) the proposed; (4) Luo’s, and (5) conventional
methods (GW, WP, GE1, GE2, SOG, PCA-based, GGW, or LSR), respectively. These images include
some common lighting scenes such as outdoor natural, outdoor artificial lighting, indoor artificial
lighting, indoor natural lighting, combined natural and artificial lighting, etc. For each corrected
image, the recovery AE (AE, for short) and the reproduction AE (RPE, for short) are displayed at the
top, respectively. It should be noticed that these images displayed here are rendered just with some
preliminary post-processing in the sRGB color space.
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4.5. Additional Experiments

In the proposed method, many factors will affect the performances of illuminant
estimation. Some experiments are conducted to explore these influences.

Clustering methods and cluster numbers. For the proposed method, we perform
KFCM clustering by default to classify the training data. For comparisons, the other two
clustering algorithms, i.e., K-means and the two-step method [19], are also added to the
proposed framework. The reason for selecting K-means and the two-step method is that the
former is one of the most commonly used clustering methods, and the latter is an effective
algorithm of color constancy based on cluster models. For each clustering algorithm, we can
manually set different cluster numbers in order to obtain better results. Table 6 gives some
statistical metrics using different clustering methods and cluster numbers. Comparing
the results using different configurations, it can be seen that the proposed method along
with KFCM seems to be more effective than using K-means and the two-step method. One
of possible reason might be that KFCM can provide flexible division for the training set,
which enhances the robustness and generalization of the proposed method. And we find
K = 4 or 5 is the appropriate selection for our method under the KFCM clustering on
the combination dataset of Gehler-Shi and Cube+. It is natural that the cluster number
should increase for better modeling performance if we use another dataset with more
image samples.

Table 6. Statistical metrics on the combination dataset of Gehler-Shi and Cube+ with different
clustering methods and cluster numbers.

Clustering Recovery AE Reproduction AE

Method Number Mean Med. Tri. B25% W25% Max Mean Med. Tri. B25% W25% Max

K-means 2 2.12 1.53 1.68 0.48 4.76 18.32 2.80 1.99 2.21 0.59 6.35 23.79
KFCM 2 2.10 1.52 1.67 0.47 4.70 15.71 2.76 1.98 2.19 0.58 6.25 18.18

K-means 3 2.12 1.51 1.65 0.46 4.84 15.15 2.77 1.95 2.16 0.57 6.37 20.10
KFCM 3 2.13 1.53 1.67 0.46 4.83 18.87 2.79 1.97 2.18 0.56 6.43 27.39

twoStep 2 × 2 5.98 4.05 5.29 2.49 10.35 10.98 8.55 4.16 6.81 3.47 15.36 15.68
K-means 4 2.15 1.46 1.61 0.45 5.06 51.86 2.84 1.86 2.10 0.57 6.77 91.14
KFCM 4 2.14 1.54 1.69 0.48 4.80 14.83 2.82 2.06 2.23 0.58 6.41 18.86

K-means 5 2.11 1.40 1.56 0.43 4.99 31.64 2.78 1.79 2.04 0.53 6.64 52.73
KFCM 5 2.17 1.50 1.69 0.47 4.95 14.77 2.85 1.95 2.18 0.58 6.61 18.81

twoStep 2 × 3 6.29 5.30 5.00 2.37 12.02 17.75 8.58 6.42 7.04 3.16 16.24 25.69
K-means 6 2.27 1.44 1.60 0.44 5.57 108.90 3.08 1.81 2.06 0.55 7.74 119.54
KFCM 6 2.22 1.53 1.70 0.45 5.16 21.96 2.91 1.97 2.20 0.55 6.86 28.93

Kernel width of KFCM. In the proposed method, kernel width will affect clustering
divisions, which will result in different performances. Table 7 provides some statistical
metrics on the Gehler-Shi and Cube+ datasets to show the influences of kernel width in
KFCM clustering. We can find that the optimal choice of kernel width for our experiments
is σ = 100~180. Commonly, the optimal values are obtained by trial and tried in various
testing. It should be noticed that the optimal kernel width is varying with the training
dataset. Therefore, as an option, Particle Swarm Optimization can be used to search for
the optimal kernel width.
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Table 7. Statistical metrics on the Gehler-Shi and Cube+ datasets with different kernel width in KFCM
clustering algorithm, where the selected feature combination is RGBuv+ChengSF+IIF, and the cluster
number K = 5.

Kernel Width
Recovery AE Reproduction AE

Mean Med. Tri. B25% W25% Max Mean Med. Tri. B25% W25% Max

30 2.16 1.54 1.69 0.46 4.91 26.05 2.84 1.99 2.20 0.57 6.53 27.08
60 2.14 1.55 1.68 0.48 4.82 18.85 2.80 2.03 2.20 0.58 6.39 27.35
100 2.15 1.56 1.70 0.49 4.83 15.38 2.83 2.04 2.23 0.59 6.43 18.79
140 2.14 1.55 1.70 0.48 4.82 14.83 2.82 2.04 2.22 0.59 6.42 18.71
180 2.14 1.55 1.70 0.48 4.79 15.36 2.81 2.03 2.23 0.59 6.38 18.64
240 2.16 1.52 1.69 0.46 4.95 14.93 2.85 1.94 2.20 0.57 6.62 19.46
300 2.16 1.52 1.69 0.47 4.92 14.93 2.85 1.97 2.21 0.57 6.60 18.97
400 2.19 1.52 1.70 0.46 5.02 19.92 2.88 1.97 2.22 0.57 6.71 23.64

4.6. Discussion and Analysis

In this paper, the experimental results show that the performances of the proposed
method are on par with many statistics-based and learning-based approaches. And we
have tentatively identified the feature combinations that are more correlated to illumi-
nant estimation based on a specific feature set. In the meantime, we can obtain some
useful observations.

(1) The methods based on composite features generally work better than most methods
based on unitary features. The key to the combination of features is to find a compact
presentation to cover a much wider range of image features and illuminant characteristics.
The dimension of the features is not an obstacle; if the feature dimension is low with
useful information compressed, we can use different kernel functions to map them into a
higher dimension space [20,48]; on the contrary, if the dimensionality is high with much
redundant information, we can use the PCA technique to reduce the dimensionality of
the features [49]. To date, as it were, the trial-try method by experiments is still the
major route to construct artificial features for regression models of illuminant estimation.
Thus, choosing an appropriate feature combination is significant to accurate and robust
illuminant estimation.

(2) The methods based on feature regression clearly depend upon not only the optimal
feature combinations but also the scale and characteristics of the training sets. If the
training examples are from an identical camera or a benchmark dataset using multiple
cameras while the testing example is taken from the same camera or dataset, the illuminant
estimation accuracy is usually very high. However, if training images from a certain camera
or dataset using multiple cameras while the testing example from other camera or dataset,
i.e., cross cameras or cross datasets, the illuminant estimation accuracy is commonly worse
than expected. As the scale of the training dataset increases and the illuminant range of
the training sets extends, a single model is not a preferred option for regression modeling.
So a multiple model strategy with high efficient classification (or clustering) becomes
preferred, like KFCM clustering and regression modeling associated with fuzzy weighting
in this paper.

(3) The type of feature, i.e., features from different cues, generally affects and limits
the performances of illuminant estimation. In this paper, we just considered two types
of features (low-level CDF and middle-level IIF [18,38,58]. We found the performance
improvement is limited although we seem to have an optimal feature combination. High-
level scene category or semantic features, e.g., Weibull parameters with content-based
features [17], 3D scene geometry [37], indoor/outdoor classification [59], etc., can also be
exploited in the proposed method.
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5. Conclusions

For the regression-based illuminant estimation methods, it is uncertain which features
are more efficient to regress illuminant color. In this research, a flexible framework is

developed to integrate KFCM, NLSR, and fuzzy weighting, which can result in outstanding
performances of illuminant estimation. By extensive experiments with a series of artificial
features weaved into this framework, to some extent it is clarified which features are more
correlated to illuminant estimation. Moreover, we exploited an optimal feature combination
based on the given feature set, which obtains a significant performance improvement for
illuminant estimation.

The proposed method and its framework can be used to test and compare the influ-
ences of image features on illuminant estimation. From this, we can optimally deploy the
appropriate image features for illuminant estimation in a more objective way, rather than
in an empirical, arbitrary manner. If the feature sets contain more feature candidates, the
performance of illuminant estimation is expected to be further enhanced.

This study focuses on determining which features are more correlated to illuminant
estimation in a limited feature set. Therefore, more related image features, including
high-level semantic features, can be further taken into account. Besides, considering there
are different intrinsic and implicit cues for different camera sensors, pre-selecting images
in terms of camera sensor characteristics and then constructing multiple models may be
another pathway to improve the proposed method.
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Abbreviations

CCC Computational color constancy
GW Gray world
WP White patch
SoG Shades of gray
GE Gray edge
GGW General gray world
PCA Primary component analysis
LSR Local surface reflection
CM Corrected moments
CDF Color distribution feature
IIF Initial illumination feature
KFCM Kernel fuzzy c-means clustering
NLSR Non-negative least square regression
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